Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  oexpnegnz Structured version   Visualization version   GIF version

Theorem oexpnegnz 47683
Description: The exponential of the negative of a number not being 0, when the exponent is odd. (Contributed by AV, 19-Jun-2020.)
Assertion
Ref Expression
oexpnegnz ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝑁 ∈ Odd ) → (-𝐴𝑁) = -(𝐴𝑁))

Proof of Theorem oexpnegnz
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 oddz 47636 . . . . . 6 (𝑁 ∈ Odd → 𝑁 ∈ ℤ)
2 odd2np1ALTV 47679 . . . . . 6 (𝑁 ∈ ℤ → (𝑁 ∈ Odd ↔ ∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑁))
31, 2syl 17 . . . . 5 (𝑁 ∈ Odd → (𝑁 ∈ Odd ↔ ∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑁))
43biimpd 229 . . . 4 (𝑁 ∈ Odd → (𝑁 ∈ Odd → ∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑁))
54pm2.43i 52 . . 3 (𝑁 ∈ Odd → ∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑁)
653ad2ant3 1135 . 2 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝑁 ∈ Odd ) → ∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑁)
7 simpl1 1192 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝑁 ∈ Odd ) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = 𝑁)) → 𝐴 ∈ ℂ)
8 simpl2 1193 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝑁 ∈ Odd ) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = 𝑁)) → 𝐴 ≠ 0)
9 2z 12572 . . . . . . 7 2 ∈ ℤ
10 simprl 770 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝑁 ∈ Odd ) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = 𝑁)) → 𝑛 ∈ ℤ)
11 zmulcl 12589 . . . . . . 7 ((2 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (2 · 𝑛) ∈ ℤ)
129, 10, 11sylancr 587 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝑁 ∈ Odd ) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = 𝑁)) → (2 · 𝑛) ∈ ℤ)
137, 8, 12expclzd 14123 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝑁 ∈ Odd ) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = 𝑁)) → (𝐴↑(2 · 𝑛)) ∈ ℂ)
1413, 7mulneg2d 11639 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝑁 ∈ Odd ) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = 𝑁)) → ((𝐴↑(2 · 𝑛)) · -𝐴) = -((𝐴↑(2 · 𝑛)) · 𝐴))
15 sqneg 14087 . . . . . . . . 9 (𝐴 ∈ ℂ → (-𝐴↑2) = (𝐴↑2))
167, 15syl 17 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝑁 ∈ Odd ) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = 𝑁)) → (-𝐴↑2) = (𝐴↑2))
1716oveq1d 7405 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝑁 ∈ Odd ) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = 𝑁)) → ((-𝐴↑2)↑𝑛) = ((𝐴↑2)↑𝑛))
187negcld 11527 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝑁 ∈ Odd ) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = 𝑁)) → -𝐴 ∈ ℂ)
197, 8negne0d 11538 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝑁 ∈ Odd ) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = 𝑁)) → -𝐴 ≠ 0)
209a1i 11 . . . . . . . . . . 11 ((𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = 𝑁) → 2 ∈ ℤ)
21 simpl 482 . . . . . . . . . . 11 ((𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = 𝑁) → 𝑛 ∈ ℤ)
2220, 21jca 511 . . . . . . . . . 10 ((𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = 𝑁) → (2 ∈ ℤ ∧ 𝑛 ∈ ℤ))
2322adantl 481 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝑁 ∈ Odd ) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = 𝑁)) → (2 ∈ ℤ ∧ 𝑛 ∈ ℤ))
2418, 19, 23jca31 514 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝑁 ∈ Odd ) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = 𝑁)) → ((-𝐴 ∈ ℂ ∧ -𝐴 ≠ 0) ∧ (2 ∈ ℤ ∧ 𝑛 ∈ ℤ)))
