| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nnunifi | Structured version Visualization version GIF version | ||
| Description: The union (supremum) of a finite set of finite ordinals is a finite ordinal. (Contributed by Stefan O'Rear, 5-Nov-2014.) |
| Ref | Expression |
|---|---|
| nnunifi | ⊢ ((𝑆 ⊆ ω ∧ 𝑆 ∈ Fin) → ∪ 𝑆 ∈ ω) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | unieq 4882 | . . . 4 ⊢ (𝑆 = ∅ → ∪ 𝑆 = ∪ ∅) | |
| 2 | uni0 4899 | . . . . 5 ⊢ ∪ ∅ = ∅ | |
| 3 | peano1 7865 | . . . . 5 ⊢ ∅ ∈ ω | |
| 4 | 2, 3 | eqeltri 2824 | . . . 4 ⊢ ∪ ∅ ∈ ω |
| 5 | 1, 4 | eqeltrdi 2836 | . . 3 ⊢ (𝑆 = ∅ → ∪ 𝑆 ∈ ω) |
| 6 | 5 | adantl 481 | . 2 ⊢ (((𝑆 ⊆ ω ∧ 𝑆 ∈ Fin) ∧ 𝑆 = ∅) → ∪ 𝑆 ∈ ω) |
| 7 | simpll 766 | . . 3 ⊢ (((𝑆 ⊆ ω ∧ 𝑆 ∈ Fin) ∧ 𝑆 ≠ ∅) → 𝑆 ⊆ ω) | |
| 8 | omsson 7846 | . . . . 5 ⊢ ω ⊆ On | |
| 9 | 7, 8 | sstrdi 3959 | . . . 4 ⊢ (((𝑆 ⊆ ω ∧ 𝑆 ∈ Fin) ∧ 𝑆 ≠ ∅) → 𝑆 ⊆ On) |
| 10 | simplr 768 | . . . 4 ⊢ (((𝑆 ⊆ ω ∧ 𝑆 ∈ Fin) ∧ 𝑆 ≠ ∅) → 𝑆 ∈ Fin) | |
| 11 | simpr 484 | . . . 4 ⊢ (((𝑆 ⊆ ω ∧ 𝑆 ∈ Fin) ∧ 𝑆 ≠ ∅) → 𝑆 ≠ ∅) | |
| 12 | ordunifi 9237 | . . . 4 ⊢ ((𝑆 ⊆ On ∧ 𝑆 ∈ Fin ∧ 𝑆 ≠ ∅) → ∪ 𝑆 ∈ 𝑆) | |
| 13 | 9, 10, 11, 12 | syl3anc 1373 | . . 3 ⊢ (((𝑆 ⊆ ω ∧ 𝑆 ∈ Fin) ∧ 𝑆 ≠ ∅) → ∪ 𝑆 ∈ 𝑆) |
| 14 | 7, 13 | sseldd 3947 | . 2 ⊢ (((𝑆 ⊆ ω ∧ 𝑆 ∈ Fin) ∧ 𝑆 ≠ ∅) → ∪ 𝑆 ∈ ω) |
| 15 | 6, 14 | pm2.61dane 3012 | 1 ⊢ ((𝑆 ⊆ ω ∧ 𝑆 ∈ Fin) → ∪ 𝑆 ∈ ω) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ⊆ wss 3914 ∅c0 4296 ∪ cuni 4871 Oncon0 6332 ωcom 7842 Fincfn 8918 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-om 7843 df-en 8919 df-fin 8922 |
| This theorem is referenced by: ackbij1lem16 10187 isf32lem5 10310 finxpreclem4 37382 |
| Copyright terms: Public domain | W3C validator |