Step | Hyp | Ref
| Expression |
1 | | oddz 44516 |
. . . . . 6
⊢ (𝑁 ∈ Odd → 𝑁 ∈
ℤ) |
2 | | odd2np1ALTV 44559 |
. . . . . 6
⊢ (𝑁 ∈ ℤ → (𝑁 ∈ Odd ↔ ∃𝑛 ∈ ℤ ((2 ·
𝑛) + 1) = 𝑁)) |
3 | 1, 2 | syl 17 |
. . . . 5
⊢ (𝑁 ∈ Odd → (𝑁 ∈ Odd ↔ ∃𝑛 ∈ ℤ ((2 ·
𝑛) + 1) = 𝑁)) |
4 | 3 | biimpd 232 |
. . . 4
⊢ (𝑁 ∈ Odd → (𝑁 ∈ Odd → ∃𝑛 ∈ ℤ ((2 ·
𝑛) + 1) = 𝑁)) |
5 | 4 | pm2.43i 52 |
. . 3
⊢ (𝑁 ∈ Odd → ∃𝑛 ∈ ℤ ((2 ·
𝑛) + 1) = 𝑁) |
6 | 5 | 3ad2ant3 1132 |
. 2
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝑁 ∈ Odd ) → ∃𝑛 ∈ ℤ ((2 ·
𝑛) + 1) = 𝑁) |
7 | | simpl1 1188 |
. . . . . 6
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝑁 ∈ Odd ) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = 𝑁)) → 𝐴 ∈ ℂ) |
8 | | simpl2 1189 |
. . . . . 6
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝑁 ∈ Odd ) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = 𝑁)) → 𝐴 ≠ 0) |
9 | | 2z 12053 |
. . . . . . 7
⊢ 2 ∈
ℤ |
10 | | simprl 770 |
. . . . . . 7
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝑁 ∈ Odd ) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = 𝑁)) → 𝑛 ∈ ℤ) |
11 | | zmulcl 12070 |
. . . . . . 7
⊢ ((2
∈ ℤ ∧ 𝑛
∈ ℤ) → (2 · 𝑛) ∈ ℤ) |
12 | 9, 10, 11 | sylancr 590 |
. . . . . 6
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝑁 ∈ Odd ) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = 𝑁)) → (2 · 𝑛) ∈ ℤ) |
13 | 7, 8, 12 | expclzd 13565 |
. . . . 5
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝑁 ∈ Odd ) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = 𝑁)) → (𝐴↑(2 · 𝑛)) ∈ ℂ) |
14 | 13, 7 | mulneg2d 11132 |
. . . 4
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝑁 ∈ Odd ) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = 𝑁)) → ((𝐴↑(2 · 𝑛)) · -𝐴) = -((𝐴↑(2 · 𝑛)) · 𝐴)) |
15 | | sqneg 13532 |
. . . . . . . . 9
⊢ (𝐴 ∈ ℂ → (-𝐴↑2) = (𝐴↑2)) |
16 | 7, 15 | syl 17 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝑁 ∈ Odd ) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = 𝑁)) → (-𝐴↑2) = (𝐴↑2)) |
17 | 16 | oveq1d 7165 |
. . . . . . 7
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝑁 ∈ Odd ) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = 𝑁)) → ((-𝐴↑2)↑𝑛) = ((𝐴↑2)↑𝑛)) |
18 | 7 | negcld 11022 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝑁 ∈ Odd ) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = 𝑁)) → -𝐴 ∈ ℂ) |
19 | 7, 8 | negne0d 11033 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝑁 ∈ Odd ) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = 𝑁)) → -𝐴 ≠ 0) |
20 | 9 | a1i 11 |
. . . . . . . . . . 11
⊢ ((𝑛 ∈ ℤ ∧ ((2
· 𝑛) + 1) = 𝑁) → 2 ∈
ℤ) |
21 | | simpl 486 |
. . . . . . . . . . 11
⊢ ((𝑛 ∈ ℤ ∧ ((2
· 𝑛) + 1) = 𝑁) → 𝑛 ∈ ℤ) |
22 | 20, 21 | jca 515 |
. . . . . . . . . 10
⊢ ((𝑛 ∈ ℤ ∧ ((2
· 𝑛) + 1) = 𝑁) → (2 ∈ ℤ ∧
𝑛 ∈
ℤ)) |
23 | 22 | adantl 485 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝑁 ∈ Odd ) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = 𝑁)) → (2 ∈ ℤ ∧ 𝑛 ∈
ℤ)) |
24 | 18, 19, 23 | jca31 518 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝑁 ∈ Odd ) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = 𝑁)) → ((-𝐴 ∈ ℂ ∧ -𝐴 ≠ 0) ∧ (2 ∈ ℤ ∧ 𝑛 ∈
ℤ))) |
25 | | expmulz 13525 |
. . . . . . . 8
⊢ (((-𝐴 ∈ ℂ ∧ -𝐴 ≠ 0) ∧ (2 ∈ ℤ
∧ 𝑛 ∈ ℤ))
→ (-𝐴↑(2 ·
𝑛)) = ((-𝐴↑2)↑𝑛)) |
26 | 24, 25 | syl 17 |
. . . . . . 7
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝑁 ∈ Odd ) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = 𝑁)) → (-𝐴↑(2 · 𝑛)) = ((-𝐴↑2)↑𝑛)) |
27 | 7, 8, 23 | jca31 518 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝑁 ∈ Odd ) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = 𝑁)) → ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (2 ∈ ℤ ∧ 𝑛 ∈
ℤ))) |
28 | | expmulz 13525 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (2 ∈ ℤ
∧ 𝑛 ∈ ℤ))
→ (𝐴↑(2 ·
𝑛)) = ((𝐴↑2)↑𝑛)) |
29 | 27, 28 | syl 17 |
. . . . . . 7
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝑁 ∈ Odd ) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = 𝑁)) → (𝐴↑(2 · 𝑛)) = ((𝐴↑2)↑𝑛)) |
30 | 17, 26, 29 | 3eqtr4d 2803 |
. . . . . 6
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝑁 ∈ Odd ) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = 𝑁)) → (-𝐴↑(2 · 𝑛)) = (𝐴↑(2 · 𝑛))) |
31 | 30 | oveq1d 7165 |
. . . . 5
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝑁 ∈ Odd ) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = 𝑁)) → ((-𝐴↑(2 · 𝑛)) · -𝐴) = ((𝐴↑(2 · 𝑛)) · -𝐴)) |
32 | 18, 19, 12 | expp1zd 13569 |
. . . . . 6
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝑁 ∈ Odd ) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = 𝑁)) → (-𝐴↑((2 · 𝑛) + 1)) = ((-𝐴↑(2 · 𝑛)) · -𝐴)) |
33 | | simprr 772 |
. . . . . . 7
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝑁 ∈ Odd ) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = 𝑁)) → ((2 · 𝑛) + 1) = 𝑁) |
34 | 33 | oveq2d 7166 |
. . . . . 6
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝑁 ∈ Odd ) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = 𝑁)) → (-𝐴↑((2 · 𝑛) + 1)) = (-𝐴↑𝑁)) |
35 | 32, 34 | eqtr3d 2795 |
. . . . 5
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝑁 ∈ Odd ) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = 𝑁)) → ((-𝐴↑(2 · 𝑛)) · -𝐴) = (-𝐴↑𝑁)) |
36 | 31, 35 | eqtr3d 2795 |
. . . 4
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝑁 ∈ Odd ) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = 𝑁)) → ((𝐴↑(2 · 𝑛)) · -𝐴) = (-𝐴↑𝑁)) |
37 | 14, 36 | eqtr3d 2795 |
. . 3
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝑁 ∈ Odd ) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = 𝑁)) → -((𝐴↑(2 · 𝑛)) · 𝐴) = (-𝐴↑𝑁)) |
38 | 7, 8, 12 | expp1zd 13569 |
. . . . 5
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝑁 ∈ Odd ) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = 𝑁)) → (𝐴↑((2 · 𝑛) + 1)) = ((𝐴↑(2 · 𝑛)) · 𝐴)) |
39 | 33 | oveq2d 7166 |
. . . . 5
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝑁 ∈ Odd ) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = 𝑁)) → (𝐴↑((2 · 𝑛) + 1)) = (𝐴↑𝑁)) |
40 | 38, 39 | eqtr3d 2795 |
. . . 4
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝑁 ∈ Odd ) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = 𝑁)) → ((𝐴↑(2 · 𝑛)) · 𝐴) = (𝐴↑𝑁)) |
41 | 40 | negeqd 10918 |
. . 3
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝑁 ∈ Odd ) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = 𝑁)) → -((𝐴↑(2 · 𝑛)) · 𝐴) = -(𝐴↑𝑁)) |
42 | 37, 41 | eqtr3d 2795 |
. 2
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝑁 ∈ Odd ) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = 𝑁)) → (-𝐴↑𝑁) = -(𝐴↑𝑁)) |
43 | 6, 42 | rexlimddv 3215 |
1
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝑁 ∈ Odd ) → (-𝐴↑𝑁) = -(𝐴↑𝑁)) |