25 expmulz 14080 . . . . . . . 8 (((-𝐴 ∈ ℂ ∧ -𝐴 ≠ 0) ∧ (2 ∈ ℤ ∧ 𝑛 ∈ ℤ)) → (-𝐴↑(2 · 𝑛)) = ((-𝐴↑2)↑𝑛))
2624, 25syl 17 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝑁 ∈ Odd ) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = 𝑁)) → (-𝐴↑(2 · 𝑛)) = ((-𝐴↑2)↑𝑛))
277, 8, 23jca31 514 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝑁 ∈ Odd ) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = 𝑁)) → ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (2 ∈ ℤ ∧ 𝑛 ∈ ℤ)))
28 expmulz 14080 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (2 ∈ ℤ ∧ 𝑛 ∈ ℤ)) → (𝐴↑(2 · 𝑛)) = ((𝐴↑2)↑𝑛))
2927, 28syl 17 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝑁 ∈ Odd ) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = 𝑁)) → (𝐴↑(2 · 𝑛)) = ((𝐴↑2)↑𝑛))
3017, 26, 293eqtr4d 2775 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝑁 ∈ Odd ) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = 𝑁)) → (-𝐴↑(2 · 𝑛)) = (𝐴↑(2 · 𝑛)))
3130oveq1d 7405 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝑁 ∈ Odd ) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = 𝑁)) → ((-𝐴↑(2 · 𝑛)) · -𝐴) = ((𝐴↑(2 · 𝑛)) · -𝐴))
3218, 19, 12expp1zd 14127 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝑁 ∈ Odd ) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = 𝑁)) → (-𝐴↑((2 · 𝑛) + 1)) = ((-𝐴↑(2 · 𝑛)) · -𝐴))
33 simprr 772 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝑁 ∈ Odd ) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = 𝑁)) → ((2 · 𝑛) + 1) = 𝑁)
3433oveq2d 7406 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝑁 ∈ Odd ) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = 𝑁)) → (-𝐴↑((2 · 𝑛) + 1)) = (-𝐴𝑁))
3532, 34eqtr3d 2767 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝑁 ∈ Odd ) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = 𝑁)) → ((-𝐴↑(2 · 𝑛)) · -𝐴) = (-𝐴𝑁))
3631, 35eqtr3d 2767 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝑁 ∈ Odd ) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = 𝑁)) → ((𝐴↑(2 · 𝑛)) · -𝐴) = (-𝐴𝑁))
3714, 36eqtr3d 2767 . . 3 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝑁 ∈ Odd ) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = 𝑁)) → -((𝐴↑(2 · 𝑛)) · 𝐴) = (-𝐴𝑁))
387, 8, 12expp1zd 14127 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝑁 ∈ Odd ) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = 𝑁)) → (𝐴↑((2 · 𝑛) + 1)) = ((𝐴↑(2 · 𝑛)) · 𝐴))
3933oveq2d 7406 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝑁 ∈ Odd ) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = 𝑁)) → (𝐴↑((2 · 𝑛) + 1)) = (𝐴𝑁))
4038, 39eqtr3d 2767 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝑁 ∈ Odd ) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = 𝑁)) → ((𝐴↑(2 · 𝑛)) · 𝐴) = (𝐴𝑁))
4140negeqd 11422 . . 3 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝑁 ∈ Odd ) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = 𝑁)) → -((𝐴↑(2 · 𝑛)) · 𝐴) = -(𝐴𝑁))
4237, 41eqtr3d 2767 . 2 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝑁 ∈ Odd ) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = 𝑁)) → (-𝐴𝑁) = -(𝐴𝑁))
436, 42rexlimddv 3141 1 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝑁 ∈ Odd ) → (-𝐴𝑁) = -(𝐴𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2926  wrex 3054  (class class class)co 7390  cc 11073  0cc0 11075  1c1 11076   + caddc 11078   · cmul 11080  -cneg 11413  2c2 12248  cz 12536  cexp 14033   Odd codd 47630
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-n0 12450  df-z 12537  df-uz 12801  df-seq 13974  df-exp 14034  df-odd 47632
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator