Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > tskinf | Structured version Visualization version GIF version |
Description: A nonempty Tarski class is infinite. (Contributed by FL, 22-Feb-2011.) |
Ref | Expression |
---|---|
tskinf | ⊢ ((𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅) → ω ≼ 𝑇) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | r111 9581 | . . . 4 ⊢ 𝑅1:On–1-1→V | |
2 | omsson 7748 | . . . 4 ⊢ ω ⊆ On | |
3 | omex 9449 | . . . . 5 ⊢ ω ∈ V | |
4 | 3 | f1imaen 8837 | . . . 4 ⊢ ((𝑅1:On–1-1→V ∧ ω ⊆ On) → (𝑅1 “ ω) ≈ ω) |
5 | 1, 2, 4 | mp2an 690 | . . 3 ⊢ (𝑅1 “ ω) ≈ ω |
6 | 5 | ensymi 8825 | . 2 ⊢ ω ≈ (𝑅1 “ ω) |
7 | simpl 484 | . . 3 ⊢ ((𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅) → 𝑇 ∈ Tarski) | |
8 | tskr1om 10573 | . . 3 ⊢ ((𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅) → (𝑅1 “ ω) ⊆ 𝑇) | |
9 | ssdomg 8821 | . . 3 ⊢ (𝑇 ∈ Tarski → ((𝑅1 “ ω) ⊆ 𝑇 → (𝑅1 “ ω) ≼ 𝑇)) | |
10 | 7, 8, 9 | sylc 65 | . 2 ⊢ ((𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅) → (𝑅1 “ ω) ≼ 𝑇) |
11 | endomtr 8833 | . 2 ⊢ ((ω ≈ (𝑅1 “ ω) ∧ (𝑅1 “ ω) ≼ 𝑇) → ω ≼ 𝑇) | |
12 | 6, 10, 11 | sylancr 588 | 1 ⊢ ((𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅) → ω ≼ 𝑇) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 ∈ wcel 2104 ≠ wne 2940 Vcvv 3437 ⊆ wss 3892 ∅c0 4262 class class class wbr 5081 “ cima 5603 Oncon0 6281 –1-1→wf1 6455 ωcom 7744 ≈ cen 8761 ≼ cdom 8762 𝑅1cr1 9568 Tarskictsk 10554 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-rep 5218 ax-sep 5232 ax-nul 5239 ax-pow 5297 ax-pr 5361 ax-un 7620 ax-inf2 9447 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3332 df-rab 3333 df-v 3439 df-sbc 3722 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-iun 4933 df-br 5082 df-opab 5144 df-mpt 5165 df-tr 5199 df-id 5500 df-eprel 5506 df-po 5514 df-so 5515 df-fr 5555 df-we 5557 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-pred 6217 df-ord 6284 df-on 6285 df-lim 6286 df-suc 6287 df-iota 6410 df-fun 6460 df-fn 6461 df-f 6462 df-f1 6463 df-fo 6464 df-f1o 6465 df-fv 6466 df-ov 7310 df-om 7745 df-2nd 7864 df-frecs 8128 df-wrecs 8159 df-recs 8233 df-rdg 8272 df-er 8529 df-en 8765 df-dom 8766 df-sdom 8767 df-r1 9570 df-tsk 10555 |
This theorem is referenced by: tskpr 10576 |
Copyright terms: Public domain | W3C validator |