Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  opoeALTV Structured version   Visualization version   GIF version

Theorem opoeALTV 45865
Description: The sum of two odds is even. (Contributed by Scott Fenton, 7-Apr-2014.) (Revised by AV, 20-Jun-2020.)
Assertion
Ref Expression
opoeALTV ((𝐴 ∈ Odd ∧ 𝐵 ∈ Odd ) → (𝐴 + 𝐵) ∈ Even )

Proof of Theorem opoeALTV
Dummy variables 𝑎 𝑖 𝑗 𝑛 𝑧 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oddz 45813 . . 3 (𝐴 ∈ Odd → 𝐴 ∈ ℤ)
2 oddz 45813 . . 3 (𝐵 ∈ Odd → 𝐵 ∈ ℤ)
3 zaddcl 12543 . . 3 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 + 𝐵) ∈ ℤ)
41, 2, 3syl2an 596 . 2 ((𝐴 ∈ Odd ∧ 𝐵 ∈ Odd ) → (𝐴 + 𝐵) ∈ ℤ)
5 eqeq1 2740 . . . . . 6 (𝑎 = 𝐴 → (𝑎 = ((2 · 𝑖) + 1) ↔ 𝐴 = ((2 · 𝑖) + 1)))
65rexbidv 3175 . . . . 5 (𝑎 = 𝐴 → (∃𝑖 ∈ ℤ 𝑎 = ((2 · 𝑖) + 1) ↔ ∃𝑖 ∈ ℤ 𝐴 = ((2 · 𝑖) + 1)))
7 dfodd6 45819 . . . . 5 Odd = {𝑎 ∈ ℤ ∣ ∃𝑖 ∈ ℤ 𝑎 = ((2 · 𝑖) + 1)}
86, 7elrab2 3648 . . . 4 (𝐴 ∈ Odd ↔ (𝐴 ∈ ℤ ∧ ∃𝑖 ∈ ℤ 𝐴 = ((2 · 𝑖) + 1)))
9 eqeq1 2740 . . . . . . 7 (𝑏 = 𝐵 → (𝑏 = ((2 · 𝑗) + 1) ↔ 𝐵 = ((2 · 𝑗) + 1)))
109rexbidv 3175 . . . . . 6 (𝑏 = 𝐵 → (∃𝑗 ∈ ℤ 𝑏 = ((2 · 𝑗) + 1) ↔ ∃𝑗 ∈ ℤ 𝐵 = ((2 · 𝑗) + 1)))
11 dfodd6 45819 . . . . . 6 Odd = {𝑏 ∈ ℤ ∣ ∃𝑗 ∈ ℤ 𝑏 = ((2 · 𝑗) + 1)}
1210, 11elrab2 3648 . . . . 5 (𝐵 ∈ Odd ↔ (𝐵 ∈ ℤ ∧ ∃𝑗 ∈ ℤ 𝐵 = ((2 · 𝑗) + 1)))
13 zaddcl 12543 . . . . . . . . . . . . . . 15 ((𝑖 ∈ ℤ ∧ 𝑗 ∈ ℤ) → (𝑖 + 𝑗) ∈ ℤ)
1413ex 413 . . . . . . . . . . . . . 14 (𝑖 ∈ ℤ → (𝑗 ∈ ℤ → (𝑖 + 𝑗) ∈ ℤ))
1514ad3antlr 729 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℤ ∧ 𝑖 ∈ ℤ) ∧ 𝐴 = ((2 · 𝑖) + 1)) ∧ 𝐵 ∈ ℤ) → (𝑗 ∈ ℤ → (𝑖 + 𝑗) ∈ ℤ))
1615imp 407 . . . . . . . . . . . 12 (((((𝐴 ∈ ℤ ∧ 𝑖 ∈ ℤ) ∧ 𝐴 = ((2 · 𝑖) + 1)) ∧ 𝐵 ∈ ℤ) ∧ 𝑗 ∈ ℤ) → (𝑖 + 𝑗) ∈ ℤ)
1716adantr 481 . . . . . . . . . . 11 ((((((𝐴 ∈ ℤ ∧ 𝑖 ∈ ℤ) ∧ 𝐴 = ((2 · 𝑖) + 1)) ∧ 𝐵 ∈ ℤ) ∧ 𝑗 ∈ ℤ) ∧ 𝐵 = ((2 · 𝑗) + 1)) → (𝑖 + 𝑗) ∈ ℤ)
1817peano2zd 12610 . . . . . . . . . 10 ((((((𝐴 ∈ ℤ ∧ 𝑖 ∈ ℤ) ∧ 𝐴 = ((2 · 𝑖) + 1)) ∧ 𝐵 ∈ ℤ) ∧ 𝑗 ∈ ℤ) ∧ 𝐵 = ((2 · 𝑗) + 1)) → ((𝑖 + 𝑗) + 1) ∈ ℤ)
19 oveq2 7365 . . . . . . . . . . . 12 (𝑛 = ((𝑖 + 𝑗) + 1) → (2 · 𝑛) = (2 · ((𝑖 + 𝑗) + 1)))
2019eqeq2d 2747 . . . . . . . . . . 11 (𝑛 = ((𝑖 + 𝑗) + 1) → ((𝐴 + 𝐵) = (2 · 𝑛) ↔ (𝐴 + 𝐵) = (2 · ((𝑖 + 𝑗) + 1))))
2120adantl 482 . . . . . . . . . 10 (((((((𝐴 ∈ ℤ ∧ 𝑖 ∈ ℤ) ∧ 𝐴 = ((2 · 𝑖) + 1)) ∧ 𝐵 ∈ ℤ) ∧ 𝑗 ∈ ℤ) ∧ 𝐵 = ((2 · 𝑗) + 1)) ∧ 𝑛 = ((𝑖 + 𝑗) + 1)) → ((𝐴 + 𝐵) = (2 · 𝑛) ↔ (𝐴 + 𝐵) = (2 · ((𝑖 + 𝑗) + 1))))
22 oveq12 7366 . . . . . . . . . . . . . 14 ((𝐴 = ((2 · 𝑖) + 1) ∧ 𝐵 = ((2 · 𝑗) + 1)) → (𝐴 + 𝐵) = (((2 · 𝑖) + 1) + ((2 · 𝑗) + 1)))
2322ex 413 . . . . . . . . . . . . 13 (𝐴 = ((2 · 𝑖) + 1) → (𝐵 = ((2 · 𝑗) + 1) → (𝐴 + 𝐵) = (((2 · 𝑖) + 1) + ((2 · 𝑗) + 1))))
2423ad3antlr 729 . . . . . . . . . . . 12 (((((𝐴 ∈ ℤ ∧ 𝑖 ∈ ℤ) ∧ 𝐴 = ((2 · 𝑖) + 1)) ∧ 𝐵 ∈ ℤ) ∧ 𝑗 ∈ ℤ) → (𝐵 = ((2 · 𝑗) + 1) → (𝐴 + 𝐵) = (((2 · 𝑖) + 1) + ((2 · 𝑗) + 1))))
2524imp 407 . . . . . . . . . . 11 ((((((𝐴 ∈ ℤ ∧ 𝑖 ∈ ℤ) ∧ 𝐴 = ((2 · 𝑖) + 1)) ∧ 𝐵 ∈ ℤ) ∧ 𝑗 ∈ ℤ) ∧ 𝐵 = ((2 · 𝑗) + 1)) → (𝐴 + 𝐵) = (((2 · 𝑖) + 1) + ((2 · 𝑗) + 1)))
26 zcn 12504 . . . . . . . . . . . . . . . 16 (𝑖 ∈ ℤ → 𝑖 ∈ ℂ)
27 zcn 12504 . . . . . . . . . . . . . . . 16 (𝑗 ∈ ℤ → 𝑗 ∈ ℂ)
28 2cnd 12231 . . . . . . . . . . . . . . . . . . . . 21 (𝑗 ∈ ℂ → 2 ∈ ℂ)
2928anim1i 615 . . . . . . . . . . . . . . . . . . . 20 ((𝑗 ∈ ℂ ∧ 𝑖 ∈ ℂ) → (2 ∈ ℂ ∧ 𝑖 ∈ ℂ))
