MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tskinf Structured version   Visualization version   GIF version

Theorem tskinf 10682
Description: A nonempty Tarski class is infinite. (Contributed by FL, 22-Feb-2011.)
Assertion
Ref Expression
tskinf ((𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅) → ω ≼ 𝑇)

Proof of Theorem tskinf
StepHypRef Expression
1 r111 9690 . . . 4 𝑅1:On–1-1→V
2 omsson 7810 . . . 4 ω ⊆ On
3 omex 9558 . . . . 5 ω ∈ V
43f1imaen 8949 . . . 4 ((𝑅1:On–1-1→V ∧ ω ⊆ On) → (𝑅1 “ ω) ≈ ω)
51, 2, 4mp2an 692 . . 3 (𝑅1 “ ω) ≈ ω
65ensymi 8936 . 2 ω ≈ (𝑅1 “ ω)
7 simpl 482 . . 3 ((𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅) → 𝑇 ∈ Tarski)
8 tskr1om 10680 . . 3 ((𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅) → (𝑅1 “ ω) ⊆ 𝑇)
9 ssdomg 8932 . . 3 (𝑇 ∈ Tarski → ((𝑅1 “ ω) ⊆ 𝑇 → (𝑅1 “ ω) ≼ 𝑇))
107, 8, 9sylc 65 . 2 ((𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅) → (𝑅1 “ ω) ≼ 𝑇)
11 endomtr 8944 . 2 ((ω ≈ (𝑅1 “ ω) ∧ (𝑅1 “ ω) ≼ 𝑇) → ω ≼ 𝑇)
126, 10, 11sylancr 587 1 ((𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅) → ω ≼ 𝑇)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2109  wne 2925  Vcvv 3438  wss 3905  c0 4286   class class class wbr 5095  cima 5626  Oncon0 6311  1-1wf1 6483  ωcom 7806  cen 8876  cdom 8877  𝑅1cr1 9677  Tarskictsk 10661
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-inf2 9556
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-ov 7356  df-om 7807  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-er 8632  df-en 8880  df-dom 8881  df-sdom 8882  df-r1 9679  df-tsk 10662
This theorem is referenced by:  tskpr  10683
  Copyright terms: Public domain W3C validator