Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  opoeALTV Structured version   Visualization version   GIF version

Theorem opoeALTV 44808
Description: The sum of two odds is even. (Contributed by Scott Fenton, 7-Apr-2014.) (Revised by AV, 20-Jun-2020.)
Assertion
Ref Expression
opoeALTV ((𝐴 ∈ Odd ∧ 𝐵 ∈ Odd ) → (𝐴 + 𝐵) ∈ Even )

Proof of Theorem opoeALTV
Dummy variables 𝑎 𝑖 𝑗 𝑛 𝑧 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oddz 44756 . . 3 (𝐴 ∈ Odd → 𝐴 ∈ ℤ)
2 oddz 44756 . . 3 (𝐵 ∈ Odd → 𝐵 ∈ ℤ)
3 zaddcl 12217 . . 3 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 + 𝐵) ∈ ℤ)
41, 2, 3syl2an 599 . 2 ((𝐴 ∈ Odd ∧ 𝐵 ∈ Odd ) → (𝐴 + 𝐵) ∈ ℤ)
5 eqeq1 2741 . . . . . 6 (𝑎 = 𝐴 → (𝑎 = ((2 · 𝑖) + 1) ↔ 𝐴 = ((2 · 𝑖) + 1)))
65rexbidv 3216 . . . . 5 (𝑎 = 𝐴 → (∃𝑖 ∈ ℤ 𝑎 = ((2 · 𝑖) + 1) ↔ ∃𝑖 ∈ ℤ 𝐴 = ((2 · 𝑖) + 1)))
7 dfodd6 44762 . . . . 5 Odd = {𝑎 ∈ ℤ ∣ ∃𝑖 ∈ ℤ 𝑎 = ((2 · 𝑖) + 1)}
86, 7elrab2 3605 . . . 4 (𝐴 ∈ Odd ↔ (𝐴 ∈ ℤ ∧ ∃𝑖 ∈ ℤ 𝐴 = ((2 · 𝑖) + 1)))
9 eqeq1 2741 . . . . . . 7 (𝑏 = 𝐵 → (𝑏 = ((2 · 𝑗) + 1) ↔ 𝐵 = ((2 · 𝑗) + 1)))
109rexbidv 3216 . . . . . 6 (𝑏 = 𝐵 → (∃𝑗 ∈ ℤ 𝑏 = ((2 · 𝑗) + 1) ↔ ∃𝑗 ∈ ℤ 𝐵 = ((2 · 𝑗) + 1)))
11 dfodd6 44762 . . . . . 6 Odd = {𝑏 ∈ ℤ ∣ ∃𝑗 ∈ ℤ 𝑏 = ((2 · 𝑗) + 1)}
1210, 11elrab2 3605 . . . . 5 (𝐵 ∈ Odd ↔ (𝐵 ∈ ℤ ∧ ∃𝑗 ∈ ℤ 𝐵 = ((2 · 𝑗) + 1)))
13 zaddcl 12217 . . . . . . . . . . . . . . 15 ((𝑖 ∈ ℤ ∧ 𝑗 ∈ ℤ) → (𝑖 + 𝑗) ∈ ℤ)
1413ex 416 . . . . . . . . . . . . . 14 (𝑖 ∈ ℤ → (𝑗 ∈ ℤ → (𝑖 + 𝑗) ∈ ℤ))
1514ad3antlr 731 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℤ ∧ 𝑖 ∈ ℤ) ∧ 𝐴 = ((2 · 𝑖) + 1)) ∧ 𝐵 ∈ ℤ) → (𝑗 ∈ ℤ → (𝑖 + 𝑗) ∈ ℤ))
1615imp 410 . . . . . . . . . . . 12 (((((𝐴 ∈ ℤ ∧ 𝑖 ∈ ℤ) ∧ 𝐴 = ((2 · 𝑖) + 1)) ∧ 𝐵 ∈ ℤ) ∧ 𝑗 ∈ ℤ) → (𝑖 + 𝑗) ∈ ℤ)
1716adantr 484 . . . . . . . . . . 11 ((((((𝐴 ∈ ℤ ∧ 𝑖 ∈ ℤ) ∧ 𝐴 = ((2 · 𝑖) + 1)) ∧ 𝐵 ∈ ℤ) ∧ 𝑗 ∈ ℤ) ∧ 𝐵 = ((2 · 𝑗) + 1)) → (𝑖 + 𝑗) ∈ ℤ)
1817peano2zd 12285 . . . . . . . . . 10 ((((((𝐴 ∈ ℤ ∧ 𝑖 ∈ ℤ) ∧ 𝐴 = ((2 · 𝑖) + 1)) ∧ 𝐵 ∈ ℤ) ∧ 𝑗 ∈ ℤ) ∧ 𝐵 = ((2 · 𝑗) + 1)) → ((𝑖 + 𝑗) + 1) ∈ ℤ)
19 oveq2 7221 . . . . . . . . . . . 12 (𝑛 = ((𝑖 + 𝑗) + 1) → (2 · 𝑛) = (2 · ((𝑖 + 𝑗) + 1)))
2019eqeq2d 2748 . . . . . . . . . . 11 (𝑛 = ((𝑖 + 𝑗) + 1) → ((𝐴 + 𝐵) = (2 · 𝑛) ↔ (𝐴 + 𝐵) = (2 · ((𝑖 + 𝑗) + 1))))
2120adantl 485 . . . . . . . . . 10 (((((((𝐴 ∈ ℤ ∧ 𝑖 ∈ ℤ) ∧ 𝐴 = ((2 · 𝑖) + 1)) ∧ 𝐵 ∈ ℤ) ∧ 𝑗 ∈ ℤ) ∧ 𝐵 = ((2 · 𝑗) + 1)) ∧ 𝑛 = ((𝑖 + 𝑗) + 1)) → ((𝐴 + 𝐵) = (2 · 𝑛) ↔ (𝐴 + 𝐵) = (2 · ((𝑖 + 𝑗) + 1))))
22 oveq12 7222 . . . . . . . . . . . . . 14 ((𝐴 = ((2 · 𝑖) + 1) ∧ 𝐵 = ((2 · 𝑗) + 1)) → (𝐴 + 𝐵) = (((2 · 𝑖) + 1) + ((2 · 𝑗) + 1)))
2322ex 416 . . . . . . . . . . . . 13 (𝐴 = ((2 · 𝑖) + 1) → (𝐵 = ((2 · 𝑗) + 1) → (𝐴 + 𝐵) = (((2 · 𝑖) + 1) + ((2 · 𝑗) + 1))))
2423ad3antlr 731 . . . . . . . . . . . 12 (((((𝐴 ∈ ℤ ∧ 𝑖 ∈ ℤ) ∧ 𝐴 = ((2 · 𝑖) + 1)) ∧ 𝐵 ∈ ℤ) ∧ 𝑗 ∈ ℤ) → (𝐵 = ((2 · 𝑗) + 1) → (𝐴 + 𝐵) = (((2 · 𝑖) + 1) + ((2 · 𝑗) + 1))))
2524imp 410 . . . . . . . . . . 11 ((((((𝐴 ∈ ℤ ∧ 𝑖 ∈ ℤ) ∧ 𝐴 = ((2 · 𝑖) + 1)) ∧ 𝐵 ∈ ℤ) ∧ 𝑗 ∈ ℤ) ∧ 𝐵 = ((2 · 𝑗) + 1)) → (𝐴 + 𝐵) = (((2 · 𝑖) + 1) + ((2 · 𝑗) + 1)))
26 zcn 12181 . . . . . . . . . . . . . . . 16 (𝑖 ∈ ℤ → 𝑖 ∈ ℂ)
27 zcn 12181 . . . . . . . . . . . . . . . 16 (𝑗 ∈ ℤ → 𝑗 ∈ ℂ)
28 2cnd 11908 . . . . . . . . . . . . . . . . . . . . 21 (𝑗 ∈ ℂ → 2 ∈ ℂ)
2928anim1i 618 . . . . . . . . . . . . . . . . . . . 20 ((𝑗 ∈ ℂ ∧ 𝑖 ∈ ℂ) → (2 ∈ ℂ ∧ 𝑖 ∈ ℂ))
3029ancoms 462 . . . . . . . . . . . . . . . . . . 19 ((𝑖 ∈ ℂ ∧ 𝑗 ∈ ℂ) → (2 ∈ ℂ ∧ 𝑖 ∈ ℂ))
31 mulcl 10813 . . . . . . . . . . . . . . . . . . 19 ((2 ∈ ℂ ∧ 𝑖 ∈ ℂ) → (2 · 𝑖) ∈ ℂ)
3230, 31syl 17 . . . . . . . . . . . . . . . . . 18 ((𝑖 ∈ ℂ ∧ 𝑗 ∈ ℂ) → (2 · 𝑖) ∈ ℂ)
33 1cnd 10828 . . . . . . . . . . . . . . . . . 18 ((𝑖 ∈ ℂ ∧ 𝑗 ∈ ℂ) → 1 ∈ ℂ)
34 2cnd 11908 . . . . . . . . . . . . . . . . . . 19 (𝑖 ∈ ℂ → 2 ∈ ℂ)
