| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nnunifi | Structured version Visualization version GIF version | ||
| Description: The union (supremum) of a finite set of finite ordinals is a finite ordinal. (Contributed by Stefan O'Rear, 5-Nov-2014.) |
| Ref | Expression |
|---|---|
| nnunifi | ⊢ ((𝑆 ⊆ ω ∧ 𝑆 ∈ Fin) → ∪ 𝑆 ∈ ω) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | unieq 4867 | . . . 4 ⊢ (𝑆 = ∅ → ∪ 𝑆 = ∪ ∅) | |
| 2 | uni0 4884 | . . . . 5 ⊢ ∪ ∅ = ∅ | |
| 3 | peano1 7819 | . . . . 5 ⊢ ∅ ∈ ω | |
| 4 | 2, 3 | eqeltri 2827 | . . . 4 ⊢ ∪ ∅ ∈ ω |
| 5 | 1, 4 | eqeltrdi 2839 | . . 3 ⊢ (𝑆 = ∅ → ∪ 𝑆 ∈ ω) |
| 6 | 5 | adantl 481 | . 2 ⊢ (((𝑆 ⊆ ω ∧ 𝑆 ∈ Fin) ∧ 𝑆 = ∅) → ∪ 𝑆 ∈ ω) |
| 7 | simpll 766 | . . 3 ⊢ (((𝑆 ⊆ ω ∧ 𝑆 ∈ Fin) ∧ 𝑆 ≠ ∅) → 𝑆 ⊆ ω) | |
| 8 | omsson 7800 | . . . . 5 ⊢ ω ⊆ On | |
| 9 | 7, 8 | sstrdi 3942 | . . . 4 ⊢ (((𝑆 ⊆ ω ∧ 𝑆 ∈ Fin) ∧ 𝑆 ≠ ∅) → 𝑆 ⊆ On) |
| 10 | simplr 768 | . . . 4 ⊢ (((𝑆 ⊆ ω ∧ 𝑆 ∈ Fin) ∧ 𝑆 ≠ ∅) → 𝑆 ∈ Fin) | |
| 11 | simpr 484 | . . . 4 ⊢ (((𝑆 ⊆ ω ∧ 𝑆 ∈ Fin) ∧ 𝑆 ≠ ∅) → 𝑆 ≠ ∅) | |
| 12 | ordunifi 9174 | . . . 4 ⊢ ((𝑆 ⊆ On ∧ 𝑆 ∈ Fin ∧ 𝑆 ≠ ∅) → ∪ 𝑆 ∈ 𝑆) | |
| 13 | 9, 10, 11, 12 | syl3anc 1373 | . . 3 ⊢ (((𝑆 ⊆ ω ∧ 𝑆 ∈ Fin) ∧ 𝑆 ≠ ∅) → ∪ 𝑆 ∈ 𝑆) |
| 14 | 7, 13 | sseldd 3930 | . 2 ⊢ (((𝑆 ⊆ ω ∧ 𝑆 ∈ Fin) ∧ 𝑆 ≠ ∅) → ∪ 𝑆 ∈ ω) |
| 15 | 6, 14 | pm2.61dane 3015 | 1 ⊢ ((𝑆 ⊆ ω ∧ 𝑆 ∈ Fin) → ∪ 𝑆 ∈ ω) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 ⊆ wss 3897 ∅c0 4280 ∪ cuni 4856 Oncon0 6306 ωcom 7796 Fincfn 8869 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-om 7797 df-en 8870 df-fin 8873 |
| This theorem is referenced by: ackbij1lem16 10125 isf32lem5 10248 fineqvnttrclselem1 35141 finxpreclem4 37438 |
| Copyright terms: Public domain | W3C validator |