Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  opoeALTV Structured version   Visualization version   GIF version

Theorem opoeALTV 43847
Description: The sum of two odds is even. (Contributed by Scott Fenton, 7-Apr-2014.) (Revised by AV, 20-Jun-2020.)
Assertion
Ref Expression
opoeALTV ((𝐴 ∈ Odd ∧ 𝐵 ∈ Odd ) → (𝐴 + 𝐵) ∈ Even )

Proof of Theorem opoeALTV
Dummy variables 𝑎 𝑖 𝑗 𝑛 𝑧 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oddz 43795 . . 3 (𝐴 ∈ Odd → 𝐴 ∈ ℤ)
2 oddz 43795 . . 3 (𝐵 ∈ Odd → 𝐵 ∈ ℤ)
3 zaddcl 12021 . . 3 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 + 𝐵) ∈ ℤ)
41, 2, 3syl2an 597 . 2 ((𝐴 ∈ Odd ∧ 𝐵 ∈ Odd ) → (𝐴 + 𝐵) ∈ ℤ)
5 eqeq1 2825 . . . . . 6 (𝑎 = 𝐴 → (𝑎 = ((2 · 𝑖) + 1) ↔ 𝐴 = ((2 · 𝑖) + 1)))
65rexbidv 3297 . . . . 5 (𝑎 = 𝐴 → (∃𝑖 ∈ ℤ 𝑎 = ((2 · 𝑖) + 1) ↔ ∃𝑖 ∈ ℤ 𝐴 = ((2 · 𝑖) + 1)))
7 dfodd6 43801 . . . . 5 Odd = {𝑎 ∈ ℤ ∣ ∃𝑖 ∈ ℤ 𝑎 = ((2 · 𝑖) + 1)}
86, 7elrab2 3682 . . . 4 (𝐴 ∈ Odd ↔ (𝐴 ∈ ℤ ∧ ∃𝑖 ∈ ℤ 𝐴 = ((2 · 𝑖) + 1)))
9 eqeq1 2825 . . . . . . 7 (𝑏 = 𝐵 → (𝑏 = ((2 · 𝑗) + 1) ↔ 𝐵 = ((2 · 𝑗) + 1)))
109rexbidv 3297 . . . . . 6 (𝑏 = 𝐵 → (∃𝑗 ∈ ℤ 𝑏 = ((2 · 𝑗) + 1) ↔ ∃𝑗 ∈ ℤ 𝐵 = ((2 · 𝑗) + 1)))
11 dfodd6 43801 . . . . . 6 Odd = {𝑏 ∈ ℤ ∣ ∃𝑗 ∈ ℤ 𝑏 = ((2 · 𝑗) + 1)}
1210, 11elrab2 3682 . . . . 5 (𝐵 ∈ Odd ↔ (𝐵 ∈ ℤ ∧ ∃𝑗 ∈ ℤ 𝐵 = ((2 · 𝑗) + 1)))
13 zaddcl 12021 . . . . . . . . . . . . . . 15 ((𝑖 ∈ ℤ ∧ 𝑗 ∈ ℤ) → (𝑖 + 𝑗) ∈ ℤ)
1413ex 415 . . . . . . . . . . . . . 14 (𝑖 ∈ ℤ → (𝑗 ∈ ℤ → (𝑖 + 𝑗) ∈ ℤ))
1514ad3antlr 729 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℤ ∧ 𝑖 ∈ ℤ) ∧ 𝐴 = ((2 · 𝑖) + 1)) ∧ 𝐵 ∈ ℤ) → (𝑗 ∈ ℤ → (𝑖 + 𝑗) ∈ ℤ))
1615imp 409 . . . . . . . . . . . 12 (((((𝐴 ∈ ℤ ∧ 𝑖 ∈ ℤ) ∧ 𝐴 = ((2 · 𝑖) + 1)) ∧ 𝐵 ∈ ℤ) ∧ 𝑗 ∈ ℤ) → (𝑖 + 𝑗) ∈ ℤ)
1716adantr 483 . . . . . . . . . . 11 ((((((𝐴 ∈ ℤ ∧ 𝑖 ∈ ℤ) ∧ 𝐴 = ((2 · 𝑖) + 1)) ∧ 𝐵 ∈ ℤ) ∧ 𝑗 ∈ ℤ) ∧ 𝐵 = ((2 · 𝑗) + 1)) → (𝑖 + 𝑗) ∈ ℤ)
1817peano2zd 12089 . . . . . . . . . 10 ((((((𝐴 ∈ ℤ ∧ 𝑖 ∈ ℤ) ∧ 𝐴 = ((2 · 𝑖) + 1)) ∧ 𝐵 ∈ ℤ) ∧ 𝑗 ∈ ℤ) ∧ 𝐵 = ((2 · 𝑗) + 1)) → ((𝑖 + 𝑗) + 1) ∈ ℤ)
19 oveq2 7163 . . . . . . . . . . . 12 (𝑛 = ((𝑖 + 𝑗) + 1) → (2 · 𝑛) = (2 · ((𝑖 + 𝑗) + 1)))
2019eqeq2d 2832 . . . . . . . . . . 11 (𝑛 = ((𝑖 + 𝑗) + 1) → ((𝐴 + 𝐵) = (2 · 𝑛) ↔ (𝐴 + 𝐵) = (2 · ((𝑖 + 𝑗) + 1))))
2120adantl 484 . . . . . . . . . 10 (((((((𝐴 ∈ ℤ ∧ 𝑖 ∈ ℤ) ∧ 𝐴 = ((2 · 𝑖) + 1)) ∧ 𝐵 ∈ ℤ) ∧ 𝑗 ∈ ℤ) ∧ 𝐵 = ((2 · 𝑗) + 1)) ∧ 𝑛 = ((𝑖 + 𝑗) + 1)) → ((𝐴 + 𝐵) = (2 · 𝑛) ↔ (𝐴 + 𝐵) = (2 · ((𝑖 + 𝑗) + 1))))
22 oveq12 7164 . . . . . . . . . . . . . 14 ((𝐴 = ((2 · 𝑖) + 1) ∧ 𝐵 = ((2 · 𝑗) + 1)) → (𝐴 + 𝐵) = (((2 · 𝑖) + 1) + ((2 · 𝑗) + 1)))
2322ex 415 . . . . . . . . . . . . 13 (𝐴 = ((2 · 𝑖) + 1) → (𝐵 = ((2 · 𝑗) + 1) → (𝐴 + 𝐵) = (((2 · 𝑖) + 1) + ((2 · 𝑗) + 1))))
2423ad3antlr 729 . . . . . . . . . . . 12 (((((𝐴 ∈ ℤ ∧ 𝑖 ∈ ℤ) ∧ 𝐴 = ((2 · 𝑖) + 1)) ∧ 𝐵 ∈ ℤ) ∧ 𝑗 ∈ ℤ) → (𝐵 = ((2 · 𝑗) + 1) → (𝐴 + 𝐵) = (((2 · 𝑖) + 1) + ((2 · 𝑗) + 1))))
2524imp 409 . . . . . . . . . . 11 ((((((𝐴 ∈ ℤ ∧ 𝑖 ∈ ℤ) ∧ 𝐴 = ((2 · 𝑖) + 1)) ∧ 𝐵 ∈ ℤ) ∧ 𝑗 ∈ ℤ) ∧ 𝐵 = ((2 · 𝑗) + 1)) → (𝐴 + 𝐵) = (((2 · 𝑖) + 1) + ((2 · 𝑗) + 1)))
26 zcn 11985 . . . . . . . . . . . . . . . 16 (𝑖 ∈ ℤ → 𝑖 ∈ ℂ)
27 zcn 11985 . . . . . . . . . . . . . . . 16 (𝑗 ∈ ℤ → 𝑗 ∈ ℂ)
28 2cnd 11714 . . . . . . . . . . . . . . . . . . . . 21 (𝑗 ∈ ℂ → 2 ∈ ℂ)
2928anim1i 616 . . . . . . . . . . . . . . . . . . . 20 ((𝑗 ∈ ℂ ∧ 𝑖 ∈ ℂ) → (2 ∈ ℂ ∧ 𝑖 ∈ ℂ))
3029ancoms 461 . . . . . . . . . . . . . . . . . . 19 ((𝑖 ∈ ℂ ∧ 𝑗 ∈ ℂ) → (2 ∈ ℂ ∧ 𝑖 ∈ ℂ))
31 mulcl 10620 . . . . . . . . . . . . . . . . . . 19 ((2 ∈ ℂ ∧ 𝑖 ∈ ℂ) → (2 · 𝑖) ∈ ℂ)
3230, 31syl 17 . . . . . . . . . . . . . . . . . 18 ((𝑖 ∈ ℂ ∧ 𝑗 ∈ ℂ) → (2 · 𝑖) ∈ ℂ)
33 1cnd 10635 . . . . . . . . . . . . . . . . . 18 ((𝑖 ∈ ℂ ∧ 𝑗 ∈ ℂ) → 1 ∈ ℂ)
34 2cnd 11714 . . . . . . . . . . . . . . . . . . 19 (𝑖 ∈ ℂ → 2 ∈ ℂ)