35 mulcl 10813 . . . . . . . . . . . . . . . . . . 19 ((2 ∈ ℂ ∧ 𝑗 ∈ ℂ) → (2 · 𝑗) ∈ ℂ)
3634, 35sylan 583 . . . . . . . . . . . . . . . . . 18 ((𝑖 ∈ ℂ ∧ 𝑗 ∈ ℂ) → (2 · 𝑗) ∈ ℂ)
3732, 33, 36, 33add4d 11060 . . . . . . . . . . . . . . . . 17 ((𝑖 ∈ ℂ ∧ 𝑗 ∈ ℂ) → (((2 · 𝑖) + 1) + ((2 · 𝑗) + 1)) = (((2 · 𝑖) + (2 · 𝑗)) + (1 + 1)))
38 2cnd 11908 . . . . . . . . . . . . . . . . . . . 20 ((𝑖 ∈ ℂ ∧ 𝑗 ∈ ℂ) → 2 ∈ ℂ)
39 simpl 486 . . . . . . . . . . . . . . . . . . . 20 ((𝑖 ∈ ℂ ∧ 𝑗 ∈ ℂ) → 𝑖 ∈ ℂ)
40 simpr 488 . . . . . . . . . . . . . . . . . . . 20 ((𝑖 ∈ ℂ ∧ 𝑗 ∈ ℂ) → 𝑗 ∈ ℂ)
4138, 39, 40adddid 10857 . . . . . . . . . . . . . . . . . . 19 ((𝑖 ∈ ℂ ∧ 𝑗 ∈ ℂ) → (2 · (𝑖 + 𝑗)) = ((2 · 𝑖) + (2 · 𝑗)))
4241oveq1d 7228 . . . . . . . . . . . . . . . . . 18 ((𝑖 ∈ ℂ ∧ 𝑗 ∈ ℂ) → ((2 · (𝑖 + 𝑗)) + (2 · 1)) = (((2 · 𝑖) + (2 · 𝑗)) + (2 · 1)))
43 addcl 10811 . . . . . . . . . . . . . . . . . . 19 ((𝑖 ∈ ℂ ∧ 𝑗 ∈ ℂ) → (𝑖 + 𝑗) ∈ ℂ)
4438, 43, 33adddid 10857 . . . . . . . . . . . . . . . . . 18 ((𝑖 ∈ ℂ ∧ 𝑗 ∈ ℂ) → (2 · ((𝑖 + 𝑗) + 1)) = ((2 · (𝑖 + 𝑗)) + (2 · 1)))
45 1p1e2 11955 . . . . . . . . . . . . . . . . . . . . 21 (1 + 1) = 2
46 2t1e2 11993 . . . . . . . . . . . . . . . . . . . . 21 (2 · 1) = 2
4745, 46eqtr4i 2768 . . . . . . . . . . . . . . . . . . . 20 (1 + 1) = (2 · 1)
4847a1i 11 . . . . . . . . . . . . . . . . . . 19 ((𝑖 ∈ ℂ ∧ 𝑗 ∈ ℂ) → (1 + 1) = (2 · 1))
4948oveq2d 7229 . . . . . . . . . . . . . . . . . 18 ((𝑖 ∈ ℂ ∧ 𝑗 ∈ ℂ) → (((2 · 𝑖) + (2 · 𝑗)) + (1 + 1)) = (((2 · 𝑖) + (2 · 𝑗)) + (2 · 1)))
5042, 44, 493eqtr4rd 2788 . . . . . . . . . . . . . . . . 17 ((𝑖 ∈ ℂ ∧ 𝑗 ∈ ℂ) → (((2 · 𝑖) + (2 · 𝑗)) + (1 + 1)) = (2 · ((𝑖 + 𝑗) + 1)))
5137, 50eqtrd 2777 . . . . . . . . . . . . . . . 16 ((𝑖 ∈ ℂ ∧ 𝑗 ∈ ℂ) → (((2 · 𝑖) + 1) + ((2 · 𝑗) + 1)) = (2 · ((𝑖 + 𝑗) + 1)))
5226, 27, 51syl2an 599 . . . . . . . . . . . . . . 15 ((𝑖 ∈ ℤ ∧ 𝑗 ∈ ℤ) → (((2 · 𝑖) + 1) + ((2 · 𝑗) + 1)) = (2 · ((𝑖 + 𝑗) + 1)))
5352ex 416 . . . . . . . . . . . . . 14 (𝑖 ∈ ℤ → (𝑗 ∈ ℤ → (((2 · 𝑖) + 1) + ((2 · 𝑗) + 1)) = (2 · ((𝑖 + 𝑗) + 1))))
5453ad3antlr 731 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℤ ∧ 𝑖 ∈ ℤ) ∧ 𝐴 = ((2 · 𝑖) + 1)) ∧ 𝐵 ∈ ℤ) → (𝑗 ∈ ℤ → (((2 · 𝑖) + 1) + ((2 · 𝑗) + 1)) = (2 · ((𝑖 + 𝑗) + 1))))
5554imp 410 . . . . . . . . . . . 12 (((((𝐴 ∈ ℤ ∧ 𝑖 ∈ ℤ) ∧ 𝐴 = ((2 · 𝑖) + 1)) ∧ 𝐵 ∈ ℤ) ∧ 𝑗 ∈ ℤ) → (((2 · 𝑖) + 1) + ((2 · 𝑗) + 1)) = (2 · ((𝑖 + 𝑗) + 1)))
5655adantr 484 . . . . . . . . . . 11 ((((((𝐴 ∈ ℤ ∧ 𝑖 ∈ ℤ) ∧ 𝐴 = ((2 · 𝑖) + 1)) ∧ 𝐵 ∈ ℤ) ∧ 𝑗 ∈ ℤ) ∧ 𝐵 = ((2 · 𝑗) + 1)) → (((2 · 𝑖) + 1) + ((2 · 𝑗) + 1)) = (2 · ((𝑖 + 𝑗) + 1)))
5725, 56eqtrd 2777 . . . . . . . . . 10 ((((((𝐴 ∈ ℤ ∧ 𝑖 ∈ ℤ) ∧ 𝐴 = ((2 · 𝑖) + 1)) ∧ 𝐵 ∈ ℤ) ∧ 𝑗 ∈ ℤ) ∧ 𝐵 = ((2 · 𝑗) + 1)) → (𝐴 + 𝐵) = (2 · ((𝑖 + 𝑗) + 1)))
5818, 21, 57rspcedvd 3540 . . . . . . . . 9 ((((((𝐴 ∈ ℤ ∧ 𝑖 ∈ ℤ) ∧ 𝐴 = ((2 · 𝑖) + 1)) ∧ 𝐵 ∈ ℤ) ∧ 𝑗 ∈ ℤ) ∧ 𝐵 = ((2 · 𝑗) + 1)) → ∃𝑛 ∈ ℤ (𝐴 + 𝐵) = (2 · 𝑛))
5958rexlimdva2 3206 . . . . . . . 8 ((((𝐴 ∈ ℤ ∧ 𝑖 ∈ ℤ) ∧ 𝐴 = ((2 · 𝑖) + 1)) ∧ 𝐵 ∈ ℤ) → (∃𝑗 ∈ ℤ 𝐵 = ((2 · 𝑗) + 1) → ∃𝑛 ∈ ℤ (𝐴 + 𝐵) = (2 · 𝑛)))
6059expimpd 457 . . . . . . 7 (((𝐴 ∈ ℤ ∧ 𝑖 ∈ ℤ) ∧ 𝐴 = ((2 · 𝑖) + 1)) → ((𝐵 ∈ ℤ ∧ ∃𝑗 ∈ ℤ 𝐵 = ((2 · 𝑗) + 1)) → ∃𝑛 ∈ ℤ (𝐴 + 𝐵) = (2 · 𝑛)))
6160rexlimdva2 3206 . . . . . 6 (𝐴 ∈ ℤ → (∃𝑖 ∈ ℤ 𝐴 = ((2 · 𝑖) + 1) → ((𝐵 ∈ ℤ ∧ ∃𝑗 ∈ ℤ 𝐵 = ((2 · 𝑗) + 1)) → ∃𝑛 ∈ ℤ (𝐴 + 𝐵) = (2 · 𝑛))))
6261imp 410 . . . . 5 ((𝐴 ∈ ℤ ∧ ∃𝑖 ∈ ℤ 𝐴 = ((2 · 𝑖) + 1)) → ((𝐵 ∈ ℤ ∧ ∃𝑗 ∈ ℤ 𝐵 = ((2 · 𝑗) + 1)) → ∃𝑛 ∈ ℤ (𝐴 + 𝐵) = (2 · 𝑛)))
6312, 62syl5bi 245 . . . 4 ((𝐴 ∈ ℤ ∧ ∃𝑖 ∈ ℤ 𝐴 = ((2 · 𝑖) + 1)) → (𝐵 ∈ Odd → ∃𝑛 ∈ ℤ (𝐴 + 𝐵) = (2 · 𝑛)))
648, 63sylbi 220 . . 3 (𝐴 ∈ Odd → (𝐵 ∈ Odd → ∃𝑛 ∈ ℤ (𝐴 + 𝐵) = (2 · 𝑛)))
6564imp 410 . 2 ((𝐴 ∈ Odd ∧ 𝐵 ∈ Odd ) → ∃𝑛 ∈ ℤ (𝐴 + 𝐵) = (2 · 𝑛))
66 eqeq1 2741 . . . 4 (𝑧 = (𝐴 + 𝐵) → (𝑧 = (2 · 𝑛) ↔ (𝐴 + 𝐵) = (2 · 𝑛)))
6766rexbidv 3216 . . 3 (𝑧 = (𝐴 + 𝐵) → (∃𝑛 ∈ ℤ 𝑧 = (2 · 𝑛) ↔ ∃𝑛 ∈ ℤ (𝐴 + 𝐵) = (2 · 𝑛)))
68 dfeven4 44763 . . 3 Even = {𝑧 ∈ ℤ ∣ ∃𝑛 ∈ ℤ 𝑧 = (2 · 𝑛)}
6967, 68elrab2 3605 . 2 ((𝐴 + 𝐵) ∈ Even ↔ ((𝐴 + 𝐵) ∈ ℤ ∧ ∃𝑛 ∈ ℤ (𝐴 + 𝐵) = (2 · 𝑛)))
704, 65, 69sylanbrc 586 1 ((𝐴 ∈ Odd ∧ 𝐵 ∈ Odd ) → (𝐴 + 𝐵) ∈ Even )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1543  wcel 2110  wrex 3062  (class class class)co 7213  cc 10727  1c1 10730   + caddc 10732   · cmul 10734  2c2 11885  cz 12176   Even ceven 44749   Odd codd 44750
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523  ax-resscn 10786  ax-1cn 10787  ax-icn 10788  ax-addcl 10789  ax-addrcl 10790  ax-mulcl 10791  ax-mulrcl 10792  ax-mulcom 10793  ax-addass 10794  ax-mulass 10795  ax-distr 10796  ax-i2m1 10797  ax-1ne0 10798  ax-1rid 10799  ax-rnegex 10800  ax-rrecex 10801  ax-cnre 10802  ax-pre-lttri 10803  ax-pre-lttrn 10804  ax-pre-ltadd 10805  ax-pre-mulgt0 10806
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-pss 3885  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-tp 4546  df-op 4548  df-uni 4820  df-iun 4906  df-br 5054  df-opab 5116  df-mpt 5136  df-tr 5162  df-id 5455  df-eprel 5460  df-po 5468  df-so 5469  df-fr 5509  df-we 5511  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-pred 6160  df-ord 6216  df-on 6217  df-lim 6218  df-suc 6219  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-riota 7170  df-ov 7216  df-oprab 7217  df-mpo 7218  df-om 7645  df-wrecs 8047  df-recs 8108  df-rdg 8146  df-er 8391  df-en 8627  df-dom 8628  df-sdom 8629  df-pnf 10869  df-mnf 10870  df-xr 10871  df-ltxr 10872  df-le 10873  df-sub 11064  df-neg 11065  df-div 11490  df-nn 11831  df-2 11893  df-n0 12091  df-z 12177  df-even 44751  df-odd 44752
This theorem is referenced by:  omoeALTV  44810  epee  44830  odd2prm2  44843  bgoldbtbndlem1  44930
  Copyright terms: Public domain W3C validator