Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nnunifi | Structured version Visualization version GIF version |
Description: The union (supremum) of a finite set of finite ordinals is a finite ordinal. (Contributed by Stefan O'Rear, 5-Nov-2014.) |
Ref | Expression |
---|---|
nnunifi | ⊢ ((𝑆 ⊆ ω ∧ 𝑆 ∈ Fin) → ∪ 𝑆 ∈ ω) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | unieq 4855 | . . . 4 ⊢ (𝑆 = ∅ → ∪ 𝑆 = ∪ ∅) | |
2 | uni0 4874 | . . . . 5 ⊢ ∪ ∅ = ∅ | |
3 | peano1 7723 | . . . . 5 ⊢ ∅ ∈ ω | |
4 | 2, 3 | eqeltri 2836 | . . . 4 ⊢ ∪ ∅ ∈ ω |
5 | 1, 4 | eqeltrdi 2848 | . . 3 ⊢ (𝑆 = ∅ → ∪ 𝑆 ∈ ω) |
6 | 5 | adantl 481 | . 2 ⊢ (((𝑆 ⊆ ω ∧ 𝑆 ∈ Fin) ∧ 𝑆 = ∅) → ∪ 𝑆 ∈ ω) |
7 | simpll 763 | . . 3 ⊢ (((𝑆 ⊆ ω ∧ 𝑆 ∈ Fin) ∧ 𝑆 ≠ ∅) → 𝑆 ⊆ ω) | |
8 | omsson 7704 | . . . . 5 ⊢ ω ⊆ On | |
9 | 7, 8 | sstrdi 3937 | . . . 4 ⊢ (((𝑆 ⊆ ω ∧ 𝑆 ∈ Fin) ∧ 𝑆 ≠ ∅) → 𝑆 ⊆ On) |
10 | simplr 765 | . . . 4 ⊢ (((𝑆 ⊆ ω ∧ 𝑆 ∈ Fin) ∧ 𝑆 ≠ ∅) → 𝑆 ∈ Fin) | |
11 | simpr 484 | . . . 4 ⊢ (((𝑆 ⊆ ω ∧ 𝑆 ∈ Fin) ∧ 𝑆 ≠ ∅) → 𝑆 ≠ ∅) | |
12 | ordunifi 9025 | . . . 4 ⊢ ((𝑆 ⊆ On ∧ 𝑆 ∈ Fin ∧ 𝑆 ≠ ∅) → ∪ 𝑆 ∈ 𝑆) | |
13 | 9, 10, 11, 12 | syl3anc 1369 | . . 3 ⊢ (((𝑆 ⊆ ω ∧ 𝑆 ∈ Fin) ∧ 𝑆 ≠ ∅) → ∪ 𝑆 ∈ 𝑆) |
14 | 7, 13 | sseldd 3926 | . 2 ⊢ (((𝑆 ⊆ ω ∧ 𝑆 ∈ Fin) ∧ 𝑆 ≠ ∅) → ∪ 𝑆 ∈ ω) |
15 | 6, 14 | pm2.61dane 3033 | 1 ⊢ ((𝑆 ⊆ ω ∧ 𝑆 ∈ Fin) → ∪ 𝑆 ∈ ω) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2109 ≠ wne 2944 ⊆ wss 3891 ∅c0 4261 ∪ cuni 4844 Oncon0 6263 ωcom 7700 Fincfn 8707 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pr 5355 ax-un 7579 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-ral 3070 df-rex 3071 df-reu 3072 df-rab 3074 df-v 3432 df-sbc 3720 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-pss 3910 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-tp 4571 df-op 4573 df-uni 4845 df-br 5079 df-opab 5141 df-tr 5196 df-id 5488 df-eprel 5494 df-po 5502 df-so 5503 df-fr 5543 df-we 5545 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-ord 6266 df-on 6267 df-lim 6268 df-suc 6269 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-f1 6435 df-fo 6436 df-f1o 6437 df-fv 6438 df-om 7701 df-en 8708 df-fin 8711 |
This theorem is referenced by: ackbij1lem16 9975 isf32lem5 10097 finxpreclem4 35544 |
Copyright terms: Public domain | W3C validator |