| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > card2inf | Structured version Visualization version GIF version | ||
| Description: The alternate definition of the cardinal of a set given in cardval2 10013 has the curious property that for non-numerable sets (for which ndmfv 6921 yields ∅), it still evaluates to a nonempty set, and indeed it contains ω. (Contributed by Mario Carneiro, 15-Jan-2013.) (Revised by Mario Carneiro, 27-Apr-2015.) |
| Ref | Expression |
|---|---|
| card2inf.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| card2inf | ⊢ (¬ ∃𝑦 ∈ On 𝑦 ≈ 𝐴 → ω ⊆ {𝑥 ∈ On ∣ 𝑥 ≺ 𝐴}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breq1 5126 | . . . . 5 ⊢ (𝑥 = ∅ → (𝑥 ≺ 𝐴 ↔ ∅ ≺ 𝐴)) | |
| 2 | breq1 5126 | . . . . 5 ⊢ (𝑥 = 𝑛 → (𝑥 ≺ 𝐴 ↔ 𝑛 ≺ 𝐴)) | |
| 3 | breq1 5126 | . . . . 5 ⊢ (𝑥 = suc 𝑛 → (𝑥 ≺ 𝐴 ↔ suc 𝑛 ≺ 𝐴)) | |
| 4 | 0elon 6418 | . . . . . . . 8 ⊢ ∅ ∈ On | |
| 5 | breq1 5126 | . . . . . . . . 9 ⊢ (𝑦 = ∅ → (𝑦 ≈ 𝐴 ↔ ∅ ≈ 𝐴)) | |
| 6 | 5 | rspcev 3605 | . . . . . . . 8 ⊢ ((∅ ∈ On ∧ ∅ ≈ 𝐴) → ∃𝑦 ∈ On 𝑦 ≈ 𝐴) |
| 7 | 4, 6 | mpan 690 | . . . . . . 7 ⊢ (∅ ≈ 𝐴 → ∃𝑦 ∈ On 𝑦 ≈ 𝐴) |
| 8 | 7 | con3i 154 | . . . . . 6 ⊢ (¬ ∃𝑦 ∈ On 𝑦 ≈ 𝐴 → ¬ ∅ ≈ 𝐴) |
| 9 | card2inf.1 | . . . . . . . 8 ⊢ 𝐴 ∈ V | |
| 10 | 9 | 0dom 9128 | . . . . . . 7 ⊢ ∅ ≼ 𝐴 |
| 11 | brsdom 8997 | . . . . . . 7 ⊢ (∅ ≺ 𝐴 ↔ (∅ ≼ 𝐴 ∧ ¬ ∅ ≈ 𝐴)) | |
| 12 | 10, 11 | mpbiran 709 | . . . . . 6 ⊢ (∅ ≺ 𝐴 ↔ ¬ ∅ ≈ 𝐴) |
| 13 | 8, 12 | sylibr 234 | . . . . 5 ⊢ (¬ ∃𝑦 ∈ On 𝑦 ≈ 𝐴 → ∅ ≺ 𝐴) |
| 14 | sucdom2 9225 | . . . . . . . 8 ⊢ (𝑛 ≺ 𝐴 → suc 𝑛 ≼ 𝐴) | |
| 15 | 14 | ad2antll 729 | . . . . . . 7 ⊢ ((𝑛 ∈ ω ∧ (¬ ∃𝑦 ∈ On 𝑦 ≈ 𝐴 ∧ 𝑛 ≺ 𝐴)) → suc 𝑛 ≼ 𝐴) |
| 16 | nnon 7875 | . . . . . . . . . 10 ⊢ (𝑛 ∈ ω → 𝑛 ∈ On) | |
| 17 | onsuc 7813 | . . . . . . . . . 10 ⊢ (𝑛 ∈ On → suc 𝑛 ∈ On) | |
| 18 | breq1 5126 | . . . . . . . . . . . 12 ⊢ (𝑦 = suc 𝑛 → (𝑦 ≈ 𝐴 ↔ suc 𝑛 ≈ 𝐴)) | |