35 mulcl 10620 . . . . . . . . . . . . . . . . . . 19 ((2 ∈ ℂ ∧ 𝑗 ∈ ℂ) → (2 · 𝑗) ∈ ℂ)
3634, 35sylan 582 . . . . . . . . . . . . . . . . . 18 ((𝑖 ∈ ℂ ∧ 𝑗 ∈ ℂ) → (2 · 𝑗) ∈ ℂ)
3732, 33, 36, 33add4d 10867 . . . . . . . . . . . . . . . . 17 ((𝑖 ∈ ℂ ∧ 𝑗 ∈ ℂ) → (((2 · 𝑖) + 1) + ((2 · 𝑗) + 1)) = (((2 · 𝑖) + (2 · 𝑗)) + (1 + 1)))
38 2cnd 11714 . . . . . . . . . . . . . . . . . . . 20 ((𝑖 ∈ ℂ ∧ 𝑗 ∈ ℂ) → 2 ∈ ℂ)
39 simpl 485 . . . . . . . . . . . . . . . . . . . 20 ((𝑖 ∈ ℂ ∧ 𝑗 ∈ ℂ) → 𝑖 ∈ ℂ)
40 simpr 487 . . . . . . . . . . . . . . . . . . . 20 ((𝑖 ∈ ℂ ∧ 𝑗 ∈ ℂ) → 𝑗 ∈ ℂ)
4138, 39, 40adddid 10664 . . . . . . . . . . . . . . . . . . 19 ((𝑖 ∈ ℂ ∧ 𝑗 ∈ ℂ) → (2 · (𝑖 + 𝑗)) = ((2 · 𝑖) + (2 · 𝑗)))
4241oveq1d 7170 . . . . . . . . . . . . . . . . . 18 ((𝑖 ∈ ℂ ∧ 𝑗 ∈ ℂ) → ((2 · (𝑖 + 𝑗)) + (2 · 1)) = (((2 · 𝑖) + (2 · 𝑗)) + (2 · 1)))
43 addcl 10618 . . . . . . . . . . . . . . . . . . 19 ((𝑖 ∈ ℂ ∧ 𝑗 ∈ ℂ) → (𝑖 + 𝑗) ∈ ℂ)
4438, 43, 33adddid 10664 . . . . . . . . . . . . . . . . . 18 ((𝑖 ∈ ℂ ∧ 𝑗 ∈ ℂ) → (2 · ((𝑖 + 𝑗) + 1)) = ((2 · (𝑖 + 𝑗)) + (2 · 1)))
45 1p1e2 11761 . . . . . . . . . . . . . . . . . . . . 21 (1 + 1) = 2
46 2t1e2 11799 . . . . . . . . . . . . . . . . . . . . 21 (2 · 1) = 2
4745, 46eqtr4i 2847 . . . . . . . . . . . . . . . . . . . 20 (1 + 1) = (2 · 1)
4847a1i 11 . . . . . . . . . . . . . . . . . . 19 ((𝑖 ∈ ℂ ∧ 𝑗 ∈ ℂ) → (1 + 1) = (2 · 1))
4948oveq2d 7171 . . . . . . . . . . . . . . . . . 18 ((𝑖 ∈ ℂ ∧ 𝑗 ∈ ℂ) → (((2 · 𝑖) + (2 · 𝑗)) + (1 + 1)) = (((2 · 𝑖) + (2 · 𝑗)) + (2 · 1)))
5042, 44, 493eqtr4rd 2867 . . . . . . . . . . . . . . . . 17 ((𝑖 ∈ ℂ ∧ 𝑗 ∈ ℂ) → (((2 · 𝑖) + (2 · 𝑗)) + (1 + 1)) = (2 · ((𝑖 + 𝑗) + 1)))
5137, 50eqtrd 2856 . . . . . . . . . . . . . . . 16 ((𝑖 ∈ ℂ ∧ 𝑗 ∈ ℂ) → (((2 · 𝑖) + 1) + ((2 · 𝑗) + 1)) = (2 · ((𝑖 + 𝑗) + 1)))
