Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  oexpnegnz Structured version   Visualization version   GIF version

Theorem oexpnegnz 47672
Description: The exponential of the negative of a number not being 0, when the exponent is odd. (Contributed by AV, 19-Jun-2020.)
Assertion
Ref Expression
oexpnegnz ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝑁 ∈ Odd ) → (-𝐴𝑁) = -(𝐴𝑁))

Proof of Theorem oexpnegnz
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 oddz 47625 . . . . . 6 (𝑁 ∈ Odd → 𝑁 ∈ ℤ)
2 odd2np1ALTV 47668 . . . . . 6 (𝑁 ∈ ℤ → (𝑁 ∈ Odd ↔ ∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑁))
31, 2syl 17 . . . . 5 (𝑁 ∈ Odd → (𝑁 ∈ Odd ↔ ∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑁))
43biimpd 229 . . . 4 (𝑁 ∈ Odd → (𝑁 ∈ Odd → ∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑁))
54pm2.43i 52 . . 3 (𝑁 ∈ Odd → ∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑁)
653ad2ant3 1135 . 2 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝑁 ∈ Odd ) → ∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑁)
7 simpl1 1192 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝑁 ∈ Odd ) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = 𝑁)) → 𝐴 ∈ ℂ)
8 simpl2 1193 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝑁 ∈ Odd ) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = 𝑁)) → 𝐴 ≠ 0)
9 2z 12507 . . . . . . 7 2 ∈ ℤ
10 simprl 770 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝑁 ∈ Odd ) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = 𝑁)) → 𝑛 ∈ ℤ)
11 zmulcl 12524 . . . . . . 7 ((2 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (2 · 𝑛) ∈ ℤ)
129, 10, 11sylancr 587 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝑁 ∈ Odd ) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = 𝑁)) → (2 · 𝑛) ∈ ℤ)
137, 8, 12expclzd 14058 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝑁 ∈ Odd ) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = 𝑁)) → (𝐴↑(2 · 𝑛)) ∈ ℂ)
1413, 7mulneg2d 11574 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝑁 ∈ Odd ) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = 𝑁)) → ((𝐴↑(2 · 𝑛)) · -𝐴) = -((𝐴↑(2 · 𝑛)) · 𝐴))
15 sqneg 14022 . . . . . . . . 9 (𝐴 ∈ ℂ → (-𝐴↑2) = (𝐴↑2))
167, 15syl 17 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝑁 ∈ Odd ) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = 𝑁)) → (-𝐴↑2) = (𝐴↑2))
1716oveq1d 7364 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝑁 ∈ Odd ) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = 𝑁)) → ((-𝐴↑2)↑𝑛) = ((𝐴↑2)↑𝑛))
187negcld 11462 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝑁 ∈ Odd ) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = 𝑁)) → -𝐴 ∈ ℂ)
197, 8negne0d 11473 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝑁 ∈ Odd ) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = 𝑁)) → -𝐴 ≠ 0)
209a1i 11 . . . . . . . . . . 11 ((𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = 𝑁) → 2 ∈ ℤ)
21 simpl 482 . . . . . . . . . . 11 ((𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = 𝑁) → 𝑛 ∈ ℤ)
2220, 21jca 511 . . . . . . . . . 10 ((𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = 𝑁) → (2 ∈ ℤ ∧ 𝑛 ∈ ℤ))
2322adantl 481 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝑁 ∈ Odd ) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = 𝑁)) → (2 ∈ ℤ ∧ 𝑛 ∈ ℤ))
2418, 19, 23jca31 514 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝑁 ∈ Odd ) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = 𝑁)) → ((-𝐴 ∈ ℂ ∧ -𝐴 ≠ 0) ∧ (2 ∈ ℤ ∧ 𝑛 ∈ ℤ)))
25 expmulz 14015 . . . . . . . 8 (((-𝐴 ∈ ℂ ∧ -𝐴 ≠ 0) ∧ (2 ∈ ℤ ∧ 𝑛 ∈ ℤ)) → (-𝐴↑(2 · 𝑛)) = ((-𝐴↑2)↑𝑛))
2624, 25syl 17 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝑁 ∈ Odd ) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = 𝑁)) → (-𝐴↑(2 · 𝑛)) = ((-𝐴↑2)↑𝑛))
277, 8, 23jca31 514 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝑁 ∈ Odd ) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = 𝑁)) → ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (2 ∈ ℤ ∧ 𝑛 ∈ ℤ)))
28 expmulz 14015 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (2 ∈ ℤ ∧ 𝑛 ∈ ℤ)) → (𝐴↑(2 · 𝑛)) = ((𝐴↑2)↑𝑛))
2927, 28syl 17 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝑁 ∈ Odd ) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = 𝑁)) → (𝐴↑(2 · 𝑛)) = ((𝐴↑2)↑𝑛))
3017, 26, 293eqtr4d 2774 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝑁 ∈ Odd ) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = 𝑁)) → (-𝐴↑(2 · 𝑛)) = (𝐴↑(2 · 𝑛)))
3130oveq1d 7364 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝑁 ∈ Odd ) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = 𝑁)) → ((-𝐴↑(2 · 𝑛)) · -𝐴) = ((𝐴↑(2 · 𝑛)) · -𝐴))
3218, 19, 12expp1zd 14062 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝑁 ∈ Odd ) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = 𝑁)) → (-𝐴↑((2 · 𝑛) + 1)) = ((-𝐴↑(2 · 𝑛)) · -𝐴))
33 simprr 772 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝑁 ∈ Odd ) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = 𝑁)) → ((2 · 𝑛) + 1) = 𝑁)
3433oveq2d 7365 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝑁 ∈ Odd ) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = 𝑁)) → (-𝐴↑((2 · 𝑛) + 1)) = (-𝐴𝑁))
3532, 34eqtr3d 2766 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝑁 ∈ Odd ) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = 𝑁)) → ((-𝐴↑(2 · 𝑛)) · -𝐴) = (-𝐴𝑁))
3631, 35eqtr3d 2766 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝑁 ∈ Odd ) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = 𝑁)) → ((𝐴↑(2 · 𝑛)) · -𝐴) = (-𝐴𝑁))
3714, 36eqtr3d 2766 . . 3 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝑁 ∈ Odd ) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = 𝑁)) → -((𝐴↑(2 · 𝑛)) · 𝐴) = (-𝐴𝑁))
387, 8, 12expp1zd 14062 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝑁 ∈ Odd ) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = 𝑁)) → (𝐴↑((2 · 𝑛) + 1)) = ((𝐴↑(2 · 𝑛)) · 𝐴))
3933oveq2d 7365 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝑁 ∈ Odd ) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = 𝑁)) → (𝐴↑((2 · 𝑛) + 1)) = (𝐴𝑁))
4038, 39eqtr3d 2766 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝑁 ∈ Odd ) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = 𝑁)) → ((𝐴↑(2 · 𝑛)) · 𝐴) = (𝐴𝑁))
4140negeqd 11357 . . 3 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝑁 ∈ Odd ) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = 𝑁)) → -((𝐴↑(2 · 𝑛)) · 𝐴) = -(𝐴𝑁))
4237, 41eqtr3d 2766 . 2 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝑁 ∈ Odd ) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = 𝑁)) → (-𝐴𝑁) = -(𝐴𝑁))
436, 42rexlimddv 3136 1 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝑁 ∈ Odd ) → (-𝐴𝑁) = -(𝐴𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wrex 3053  (class class class)co 7349  cc 11007  0cc0 11009  1c1 11010   + caddc 11012   · cmul 11014  -cneg 11348  2c2 12183  cz 12471  cexp 13968   Odd codd 47619
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-er 8625  df-en 8873  df-dom 8874  df-sdom 8875  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-div 11778  df-nn 12129  df-2 12191  df-n0 12385  df-z 12472  df-uz 12736  df-seq 13909  df-exp 13969  df-odd 47621
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator