![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > tskinf | Structured version Visualization version GIF version |
Description: A nonempty Tarski class is infinite. (Contributed by FL, 22-Feb-2011.) |
Ref | Expression |
---|---|
tskinf | β’ ((π β Tarski β§ π β β ) β Ο βΌ π) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | r111 9769 | . . . 4 β’ π 1:Onβ1-1βV | |
2 | omsson 7855 | . . . 4 β’ Ο β On | |
3 | omex 9637 | . . . . 5 β’ Ο β V | |
4 | 3 | f1imaen 9011 | . . . 4 β’ ((π 1:Onβ1-1βV β§ Ο β On) β (π 1 β Ο) β Ο) |
5 | 1, 2, 4 | mp2an 689 | . . 3 β’ (π 1 β Ο) β Ο |
6 | 5 | ensymi 8999 | . 2 β’ Ο β (π 1 β Ο) |
7 | simpl 482 | . . 3 β’ ((π β Tarski β§ π β β ) β π β Tarski) | |
8 | tskr1om 10761 | . . 3 β’ ((π β Tarski β§ π β β ) β (π 1 β Ο) β π) | |
9 | ssdomg 8995 | . . 3 β’ (π β Tarski β ((π 1 β Ο) β π β (π 1 β Ο) βΌ π)) | |
10 | 7, 8, 9 | sylc 65 | . 2 β’ ((π β Tarski β§ π β β ) β (π 1 β Ο) βΌ π) |
11 | endomtr 9007 | . 2 β’ ((Ο β (π 1 β Ο) β§ (π 1 β Ο) βΌ π) β Ο βΌ π) | |
12 | 6, 10, 11 | sylancr 586 | 1 β’ ((π β Tarski β§ π β β ) β Ο βΌ π) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 395 β wcel 2098 β wne 2934 Vcvv 3468 β wss 3943 β c0 4317 class class class wbr 5141 β cima 5672 Oncon0 6357 β1-1βwf1 6533 Οcom 7851 β cen 8935 βΌ cdom 8936 π 1cr1 9756 Tarskictsk 10742 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7721 ax-inf2 9635 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-ral 3056 df-rex 3065 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-pss 3962 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-pred 6293 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6488 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-ov 7407 df-om 7852 df-2nd 7972 df-frecs 8264 df-wrecs 8295 df-recs 8369 df-rdg 8408 df-er 8702 df-en 8939 df-dom 8940 df-sdom 8941 df-r1 9758 df-tsk 10743 |
This theorem is referenced by: tskpr 10764 |
Copyright terms: Public domain | W3C validator |