Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  opoeALTV Structured version   Visualization version   GIF version

Theorem opoeALTV 47670
Description: The sum of two odds is even. (Contributed by Scott Fenton, 7-Apr-2014.) (Revised by AV, 20-Jun-2020.)
Assertion
Ref Expression
opoeALTV ((𝐴 ∈ Odd ∧ 𝐵 ∈ Odd ) → (𝐴 + 𝐵) ∈ Even )

Proof of Theorem opoeALTV
Dummy variables 𝑎 𝑖 𝑗 𝑛 𝑧 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oddz 47618 . . 3 (𝐴 ∈ Odd → 𝐴 ∈ ℤ)
2 oddz 47618 . . 3 (𝐵 ∈ Odd → 𝐵 ∈ ℤ)
3 zaddcl 12657 . . 3 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 + 𝐵) ∈ ℤ)
41, 2, 3syl2an 596 . 2 ((𝐴 ∈ Odd ∧ 𝐵 ∈ Odd ) → (𝐴 + 𝐵) ∈ ℤ)
5 eqeq1 2741 . . . . . 6 (𝑎 = 𝐴 → (𝑎 = ((2 · 𝑖) + 1) ↔ 𝐴 = ((2 · 𝑖) + 1)))
65rexbidv 3179 . . . . 5 (𝑎 = 𝐴 → (∃𝑖 ∈ ℤ 𝑎 = ((2 · 𝑖) + 1) ↔ ∃𝑖 ∈ ℤ 𝐴 = ((2 · 𝑖) + 1)))
7 dfodd6 47624 . . . . 5 Odd = {𝑎 ∈ ℤ ∣ ∃𝑖 ∈ ℤ 𝑎 = ((2 · 𝑖) + 1)}
86, 7elrab2 3695 . . . 4 (𝐴 ∈ Odd ↔ (𝐴 ∈ ℤ ∧ ∃𝑖 ∈ ℤ 𝐴 = ((2 · 𝑖) + 1)))
9 eqeq1 2741 . . . . . . 7 (𝑏 = 𝐵 → (𝑏 = ((2 · 𝑗) + 1) ↔ 𝐵 = ((2 · 𝑗) + 1)))
109rexbidv 3179 . . . . . 6 (𝑏 = 𝐵 → (∃𝑗 ∈ ℤ 𝑏 = ((2 · 𝑗) + 1) ↔ ∃𝑗 ∈ ℤ 𝐵 = ((2 · 𝑗) + 1)))
11 dfodd6 47624 . . . . . 6 Odd = {𝑏 ∈ ℤ ∣ ∃𝑗 ∈ ℤ 𝑏 = ((2 · 𝑗) + 1)}
1210, 11elrab2 3695 . . . . 5 (𝐵 ∈ Odd ↔ (𝐵 ∈ ℤ ∧ ∃𝑗 ∈ ℤ 𝐵 = ((2 · 𝑗) + 1)))
13 zaddcl 12657 . . . . . . . . . . . . . . 15 ((𝑖 ∈ ℤ ∧ 𝑗 ∈ ℤ) → (𝑖 + 𝑗) ∈ ℤ)
1413ex 412 . . . . . . . . . . . . . 14 (𝑖 ∈ ℤ → (𝑗 ∈ ℤ → (𝑖 + 𝑗) ∈ ℤ))
1514ad3antlr 731 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℤ ∧ 𝑖 ∈ ℤ) ∧ 𝐴 = ((2 · 𝑖) + 1)) ∧ 𝐵 ∈ ℤ) → (𝑗 ∈ ℤ → (𝑖 + 𝑗) ∈ ℤ))
1615imp 406 . . . . . . . . . . . 12 (((((𝐴 ∈ ℤ ∧ 𝑖 ∈ ℤ) ∧ 𝐴 = ((2 · 𝑖) + 1)) ∧ 𝐵 ∈ ℤ) ∧ 𝑗 ∈ ℤ) → (𝑖 + 𝑗) ∈ ℤ)
1716adantr 480 . . . . . . . . . . 11 ((((((𝐴 ∈ ℤ ∧ 𝑖 ∈ ℤ) ∧ 𝐴 = ((2 · 𝑖) + 1)) ∧ 𝐵 ∈ ℤ) ∧ 𝑗 ∈ ℤ) ∧ 𝐵 = ((2 · 𝑗) + 1)) → (𝑖 + 𝑗) ∈ ℤ)
1817peano2zd 12725 . . . . . . . . . 10 ((((((𝐴 ∈ ℤ ∧ 𝑖 ∈ ℤ) ∧ 𝐴 = ((2 · 𝑖) + 1)) ∧ 𝐵 ∈ ℤ) ∧ 𝑗 ∈ ℤ) ∧ 𝐵 = ((2 · 𝑗) + 1)) → ((𝑖 + 𝑗) + 1) ∈ ℤ)
19 oveq2 7439 . . . . . . . . . . . 12 (𝑛 = ((𝑖 + 𝑗) + 1) → (2 · 𝑛) = (2 · ((𝑖 + 𝑗) + 1)))
2019eqeq2d 2748 . . . . . . . . . . 11 (𝑛 = ((𝑖 + 𝑗) + 1) → ((𝐴 + 𝐵) = (2 · 𝑛) ↔ (𝐴 + 𝐵) = (2 · ((𝑖 + 𝑗) + 1))))
2120adantl 481 . . . . . . . . . 10 (((((((𝐴 ∈ ℤ ∧ 𝑖 ∈ ℤ) ∧ 𝐴 = ((2 · 𝑖) + 1)) ∧ 𝐵 ∈ ℤ) ∧ 𝑗 ∈ ℤ) ∧ 𝐵 = ((2 · 𝑗) + 1)) ∧ 𝑛 = ((𝑖 + 𝑗) + 1)) → ((𝐴 + 𝐵) = (2 · 𝑛) ↔ (𝐴 + 𝐵) = (2 · ((𝑖 + 𝑗) + 1))))
22 oveq12 7440 . . . . . . . . . . . . . 14 ((𝐴 = ((2 · 𝑖) + 1) ∧ 𝐵 = ((2 · 𝑗) + 1)) → (𝐴 + 𝐵) = (((2 · 𝑖) + 1) + ((2 · 𝑗) + 1)))
2322ex 412 . . . . . . . . . . . . 13 (𝐴 = ((2 · 𝑖) + 1) → (𝐵 = ((2 · 𝑗) + 1) → (𝐴 + 𝐵) = (((2 · 𝑖) + 1) + ((2 · 𝑗) + 1))))
2423ad3antlr 731 . . . . . . . . . . . 12 (((((𝐴 ∈ ℤ ∧ 𝑖 ∈ ℤ) ∧ 𝐴 = ((2 · 𝑖) + 1)) ∧ 𝐵 ∈ ℤ) ∧ 𝑗 ∈ ℤ) → (𝐵 = ((2 · 𝑗) + 1) → (𝐴 + 𝐵) = (((2 · 𝑖) + 1) + ((2 · 𝑗) + 1))))
2524imp 406 . . . . . . . . . . 11 ((((((𝐴 ∈ ℤ ∧ 𝑖 ∈ ℤ) ∧ 𝐴 = ((2 · 𝑖) + 1)) ∧ 𝐵 ∈ ℤ) ∧ 𝑗 ∈ ℤ) ∧ 𝐵 = ((2 · 𝑗) + 1)) → (𝐴 + 𝐵) = (((2 · 𝑖) + 1) + ((2 · 𝑗) + 1)))
26 zcn 12618 . . . . . . . . . . . . . . . 16 (𝑖 ∈ ℤ → 𝑖 ∈ ℂ)
27 zcn 12618 . . . . . . . . . . . . . . . 16 (𝑗 ∈ ℤ → 𝑗 ∈ ℂ)
28 2cnd 12344 . . . . . . . . . . . . . . . . . . . . 21 (𝑗 ∈ ℂ → 2 ∈ ℂ)
2928anim1i 615 . . . . . . . . . . . . . . . . . . . 20 ((𝑗 ∈ ℂ ∧ 𝑖 ∈ ℂ) → (2 ∈ ℂ ∧ 𝑖 ∈ ℂ))
3029ancoms 458 . . . . . . . . . . . . . . . . . . 19 ((𝑖 ∈ ℂ ∧ 𝑗 ∈ ℂ) → (2 ∈ ℂ ∧ 𝑖 ∈ ℂ))
31 mulcl 11239 . . . . . . . . . . . . . . . . . . 19 ((2 ∈ ℂ ∧ 𝑖 ∈ ℂ) → (2 · 𝑖) ∈ ℂ)
3230, 31syl 17 . . . . . . . . . . . . . . . . . 18 ((𝑖 ∈ ℂ ∧ 𝑗 ∈ ℂ) → (2 · 𝑖) ∈ ℂ)
33 1cnd 11256 . . . . . . . . . . . . . . . . . 18 ((𝑖 ∈ ℂ ∧ 𝑗 ∈ ℂ) → 1 ∈ ℂ)
34 2cnd 12344 . . . . . . . . . . . . . . . . . . 19 (𝑖 ∈ ℂ → 2 ∈ ℂ)
35 mulcl 11239 . . . . . . . . . . . . . . . . . . 19 ((2 ∈ ℂ ∧ 𝑗 ∈ ℂ) → (2 · 𝑗) ∈ ℂ)
3634, 35sylan 580 . . . . . . . . . . . . . . . . . 18 ((𝑖 ∈ ℂ ∧ 𝑗 ∈ ℂ) → (2 · 𝑗) ∈ ℂ)
3732, 33, 36, 33add4d 11490 . . . . . . . . . . . . . . . . 17 ((𝑖 ∈ ℂ ∧ 𝑗 ∈ ℂ) → (((2 · 𝑖) + 1) + ((2 · 𝑗) + 1)) = (((2 · 𝑖) + (2 · 𝑗)) + (1 + 1)))
38 2cnd 12344 . . . . . . . . . . . . . . . . . . . 20 ((𝑖 ∈ ℂ ∧ 𝑗 ∈ ℂ) → 2 ∈ ℂ)
39 simpl 482 . . . . . . . . . . . . . . . . . . . 20 ((𝑖 ∈ ℂ ∧ 𝑗 ∈ ℂ) → 𝑖 ∈ ℂ)
40 simpr 484 . . . . . . . . . . . . . . . . . . . 20 ((𝑖 ∈ ℂ ∧ 𝑗 ∈ ℂ) → 𝑗 ∈ ℂ)
4138, 39, 40adddid 11285 . . . . . . . . . . . . . . . . . . 19 ((𝑖 ∈ ℂ ∧ 𝑗 ∈ ℂ) → (2 · (𝑖 + 𝑗)) = ((2 · 𝑖) + (2 · 𝑗)))
4241oveq1d 7446 . . . . . . . . . . . . . . . . . 18 ((𝑖 ∈ ℂ ∧ 𝑗 ∈ ℂ) → ((2 · (𝑖 + 𝑗)) + (2 · 1)) = (((2 · 𝑖) + (2 · 𝑗)) + (2 · 1)))
43 addcl 11237 . . . . . . . . . . . . . . . . . . 19 ((𝑖 ∈ ℂ ∧ 𝑗 ∈ ℂ) → (𝑖 + 𝑗) ∈ ℂ)
4438, 43, 33adddid 11285 . . . . . . . . . . . . . . . . . 18 ((𝑖 ∈ ℂ ∧ 𝑗 ∈ ℂ) → (2 · ((𝑖 + 𝑗) + 1)) = ((2 · (𝑖 + 𝑗)) + (2 · 1)))
45 1p1e2 12391 . . . . . . . . . . . . . . . . . . . . 21 (1 + 1) = 2
46 2t1e2 12429 . . . . . . . . . . . . . . . . . . . . 21 (2 · 1) = 2
4745, 46eqtr4i 2768 . . . . . . . . . . . . . . . . . . . 20 (1 + 1) = (2 · 1)
4847a1i 11 . . . . . . . . . . . . . . . . . . 19 ((𝑖 ∈ ℂ ∧ 𝑗 ∈ ℂ) → (1 + 1) = (2 · 1))
4948oveq2d 7447 . . . . . . . . . . . . . . . . . 18 ((𝑖 ∈ ℂ ∧ 𝑗 ∈ ℂ) → (((2 · 𝑖) + (2 · 𝑗)) + (1 + 1)) = (((2 · 𝑖) + (2 · 𝑗)) + (2 · 1)))
5042, 44, 493eqtr4rd 2788 . . . . . . . . . . . . . . . . 17 ((𝑖 ∈ ℂ ∧ 𝑗 ∈ ℂ) → (((2 · 𝑖) + (2 · 𝑗)) + (1 + 1)) = (2 · ((𝑖 + 𝑗) + 1)))
5137, 50eqtrd 2777 . . . . . . . . . . . . . . . 16 ((𝑖 ∈ ℂ ∧ 𝑗 ∈ ℂ) → (((2 · 𝑖) + 1) + ((2 · 𝑗) + 1)) = (2 · ((𝑖 + 𝑗) + 1)))
5226, 27, 51syl2an 596 . . . . . . . . . . . . . . 15 ((𝑖 ∈ ℤ ∧ 𝑗 ∈ ℤ) → (((2 · 𝑖) + 1) + ((2 · 𝑗) + 1)) = (2 · ((𝑖 + 𝑗) + 1)))
5352ex 412 . . . . . . . . . . . . . 14 (𝑖 ∈ ℤ → (𝑗 ∈ ℤ → (((2 · 𝑖) + 1) + ((2 · 𝑗) + 1)) = (2 · ((𝑖 + 𝑗) + 1))))
5453ad3antlr 731 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℤ ∧ 𝑖 ∈ ℤ) ∧ 𝐴 = ((2 · 𝑖) + 1)) ∧ 𝐵 ∈ ℤ) → (𝑗 ∈ ℤ → (((2 · 𝑖) + 1) + ((2 · 𝑗) + 1)) = (2 · ((𝑖 + 𝑗) + 1))))
5554imp 406 . . . . . . . . . . . 12 (((((𝐴 ∈ ℤ ∧ 𝑖 ∈ ℤ) ∧ 𝐴 = ((2 · 𝑖) + 1)) ∧ 𝐵 ∈ ℤ) ∧ 𝑗 ∈ ℤ) → (((2 · 𝑖) + 1) + ((2 · 𝑗) + 1)) = (2 · ((𝑖 + 𝑗) + 1)))
5655adantr 480 . . . . . . . . . . 11 ((((((𝐴 ∈ ℤ ∧ 𝑖 ∈ ℤ) ∧ 𝐴 = ((2 · 𝑖) + 1)) ∧ 𝐵 ∈ ℤ) ∧ 𝑗 ∈ ℤ) ∧ 𝐵 = ((2 · 𝑗) + 1)) → (((2 · 𝑖) + 1) + ((2 · 𝑗) + 1)) = (2 · ((𝑖 + 𝑗) + 1)))
5725, 56eqtrd 2777 . . . . . . . . . 10 ((((((𝐴 ∈ ℤ ∧ 𝑖 ∈ ℤ) ∧ 𝐴 = ((2 · 𝑖) + 1)) ∧ 𝐵 ∈ ℤ) ∧ 𝑗 ∈ ℤ) ∧ 𝐵 = ((2 · 𝑗) + 1)) → (𝐴 + 𝐵) = (2 · ((𝑖 + 𝑗) + 1)))
5818, 21, 57rspcedvd 3624 . . . . . . . . 9 ((((((𝐴 ∈ ℤ ∧ 𝑖 ∈ ℤ) ∧ 𝐴 = ((2 · 𝑖) + 1)) ∧ 𝐵 ∈ ℤ) ∧ 𝑗 ∈ ℤ) ∧ 𝐵 = ((2 · 𝑗) + 1)) → ∃𝑛 ∈ ℤ (𝐴 + 𝐵) = (2 · 𝑛))
5958rexlimdva2 3157 . . . . . . . 8 ((((𝐴 ∈ ℤ ∧ 𝑖 ∈ ℤ) ∧ 𝐴 = ((2 · 𝑖) + 1)) ∧ 𝐵 ∈ ℤ) → (∃𝑗 ∈ ℤ 𝐵 = ((2 · 𝑗) + 1) → ∃𝑛 ∈ ℤ (𝐴 + 𝐵) = (2 · 𝑛)))
6059expimpd 453 . . . . . . 7 (((𝐴 ∈ ℤ ∧ 𝑖 ∈ ℤ) ∧ 𝐴 = ((2 · 𝑖) + 1)) → ((𝐵 ∈ ℤ ∧ ∃𝑗 ∈ ℤ 𝐵 = ((2 · 𝑗) + 1)) → ∃𝑛 ∈ ℤ (𝐴 + 𝐵) = (2 · 𝑛)))
6160rexlimdva2 3157 . . . . . 6 (𝐴 ∈ ℤ → (∃𝑖 ∈ ℤ 𝐴 = ((2 · 𝑖) + 1) → ((𝐵 ∈ ℤ ∧ ∃𝑗 ∈ ℤ 𝐵 = ((2 · 𝑗) + 1)) → ∃𝑛 ∈ ℤ (𝐴 + 𝐵) = (2 · 𝑛))))
6261imp 406 . . . . 5 ((𝐴 ∈ ℤ ∧ ∃𝑖 ∈ ℤ 𝐴 = ((2 · 𝑖) + 1)) → ((𝐵 ∈ ℤ ∧ ∃𝑗 ∈ ℤ 𝐵 = ((2 · 𝑗) + 1)) → ∃𝑛 ∈ ℤ (𝐴 + 𝐵) = (2 · 𝑛)))
6312, 62biimtrid 242 . . . 4 ((𝐴 ∈ ℤ ∧ ∃𝑖 ∈ ℤ 𝐴 = ((2 · 𝑖) + 1)) → (𝐵 ∈ Odd → ∃𝑛 ∈ ℤ (𝐴 + 𝐵) = (2 · 𝑛)))
648, 63sylbi 217 . . 3 (𝐴 ∈ Odd → (𝐵 ∈ Odd → ∃𝑛 ∈ ℤ (𝐴 + 𝐵) = (2 · 𝑛)))
6564imp 406 . 2 ((𝐴 ∈ Odd ∧ 𝐵 ∈ Odd ) → ∃𝑛 ∈ ℤ (𝐴 + 𝐵) = (2 · 𝑛))
66 eqeq1 2741 . . . 4 (𝑧 = (𝐴 + 𝐵) → (𝑧 = (2 · 𝑛) ↔ (𝐴 + 𝐵) = (2 · 𝑛)))
6766rexbidv 3179 . . 3 (𝑧 = (𝐴 + 𝐵) → (∃𝑛 ∈ ℤ 𝑧 = (2 · 𝑛) ↔ ∃𝑛 ∈ ℤ (𝐴 + 𝐵) = (2 · 𝑛)))
68 dfeven4 47625 . . 3 Even = {𝑧 ∈ ℤ ∣ ∃𝑛 ∈ ℤ 𝑧 = (2 · 𝑛)}
6967, 68elrab2 3695 . 2 ((𝐴 + 𝐵) ∈ Even ↔ ((𝐴 + 𝐵) ∈ ℤ ∧ ∃𝑛 ∈ ℤ (𝐴 + 𝐵) = (2 · 𝑛)))
704, 65, 69sylanbrc 583 1 ((𝐴 ∈ Odd ∧ 𝐵 ∈ Odd ) → (𝐴 + 𝐵) ∈ Even )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  wrex 3070  (class class class)co 7431  cc 11153  1c1 11156   + caddc 11158   · cmul 11160  2c2 12321  cz 12613   Even ceven 47611   Odd codd 47612
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-n0 12527  df-z 12614  df-even 47613  df-odd 47614
This theorem is referenced by:  omoeALTV  47672  epee  47692  odd2prm2  47705  bgoldbtbndlem1  47792
  Copyright terms: Public domain W3C validator