3029ancoms 459 . . . . . . . . . . . . . . . . . . 19 ((𝑖 ∈ ℂ ∧ 𝑗 ∈ ℂ) → (2 ∈ ℂ ∧ 𝑖 ∈ ℂ))
31 mulcl 11135 . . . . . . . . . . . . . . . . . . 19 ((2 ∈ ℂ ∧ 𝑖 ∈ ℂ) → (2 · 𝑖) ∈ ℂ)
3230, 31syl 17 . . . . . . . . . . . . . . . . . 18 ((𝑖 ∈ ℂ ∧ 𝑗 ∈ ℂ) → (2 · 𝑖) ∈ ℂ)
33 1cnd 11150 . . . . . . . . . . . . . . . . . 18 ((𝑖 ∈ ℂ ∧ 𝑗 ∈ ℂ) → 1 ∈ ℂ)
34 2cnd 12231 . . . . . . . . . . . . . . . . . . 19 (𝑖 ∈ ℂ → 2 ∈ ℂ)
35 mulcl 11135 . . . . . . . . . . . . . . . . . . 19 ((2 ∈ ℂ ∧ 𝑗 ∈ ℂ) → (2 · 𝑗) ∈ ℂ)
3634, 35sylan 580 . . . . . . . . . . . . . . . . . 18 ((𝑖 ∈ ℂ ∧ 𝑗 ∈ ℂ) → (2 · 𝑗) ∈ ℂ)
3732, 33, 36, 33add4d 11383 . . . . . . . . . . . . . . . . 17 ((𝑖 ∈ ℂ ∧ 𝑗 ∈ ℂ) → (((2 · 𝑖) + 1) + ((2 · 𝑗) + 1)) = (((2 · 𝑖) + (2 · 𝑗)) + (1 + 1)))
38 2cnd 12231 . . . . . . . . . . . . . . . . . . . 20 ((𝑖 ∈ ℂ ∧ 𝑗 ∈ ℂ) → 2 ∈ ℂ)
39 simpl 483 . . . . . . . . . . . . . . . . . . . 20 ((𝑖 ∈ ℂ ∧ 𝑗 ∈ ℂ) → 𝑖 ∈ ℂ)
40 simpr 485 . . . . . . . . . . . . . . . . . . . 20 ((𝑖 ∈ ℂ ∧ 𝑗 ∈ ℂ) → 𝑗 ∈ ℂ)
4138, 39, 40adddid 11179 . . . . . . . . . . . . . . . . . . 19 ((𝑖 ∈ ℂ ∧ 𝑗 ∈ ℂ) → (2 · (𝑖 + 𝑗)) = ((2 · 𝑖) + (2 · 𝑗)))
4241oveq1d 7372 . . . . . . . . . . . . . . . . . 18 ((𝑖 ∈ ℂ ∧ 𝑗 ∈ ℂ) → ((2 · (𝑖 + 𝑗)) + (2 · 1)) = (((2 · 𝑖) + (2 · 𝑗)) + (2 · 1)))
43 addcl 11133 . . . . . . . . . . . . . . . . . . 19 ((𝑖 ∈ ℂ ∧ 𝑗 ∈ ℂ) → (𝑖 + 𝑗) ∈ ℂ)
4438, 43, 33adddid 11179 . . . . . . . . . . . . . . . . . 18 ((𝑖 ∈ ℂ ∧ 𝑗 ∈ ℂ) → (2 · ((𝑖 + 𝑗) + 1)) = ((2 · (𝑖 + 𝑗)) + (2 · 1)))
45 1p1e2 12278 . . . . . . . . . . . . . . . . . . . . 21 (1 + 1) = 2
46 2t1e2 12316 . . . . . . . . . . . . . . . . . . . . 21 (2 · 1) = 2
4745, 46eqtr4i 2767 . . . . . . . . . . . . . . . . . . . 20 (1 + 1) = (2 · 1)
4847a1i 11 . . . . . . . . . . . . . . . . . . 19 ((𝑖 ∈ ℂ ∧ 𝑗 ∈ ℂ) → (1 + 1) = (2 · 1))
4948oveq2d 7373 . . . . . . . . . . . . . . . . . 18 ((𝑖 ∈ ℂ ∧ 𝑗 ∈ ℂ) → (((2 · 𝑖) + (2 · 𝑗)) + (1 + 1)) = (((2 · 𝑖) + (2 · 𝑗)) + (2 · 1)))
5042, 44, 493eqtr4rd 2787 . . . . . . . . . . . . . . . . 17 ((𝑖 ∈ ℂ ∧ 𝑗 ∈ ℂ) → (((2 · 𝑖) + (2 · 𝑗)) + (1 + 1)) = (2 · ((𝑖 + 𝑗) + 1)))
5137, 50eqtrd 2776 . . . . . . . . . . . . . . . 16 ((𝑖 ∈ ℂ ∧ 𝑗 ∈ ℂ) → (((2 · 𝑖) + 1) + ((2 · 𝑗) + 1)) = (2 · ((𝑖 + 𝑗) + 1)))
5226, 27, 51syl2an 596 . . . . . . . . . . . . . . 15 ((𝑖 ∈ ℤ ∧ 𝑗 ∈ ℤ) → (((2 · 𝑖) + 1) + ((2 · 𝑗) + 1)) = (2 · ((𝑖 + 𝑗) + 1)))
5352ex 413 . . . . . . . . . . . . . 14 (𝑖 ∈ ℤ → (𝑗 ∈ ℤ → (((2 · 𝑖) + 1) + ((2 · 𝑗) + 1)) = (2 · ((𝑖 + 𝑗) + 1))))
5453ad3antlr 729 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℤ ∧ 𝑖 ∈ ℤ) ∧ 𝐴 = ((2 · 𝑖) + 1)) ∧ 𝐵 ∈ ℤ) → (𝑗 ∈ ℤ → (((2 · 𝑖) + 1) + ((2 · 𝑗) + 1)) = (2 · ((𝑖 + 𝑗) + 1))))
5554imp 407 . . . . . . . . . . . 12 (((((𝐴 ∈ ℤ ∧ 𝑖 ∈ ℤ) ∧ 𝐴 = ((2 · 𝑖) + 1)) ∧ 𝐵 ∈ ℤ) ∧ 𝑗 ∈ ℤ) → (((2 · 𝑖) + 1) + ((2 · 𝑗) + 1)) = (2 · ((𝑖 + 𝑗) + 1)))
5655adantr 481 . . . . . . . . . . 11 ((((((𝐴 ∈ ℤ ∧ 𝑖 ∈ ℤ) ∧ 𝐴 = ((2 · 𝑖) + 1)) ∧ 𝐵 ∈ ℤ) ∧ 𝑗 ∈ ℤ) ∧ 𝐵 = ((2 · 𝑗) + 1)) → (((2 · 𝑖) + 1) + ((2 · 𝑗) + 1)) = (2 · ((𝑖 + 𝑗) + 1)))
5725, 56eqtrd 2776 . . . . . . . . . 10 ((((((𝐴 ∈ ℤ ∧ 𝑖 ∈ ℤ) ∧ 𝐴 = ((2 · 𝑖) + 1)) ∧ 𝐵 ∈ ℤ) ∧ 𝑗 ∈ ℤ) ∧ 𝐵 = ((2 · 𝑗) + 1)) → (𝐴 + 𝐵) = (2 · ((𝑖 + 𝑗) + 1)))
5818, 21, 57rspcedvd 3583 . . . . . . . . 9 ((((((𝐴 ∈ ℤ ∧ 𝑖 ∈ ℤ) ∧ 𝐴 = ((2 · 𝑖) + 1)) ∧ 𝐵 ∈ ℤ) ∧ 𝑗 ∈ ℤ) ∧ 𝐵 = ((2 · 𝑗) + 1)) → ∃𝑛 ∈ ℤ (𝐴 + 𝐵) = (2 · 𝑛))
5958rexlimdva2 3154 . . . . . . . 8 ((((𝐴 ∈ ℤ ∧ 𝑖 ∈ ℤ) ∧ 𝐴 = ((2 · 𝑖) + 1)) ∧ 𝐵 ∈ ℤ) → (∃𝑗 ∈ ℤ 𝐵 = ((2 · 𝑗) + 1) → ∃𝑛 ∈ ℤ (𝐴 + 𝐵) = (2 · 𝑛)))
6059expimpd 454 . . . . . . 7 (((𝐴 ∈ ℤ ∧ 𝑖 ∈ ℤ) ∧ 𝐴 = ((2 · 𝑖) + 1)) → ((𝐵 ∈ ℤ ∧ ∃𝑗 ∈ ℤ 𝐵 = ((2 · 𝑗) + 1)) → ∃𝑛 ∈ ℤ (𝐴 + 𝐵) = (2 · 𝑛)))
6160rexlimdva2 3154 . . . . . 6 (𝐴 ∈ ℤ → (∃𝑖 ∈ ℤ 𝐴 = ((2 · 𝑖) + 1) → ((𝐵 ∈ ℤ ∧ ∃𝑗 ∈ ℤ 𝐵 = ((2 · 𝑗) + 1)) → ∃𝑛 ∈ ℤ (𝐴 + 𝐵) = (2 · 𝑛))))
6261imp 407 . . . . 5 ((𝐴 ∈ ℤ ∧ ∃𝑖 ∈ ℤ 𝐴 = ((2 · 𝑖) + 1)) → ((𝐵 ∈ ℤ ∧ ∃𝑗 ∈ ℤ 𝐵 = ((2 · 𝑗) + 1)) → ∃𝑛 ∈ ℤ (𝐴 + 𝐵) = (2 · 𝑛)))
6312, 62biimtrid 241 . . . 4 ((𝐴 ∈ ℤ ∧ ∃𝑖 ∈ ℤ 𝐴 = ((2 · 𝑖) + 1)) → (𝐵 ∈ Odd → ∃𝑛 ∈ ℤ (𝐴 + 𝐵) = (2 · 𝑛)))
648, 63sylbi 216 . . 3 (𝐴 ∈ Odd → (𝐵 ∈ Odd → ∃𝑛 ∈ ℤ (𝐴 + 𝐵) = (2 · 𝑛)))
6564imp 407 . 2 ((𝐴 ∈ Odd ∧ 𝐵 ∈ Odd ) → ∃𝑛 ∈ ℤ (𝐴 + 𝐵) = (2 · 𝑛))
66 eqeq1 2740 . . . 4 (𝑧 = (𝐴 + 𝐵) → (𝑧 = (2 · 𝑛) ↔ (𝐴 + 𝐵) = (2 · 𝑛)))
6766rexbidv 3175 . . 3 (𝑧 = (𝐴 + 𝐵) → (∃𝑛 ∈ ℤ 𝑧 = (2 · 𝑛) ↔ ∃𝑛 ∈ ℤ (𝐴 + 𝐵) = (2 · 𝑛)))
68 dfeven4 45820 . . 3 Even = {𝑧 ∈ ℤ ∣ ∃𝑛 ∈ ℤ 𝑧 = (2 · 𝑛)}
6967, 68elrab2 3648 . 2 ((𝐴 + 𝐵) ∈ Even ↔ ((𝐴 + 𝐵) ∈ ℤ ∧ ∃𝑛 ∈ ℤ (𝐴 + 𝐵) = (2 · 𝑛)))
704, 65, 69sylanbrc 583 1 ((𝐴 ∈ Odd ∧ 𝐵 ∈ Odd ) → (𝐴 + 𝐵) ∈ Even )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106  wrex 3073  (class class class)co 7357  cc 11049  1c1 11052   + caddc 11054   · cmul 11056  2c2 12208  cz 12499   Even ceven 45806   Odd codd 45807
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-er 8648  df-en 8884  df-dom 8885  df-sdom 8886  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-n0 12414  df-z 12500  df-even 45808  df-odd 45809
This theorem is referenced by:  omoeALTV  45867  epee  45887  odd2prm2  45900  bgoldbtbndlem1  45987
  Copyright terms: Public domain W3C validator