![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > tskinf | Structured version Visualization version GIF version |
Description: A nonempty Tarski class is infinite. (Contributed by FL, 22-Feb-2011.) |
Ref | Expression |
---|---|
tskinf | ⊢ ((𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅) → ω ≼ 𝑇) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | r111 9844 | . . . 4 ⊢ 𝑅1:On–1-1→V | |
2 | omsson 7907 | . . . 4 ⊢ ω ⊆ On | |
3 | omex 9712 | . . . . 5 ⊢ ω ∈ V | |
4 | 3 | f1imaen 9077 | . . . 4 ⊢ ((𝑅1:On–1-1→V ∧ ω ⊆ On) → (𝑅1 “ ω) ≈ ω) |
5 | 1, 2, 4 | mp2an 691 | . . 3 ⊢ (𝑅1 “ ω) ≈ ω |
6 | 5 | ensymi 9064 | . 2 ⊢ ω ≈ (𝑅1 “ ω) |
7 | simpl 482 | . . 3 ⊢ ((𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅) → 𝑇 ∈ Tarski) | |
8 | tskr1om 10836 | . . 3 ⊢ ((𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅) → (𝑅1 “ ω) ⊆ 𝑇) | |
9 | ssdomg 9060 | . . 3 ⊢ (𝑇 ∈ Tarski → ((𝑅1 “ ω) ⊆ 𝑇 → (𝑅1 “ ω) ≼ 𝑇)) | |
10 | 7, 8, 9 | sylc 65 | . 2 ⊢ ((𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅) → (𝑅1 “ ω) ≼ 𝑇) |
11 | endomtr 9072 | . 2 ⊢ ((ω ≈ (𝑅1 “ ω) ∧ (𝑅1 “ ω) ≼ 𝑇) → ω ≼ 𝑇) | |
12 | 6, 10, 11 | sylancr 586 | 1 ⊢ ((𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅) → ω ≼ 𝑇) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2108 ≠ wne 2946 Vcvv 3488 ⊆ wss 3976 ∅c0 4352 class class class wbr 5166 “ cima 5703 Oncon0 6395 –1-1→wf1 6570 ωcom 7903 ≈ cen 9000 ≼ cdom 9001 𝑅1cr1 9831 Tarskictsk 10817 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-inf2 9710 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-ov 7451 df-om 7904 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-r1 9833 df-tsk 10818 |
This theorem is referenced by: tskpr 10839 |
Copyright terms: Public domain | W3C validator |