| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nnunifi | Structured version Visualization version GIF version | ||
| Description: The union (supremum) of a finite set of finite ordinals is a finite ordinal. (Contributed by Stefan O'Rear, 5-Nov-2014.) |
| Ref | Expression |
|---|---|
| nnunifi | ⊢ ((𝑆 ⊆ ω ∧ 𝑆 ∈ Fin) → ∪ 𝑆 ∈ ω) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | unieq 4898 | . . . 4 ⊢ (𝑆 = ∅ → ∪ 𝑆 = ∪ ∅) | |
| 2 | uni0 4915 | . . . . 5 ⊢ ∪ ∅ = ∅ | |
| 3 | peano1 7892 | . . . . 5 ⊢ ∅ ∈ ω | |
| 4 | 2, 3 | eqeltri 2829 | . . . 4 ⊢ ∪ ∅ ∈ ω |
| 5 | 1, 4 | eqeltrdi 2841 | . . 3 ⊢ (𝑆 = ∅ → ∪ 𝑆 ∈ ω) |
| 6 | 5 | adantl 481 | . 2 ⊢ (((𝑆 ⊆ ω ∧ 𝑆 ∈ Fin) ∧ 𝑆 = ∅) → ∪ 𝑆 ∈ ω) |
| 7 | simpll 766 | . . 3 ⊢ (((𝑆 ⊆ ω ∧ 𝑆 ∈ Fin) ∧ 𝑆 ≠ ∅) → 𝑆 ⊆ ω) | |
| 8 | omsson 7873 | . . . . 5 ⊢ ω ⊆ On | |
| 9 | 7, 8 | sstrdi 3976 | . . . 4 ⊢ (((𝑆 ⊆ ω ∧ 𝑆 ∈ Fin) ∧ 𝑆 ≠ ∅) → 𝑆 ⊆ On) |
| 10 | simplr 768 | . . . 4 ⊢ (((𝑆 ⊆ ω ∧ 𝑆 ∈ Fin) ∧ 𝑆 ≠ ∅) → 𝑆 ∈ Fin) | |
| 11 | simpr 484 | . . . 4 ⊢ (((𝑆 ⊆ ω ∧ 𝑆 ∈ Fin) ∧ 𝑆 ≠ ∅) → 𝑆 ≠ ∅) | |
| 12 | ordunifi 9308 | . . . 4 ⊢ ((𝑆 ⊆ On ∧ 𝑆 ∈ Fin ∧ 𝑆 ≠ ∅) → ∪ 𝑆 ∈ 𝑆) | |
| 13 | 9, 10, 11, 12 | syl3anc 1372 | . . 3 ⊢ (((𝑆 ⊆ ω ∧ 𝑆 ∈ Fin) ∧ 𝑆 ≠ ∅) → ∪ 𝑆 ∈ 𝑆) |
| 14 | 7, 13 | sseldd 3964 | . 2 ⊢ (((𝑆 ⊆ ω ∧ 𝑆 ∈ Fin) ∧ 𝑆 ≠ ∅) → ∪ 𝑆 ∈ ω) |
| 15 | 6, 14 | pm2.61dane 3018 | 1 ⊢ ((𝑆 ⊆ ω ∧ 𝑆 ∈ Fin) → ∪ 𝑆 ∈ ω) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ≠ wne 2931 ⊆ wss 3931 ∅c0 4313 ∪ cuni 4887 Oncon0 6363 ωcom 7869 Fincfn 8967 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pr 5412 ax-un 7737 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-br 5124 df-opab 5186 df-tr 5240 df-id 5558 df-eprel 5564 df-po 5572 df-so 5573 df-fr 5617 df-we 5619 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-om 7870 df-en 8968 df-fin 8971 |
| This theorem is referenced by: ackbij1lem16 10256 isf32lem5 10379 finxpreclem4 37354 |
| Copyright terms: Public domain | W3C validator |