5226, 27, 51syl2an 597 . . . . . . . . . . . . . . 15 ((𝑖 ∈ ℤ ∧ 𝑗 ∈ ℤ) → (((2 · 𝑖) + 1) + ((2 · 𝑗) + 1)) = (2 · ((𝑖 + 𝑗) + 1)))
5352ex 415 . . . . . . . . . . . . . 14 (𝑖 ∈ ℤ → (𝑗 ∈ ℤ → (((2 · 𝑖) + 1) + ((2 · 𝑗) + 1)) = (2 · ((𝑖 + 𝑗) + 1))))
5453ad3antlr 729 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℤ ∧ 𝑖 ∈ ℤ) ∧ 𝐴 = ((2 · 𝑖) + 1)) ∧ 𝐵 ∈ ℤ) → (𝑗 ∈ ℤ → (((2 · 𝑖) + 1) + ((2 · 𝑗) + 1)) = (2 · ((𝑖 + 𝑗) + 1))))
5554imp 409 . . . . . . . . . . . 12 (((((𝐴 ∈ ℤ ∧ 𝑖 ∈ ℤ) ∧ 𝐴 = ((2 · 𝑖) + 1)) ∧ 𝐵 ∈ ℤ) ∧ 𝑗 ∈ ℤ) → (((2 · 𝑖) + 1) + ((2 · 𝑗) + 1)) = (2 · ((𝑖 + 𝑗) + 1)))
5655adantr 483 . . . . . . . . . . 11 ((((((𝐴 ∈ ℤ ∧ 𝑖 ∈ ℤ) ∧ 𝐴 = ((2 · 𝑖) + 1)) ∧ 𝐵 ∈ ℤ) ∧ 𝑗 ∈ ℤ) ∧ 𝐵 = ((2 · 𝑗) + 1)) → (((2 · 𝑖) + 1) + ((2 · 𝑗) + 1)) = (2 · ((𝑖 + 𝑗) + 1)))
5725, 56eqtrd 2856 . . . . . . . . . 10 ((((((𝐴 ∈ ℤ ∧ 𝑖 ∈ ℤ) ∧ 𝐴 = ((2 · 𝑖) + 1)) ∧ 𝐵 ∈ ℤ) ∧ 𝑗 ∈ ℤ) ∧ 𝐵 = ((2 · 𝑗) + 1)) → (𝐴 + 𝐵) = (2 · ((𝑖 + 𝑗) + 1)))
5818, 21, 57rspcedvd 3625 . . . . . . . . 9 ((((((𝐴 ∈ ℤ ∧ 𝑖 ∈ ℤ) ∧ 𝐴 = ((2 · 𝑖) + 1)) ∧ 𝐵 ∈ ℤ) ∧ 𝑗 ∈ ℤ) ∧ 𝐵 = ((2 · 𝑗) + 1)) → ∃𝑛 ∈ ℤ (𝐴 + 𝐵) = (2 · 𝑛))
5958rexlimdva2 3287 . . . . . . . 8 ((((𝐴 ∈ ℤ ∧ 𝑖 ∈ ℤ) ∧ 𝐴 = ((2 · 𝑖) + 1)) ∧ 𝐵 ∈ ℤ) → (∃𝑗 ∈ ℤ 𝐵 = ((2 · 𝑗) + 1) → ∃𝑛 ∈ ℤ (𝐴 + 𝐵) = (2 · 𝑛)))
6059expimpd 456 . . . . . . 7 (((𝐴 ∈ ℤ ∧ 𝑖 ∈ ℤ) ∧ 𝐴 = ((2 · 𝑖) + 1)) → ((𝐵 ∈ ℤ ∧ ∃𝑗 ∈ ℤ 𝐵 = ((2 · 𝑗) + 1)) → ∃𝑛 ∈ ℤ (𝐴 + 𝐵) = (2 · 𝑛)))
6160rexlimdva2 3287 . . . . . 6 (𝐴 ∈ ℤ → (∃𝑖 ∈ ℤ 𝐴 = ((2 · 𝑖) + 1) → ((𝐵 ∈ ℤ ∧ ∃𝑗 ∈ ℤ 𝐵 = ((2 · 𝑗) + 1)) → ∃𝑛 ∈ ℤ (𝐴 + 𝐵) = (2 · 𝑛))))
6261imp 409 . . . . 5 ((𝐴 ∈ ℤ ∧ ∃𝑖 ∈ ℤ 𝐴 = ((2 · 𝑖) + 1)) → ((𝐵 ∈ ℤ ∧ ∃𝑗 ∈ ℤ 𝐵 = ((2 · 𝑗) + 1)) → ∃𝑛 ∈ ℤ (𝐴 + 𝐵) = (2 · 𝑛)))
6312, 62syl5bi 244 . . . 4 ((𝐴 ∈ ℤ ∧ ∃𝑖 ∈ ℤ 𝐴 = ((2 · 𝑖) + 1)) → (𝐵 ∈ Odd → ∃𝑛 ∈ ℤ (𝐴 + 𝐵) = (2 · 𝑛)))
648, 63sylbi 219 . . 3 (𝐴 ∈ Odd → (𝐵 ∈ Odd → ∃𝑛 ∈ ℤ (𝐴 + 𝐵) = (2 · 𝑛)))
6564imp 409 . 2 ((𝐴 ∈ Odd ∧ 𝐵 ∈ Odd ) → ∃𝑛 ∈ ℤ (𝐴 + 𝐵) = (2 · 𝑛))
66 eqeq1 2825 . . . 4 (𝑧 = (𝐴 + 𝐵) → (𝑧 = (2 · 𝑛) ↔ (𝐴 + 𝐵) = (2 · 𝑛)))
6766rexbidv 3297 . . 3 (𝑧 = (𝐴 + 𝐵) → (∃𝑛 ∈ ℤ 𝑧 = (2 · 𝑛) ↔ ∃𝑛 ∈ ℤ (𝐴 + 𝐵) = (2 · 𝑛)))
68 dfeven4 43802 . . 3 Even = {𝑧 ∈ ℤ ∣ ∃𝑛 ∈ ℤ 𝑧 = (2 · 𝑛)}
6967, 68elrab2 3682 . 2 ((𝐴 + 𝐵) ∈ Even ↔ ((𝐴 + 𝐵) ∈ ℤ ∧ ∃𝑛 ∈ ℤ (𝐴 + 𝐵) = (2 · 𝑛)))
704, 65, 69sylanbrc 585 1 ((𝐴 ∈ Odd ∧ 𝐵 ∈ Odd ) → (𝐴 + 𝐵) ∈ Even )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1533  wcel 2110  wrex 3139  (class class class)co 7155  cc 10534  1c1 10537   + caddc 10539   · cmul 10541  2c2 11691  cz 11980   Even ceven 43788   Odd codd 43789
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5202  ax-nul 5209  ax-pow 5265  ax-pr 5329  ax-un 7460  ax-resscn 10593  ax-1cn 10594  ax-icn 10595  ax-addcl 10596  ax-addrcl 10597  ax-mulcl 10598  ax-mulrcl 10599  ax-mulcom 10600  ax-addass 10601  ax-mulass 10602  ax-distr 10603  ax-i2m1 10604  ax-1ne0 10605  ax-1rid 10606  ax-rnegex 10607  ax-rrecex 10608  ax-cnre 10609  ax-pre-lttri 10610  ax-pre-lttrn 10611  ax-pre-ltadd 10612  ax-pre-mulgt0 10613
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4838  df-iun 4920  df-br 5066  df-opab 5128  df-mpt 5146  df-tr 5172  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6147  df-ord 6193  df-on 6194  df-lim 6195  df-suc 6196  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-riota 7113  df-ov 7158  df-oprab 7159  df-mpo 7160  df-om 7580  df-wrecs 7946  df-recs 8007  df-rdg 8045  df-er 8288  df-en 8509  df-dom 8510  df-sdom 8511  df-pnf 10676  df-mnf 10677  df-xr 10678  df-ltxr 10679  df-le 10680  df-sub 10871  df-neg 10872  df-div 11297  df-nn 11638  df-2 11699  df-n0 11897  df-z 11981  df-even 43790  df-odd 43791
This theorem is referenced by:  omoeALTV  43849  epee  43869  odd2prm2  43882  bgoldbtbndlem1  43969
  Copyright terms: Public domain W3C validator