MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nnunifi Structured version   Visualization version   GIF version

Theorem nnunifi 9109
Description: The union (supremum) of a finite set of finite ordinals is a finite ordinal. (Contributed by Stefan O'Rear, 5-Nov-2014.)
Assertion
Ref Expression
nnunifi ((𝑆 ⊆ ω ∧ 𝑆 ∈ Fin) → 𝑆 ∈ ω)

Proof of Theorem nnunifi
StepHypRef Expression
1 unieq 4855 . . . 4 (𝑆 = ∅ → 𝑆 = ∅)
2 uni0 4875 . . . . 5 ∅ = ∅
3 peano1 7767 . . . . 5 ∅ ∈ ω
42, 3eqeltri 2833 . . . 4 ∅ ∈ ω
51, 4eqeltrdi 2845 . . 3 (𝑆 = ∅ → 𝑆 ∈ ω)
65adantl 483 . 2 (((𝑆 ⊆ ω ∧ 𝑆 ∈ Fin) ∧ 𝑆 = ∅) → 𝑆 ∈ ω)
7 simpll 765 . . 3 (((𝑆 ⊆ ω ∧ 𝑆 ∈ Fin) ∧ 𝑆 ≠ ∅) → 𝑆 ⊆ ω)
8 omsson 7748 . . . . 5 ω ⊆ On
97, 8sstrdi 3938 . . . 4 (((𝑆 ⊆ ω ∧ 𝑆 ∈ Fin) ∧ 𝑆 ≠ ∅) → 𝑆 ⊆ On)
10 simplr 767 . . . 4 (((𝑆 ⊆ ω ∧ 𝑆 ∈ Fin) ∧ 𝑆 ≠ ∅) → 𝑆 ∈ Fin)
11 simpr 486 . . . 4 (((𝑆 ⊆ ω ∧ 𝑆 ∈ Fin) ∧ 𝑆 ≠ ∅) → 𝑆 ≠ ∅)
12 ordunifi 9108 . . . 4 ((𝑆 ⊆ On ∧ 𝑆 ∈ Fin ∧ 𝑆 ≠ ∅) → 𝑆𝑆)
139, 10, 11, 12syl3anc 1371 . . 3 (((𝑆 ⊆ ω ∧ 𝑆 ∈ Fin) ∧ 𝑆 ≠ ∅) → 𝑆𝑆)
147, 13sseldd 3927 . 2 (((𝑆 ⊆ ω ∧ 𝑆 ∈ Fin) ∧ 𝑆 ≠ ∅) → 𝑆 ∈ ω)
156, 14pm2.61dane 3030 1 ((𝑆 ⊆ ω ∧ 𝑆 ∈ Fin) → 𝑆 ∈ ω)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397   = wceq 1539  wcel 2104  wne 2941  wss 3892  c0 4262   cuni 4844  Oncon0 6281  ωcom 7744  Fincfn 8764
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2707  ax-sep 5232  ax-nul 5239  ax-pr 5361  ax-un 7620
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3or 1088  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2887  df-ne 2942  df-ral 3063  df-rex 3072  df-reu 3286  df-rab 3287  df-v 3439  df-sbc 3722  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4566  df-pr 4568  df-op 4572  df-uni 4845  df-br 5082  df-opab 5144  df-tr 5199  df-id 5500  df-eprel 5506  df-po 5514  df-so 5515  df-fr 5555  df-we 5557  df-xp 5606  df-rel 5607  df-cnv 5608  df-co 5609  df-dm 5610  df-rn 5611  df-res 5612  df-ima 5613  df-ord 6284  df-on 6285  df-lim 6286  df-suc 6287  df-iota 6410  df-fun 6460  df-fn 6461  df-f 6462  df-f1 6463  df-fo 6464  df-f1o 6465  df-fv 6466  df-om 7745  df-en 8765  df-fin 8768
This theorem is referenced by:  ackbij1lem16  10037  isf32lem5  10159  finxpreclem4  35609
  Copyright terms: Public domain W3C validator