MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nnunifi Structured version   Visualization version   GIF version

Theorem nnunifi 9334
Description: The union (supremum) of a finite set of finite ordinals is a finite ordinal. (Contributed by Stefan O'Rear, 5-Nov-2014.)
Assertion
Ref Expression
nnunifi ((𝑆 ⊆ ω ∧ 𝑆 ∈ Fin) → 𝑆 ∈ ω)

Proof of Theorem nnunifi
StepHypRef Expression
1 unieq 4926 . . . 4 (𝑆 = ∅ → 𝑆 = ∅)
2 uni0 4943 . . . . 5 ∅ = ∅
3 peano1 7918 . . . . 5 ∅ ∈ ω
42, 3eqeltri 2837 . . . 4 ∅ ∈ ω
51, 4eqeltrdi 2849 . . 3 (𝑆 = ∅ → 𝑆 ∈ ω)
65adantl 481 . 2 (((𝑆 ⊆ ω ∧ 𝑆 ∈ Fin) ∧ 𝑆 = ∅) → 𝑆 ∈ ω)
7 simpll 767 . . 3 (((𝑆 ⊆ ω ∧ 𝑆 ∈ Fin) ∧ 𝑆 ≠ ∅) → 𝑆 ⊆ ω)
8 omsson 7898 . . . . 5 ω ⊆ On
97, 8sstrdi 4011 . . . 4 (((𝑆 ⊆ ω ∧ 𝑆 ∈ Fin) ∧ 𝑆 ≠ ∅) → 𝑆 ⊆ On)
10 simplr 769 . . . 4 (((𝑆 ⊆ ω ∧ 𝑆 ∈ Fin) ∧ 𝑆 ≠ ∅) → 𝑆 ∈ Fin)
11 simpr 484 . . . 4 (((𝑆 ⊆ ω ∧ 𝑆 ∈ Fin) ∧ 𝑆 ≠ ∅) → 𝑆 ≠ ∅)
12 ordunifi 9333 . . . 4 ((𝑆 ⊆ On ∧ 𝑆 ∈ Fin ∧ 𝑆 ≠ ∅) → 𝑆𝑆)
139, 10, 11, 12syl3anc 1372 . . 3 (((𝑆 ⊆ ω ∧ 𝑆 ∈ Fin) ∧ 𝑆 ≠ ∅) → 𝑆𝑆)
147, 13sseldd 3999 . 2 (((𝑆 ⊆ ω ∧ 𝑆 ∈ Fin) ∧ 𝑆 ≠ ∅) → 𝑆 ∈ ω)
156, 14pm2.61dane 3029 1 ((𝑆 ⊆ ω ∧ 𝑆 ∈ Fin) → 𝑆 ∈ ω)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  wne 2940  wss 3966  c0 4342   cuni 4915  Oncon0 6392  ωcom 7894  Fincfn 8993
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5305  ax-nul 5315  ax-pr 5441  ax-un 7761
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3483  df-sbc 3795  df-dif 3969  df-un 3971  df-in 3973  df-ss 3983  df-pss 3986  df-nul 4343  df-if 4535  df-pw 4610  df-sn 4635  df-pr 4637  df-op 4641  df-uni 4916  df-br 5152  df-opab 5214  df-tr 5269  df-id 5587  df-eprel 5593  df-po 5601  df-so 5602  df-fr 5645  df-we 5647  df-xp 5699  df-rel 5700  df-cnv 5701  df-co 5702  df-dm 5703  df-rn 5704  df-res 5705  df-ima 5706  df-ord 6395  df-on 6396  df-lim 6397  df-suc 6398  df-iota 6522  df-fun 6571  df-fn 6572  df-f 6573  df-f1 6574  df-fo 6575  df-f1o 6576  df-fv 6577  df-om 7895  df-en 8994  df-fin 8997
This theorem is referenced by:  ackbij1lem16  10281  isf32lem5  10404  finxpreclem4  37389
  Copyright terms: Public domain W3C validator