| 19 | 18 | rspcev 3605 | . . . . . . . . . . 11 ⊢ ((suc 𝑛 ∈ On ∧ suc 𝑛 ≈ 𝐴) → ∃𝑦 ∈ On 𝑦 ≈ 𝐴) |
| 20 | 19 | ex 412 | . . . . . . . . . 10 ⊢ (suc 𝑛 ∈ On → (suc 𝑛 ≈ 𝐴 → ∃𝑦 ∈ On 𝑦 ≈ 𝐴)) |
| 21 | 16, 17, 20 | 3syl 18 | . . . . . . . . 9 ⊢ (𝑛 ∈ ω → (suc 𝑛 ≈ 𝐴 → ∃𝑦 ∈ On 𝑦 ≈ 𝐴)) |
| 22 | 21 | con3dimp 408 | . . . . . . . 8 ⊢ ((𝑛 ∈ ω ∧ ¬ ∃𝑦 ∈ On 𝑦 ≈ 𝐴) → ¬ suc 𝑛 ≈ 𝐴) |
| 23 | 22 | adantrr 717 | . . . . . . 7 ⊢ ((𝑛 ∈ ω ∧ (¬ ∃𝑦 ∈ On 𝑦 ≈ 𝐴 ∧ 𝑛 ≺ 𝐴)) → ¬ suc 𝑛 ≈ 𝐴) |
| 24 | brsdom 8997 | . . . . . . 7 ⊢ (suc 𝑛 ≺ 𝐴 ↔ (suc 𝑛 ≼ 𝐴 ∧ ¬ suc 𝑛 ≈ 𝐴)) | |
| 25 | 15, 23, 24 | sylanbrc 583 | . . . . . 6 ⊢ ((𝑛 ∈ ω ∧ (¬ ∃𝑦 ∈ On 𝑦 ≈ 𝐴 ∧ 𝑛 ≺ 𝐴)) → suc 𝑛 ≺ 𝐴) |
| 26 | 25 | exp32 420 | . . . . 5 ⊢ (𝑛 ∈ ω → (¬ ∃𝑦 ∈ On 𝑦 ≈ 𝐴 → (𝑛 ≺ 𝐴 → suc 𝑛 ≺ 𝐴))) |
| 27 | 1, 2, 3, 13, 26 | finds2 7902 | . . . 4 ⊢ (𝑥 ∈ ω → (¬ ∃𝑦 ∈ On 𝑦 ≈ 𝐴 → 𝑥 ≺ 𝐴)) |
| 28 | 27 | com12 32 | . . 3 ⊢ (¬ ∃𝑦 ∈ On 𝑦 ≈ 𝐴 → (𝑥 ∈ ω → 𝑥 ≺ 𝐴)) |
| 29 | 28 | ralrimiv 3132 | . 2 ⊢ (¬ ∃𝑦 ∈ On 𝑦 ≈ 𝐴 → ∀𝑥 ∈ ω 𝑥 ≺ 𝐴) |
| 30 | omsson 7873 | . . 3 ⊢ ω ⊆ On | |
| 31 | ssrab 4053 | . . 3 ⊢ (ω ⊆ {𝑥 ∈ On ∣ 𝑥 ≺ 𝐴} ↔ (ω ⊆ On ∧ ∀𝑥 ∈ ω 𝑥 ≺ 𝐴)) | |
| 32 | 30, 31 | mpbiran 709 | . 2 ⊢ (ω ⊆ {𝑥 ∈ On ∣ 𝑥 ≺ 𝐴} ↔ ∀𝑥 ∈ ω 𝑥 ≺ 𝐴) |
| 33 | 29, 32 | sylibr 234 | 1 ⊢ (¬ ∃𝑦 ∈ On 𝑦 ≈ 𝐴 → ω ⊆ {𝑥 ∈ On ∣ 𝑥 ≺ 𝐴}) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∈ wcel 2107 ∀wral 3050 ∃wrex 3059 {crab 3419 Vcvv 3463 ⊆ wss 3931 ∅c0 4313 class class class wbr 5123 Oncon0 6363 suc csuc 6365 ωcom 7869 ≈ cen 8964 ≼ cdom 8965 ≺ csdm 8966 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pr 5412 ax-un 7737 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-br 5124 df-opab 5186 df-tr 5240 df-id 5558 df-eprel 5564 df-po 5572 df-so 5573 df-fr 5617 df-we 5619 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-om 7870 df-1o 8488 df-en 8968 df-dom 8969 df-sdom 8970 df-fin 8971 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |