MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tskinf Structured version   Visualization version   GIF version

Theorem tskinf 10838
Description: A nonempty Tarski class is infinite. (Contributed by FL, 22-Feb-2011.)
Assertion
Ref Expression
tskinf ((𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅) → ω ≼ 𝑇)

Proof of Theorem tskinf
StepHypRef Expression
1 r111 9844 . . . 4 𝑅1:On–1-1→V
2 omsson 7907 . . . 4 ω ⊆ On
3 omex 9712 . . . . 5 ω ∈ V
43f1imaen 9077 . . . 4 ((𝑅1:On–1-1→V ∧ ω ⊆ On) → (𝑅1 “ ω) ≈ ω)
51, 2, 4mp2an 691 . . 3 (𝑅1 “ ω) ≈ ω
65ensymi 9064 . 2 ω ≈ (𝑅1 “ ω)
7 simpl 482 . . 3 ((𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅) → 𝑇 ∈ Tarski)
8 tskr1om 10836 . . 3 ((𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅) → (𝑅1 “ ω) ⊆ 𝑇)
9 ssdomg 9060 . . 3 (𝑇 ∈ Tarski → ((𝑅1 “ ω) ⊆ 𝑇 → (𝑅1 “ ω) ≼ 𝑇))
107, 8, 9sylc 65 . 2 ((𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅) → (𝑅1 “ ω) ≼ 𝑇)
11 endomtr 9072 . 2 ((ω ≈ (𝑅1 “ ω) ∧ (𝑅1 “ ω) ≼ 𝑇) → ω ≼ 𝑇)
126, 10, 11sylancr 586 1 ((𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅) → ω ≼ 𝑇)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2108  wne 2946  Vcvv 3488  wss 3976  c0 4352   class class class wbr 5166  cima 5703  Oncon0 6395  1-1wf1 6570  ωcom 7903  cen 9000  cdom 9001  𝑅1cr1 9831  Tarskictsk 10817
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-om 7904  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-r1 9833  df-tsk 10818
This theorem is referenced by:  tskpr  10839
  Copyright terms: Public domain W3C validator