![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > card2inf | Structured version Visualization version GIF version |
Description: The alternate definition of the cardinal of a set given in cardval2 10038 has the curious property that for non-numerable sets (for which ndmfv 6949 yields ∅), it still evaluates to a nonempty set, and indeed it contains ω. (Contributed by Mario Carneiro, 15-Jan-2013.) (Revised by Mario Carneiro, 27-Apr-2015.) |
Ref | Expression |
---|---|
card2inf.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
card2inf | ⊢ (¬ ∃𝑦 ∈ On 𝑦 ≈ 𝐴 → ω ⊆ {𝑥 ∈ On ∣ 𝑥 ≺ 𝐴}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq1 5154 | . . . . 5 ⊢ (𝑥 = ∅ → (𝑥 ≺ 𝐴 ↔ ∅ ≺ 𝐴)) | |
2 | breq1 5154 | . . . . 5 ⊢ (𝑥 = 𝑛 → (𝑥 ≺ 𝐴 ↔ 𝑛 ≺ 𝐴)) | |
3 | breq1 5154 | . . . . 5 ⊢ (𝑥 = suc 𝑛 → (𝑥 ≺ 𝐴 ↔ suc 𝑛 ≺ 𝐴)) | |
4 | 0elon 6446 | . . . . . . . 8 ⊢ ∅ ∈ On | |
5 | breq1 5154 | . . . . . . . . 9 ⊢ (𝑦 = ∅ → (𝑦 ≈ 𝐴 ↔ ∅ ≈ 𝐴)) | |
6 | 5 | rspcev 3625 | . . . . . . . 8 ⊢ ((∅ ∈ On ∧ ∅ ≈ 𝐴) → ∃𝑦 ∈ On 𝑦 ≈ 𝐴) |
7 | 4, 6 | mpan 690 | . . . . . . 7 ⊢ (∅ ≈ 𝐴 → ∃𝑦 ∈ On 𝑦 ≈ 𝐴) |
8 | 7 | con3i 154 | . . . . . 6 ⊢ (¬ ∃𝑦 ∈ On 𝑦 ≈ 𝐴 → ¬ ∅ ≈ 𝐴) |
9 | card2inf.1 | . . . . . . . 8 ⊢ 𝐴 ∈ V | |
10 | 9 | 0dom 9154 | . . . . . . 7 ⊢ ∅ ≼ 𝐴 |
11 | brsdom 9023 | . . . . . . 7 ⊢ (∅ ≺ 𝐴 ↔ (∅ ≼ 𝐴 ∧ ¬ ∅ ≈ 𝐴)) | |
12 | 10, 11 | mpbiran 709 | . . . . . 6 ⊢ (∅ ≺ 𝐴 ↔ ¬ ∅ ≈ 𝐴) |
13 | 8, 12 | sylibr 234 | . . . . 5 ⊢ (¬ ∃𝑦 ∈ On 𝑦 ≈ 𝐴 → ∅ ≺ 𝐴) |
14 | sucdom2 9250 | . . . . . . . 8 ⊢ (𝑛 ≺ 𝐴 → suc 𝑛 ≼ 𝐴) | |
15 | 14 | ad2antll 729 | . . . . . . 7 ⊢ ((𝑛 ∈ ω ∧ (¬ ∃𝑦 ∈ On 𝑦 ≈ 𝐴 ∧ 𝑛 ≺ 𝐴)) → suc 𝑛 ≼ 𝐴) |
16 | nnon 7900 | . . . . . . . . . 10 ⊢ (𝑛 ∈ ω → 𝑛 ∈ On) | |
17 | onsuc 7838 | . . . . . . . . . 10 ⊢ (𝑛 ∈ On → suc 𝑛 ∈ On) | |
18 | breq1 5154 | . . . . . . . . . . . 12 ⊢ (𝑦 = suc 𝑛 → (𝑦 ≈ 𝐴 ↔ suc 𝑛 ≈ 𝐴)) | |
19 | 18 | rspcev 3625 | . . . . . . . . . . 11 ⊢ ((suc 𝑛 ∈ On ∧ suc 𝑛 ≈ 𝐴) → ∃𝑦 ∈ On 𝑦 ≈ 𝐴) |
20 | 19 | ex 412 | . . . . . . . . . 10 ⊢ (suc 𝑛 ∈ On → (suc 𝑛 ≈ 𝐴 → ∃𝑦 ∈ On 𝑦 ≈ 𝐴)) |
21 | 16, 17, 20 | 3syl 18 | . . . . . . . . 9 ⊢ (𝑛 ∈ ω → (suc 𝑛 ≈ 𝐴 → ∃𝑦 ∈ On 𝑦 ≈ 𝐴)) |
22 | 21 | con3dimp 408 | . . . . . . . 8 ⊢ ((𝑛 ∈ ω ∧ ¬ ∃𝑦 ∈ On 𝑦 ≈ 𝐴) → ¬ suc 𝑛 ≈ 𝐴) |
23 | 22 | adantrr 717 | . . . . . . 7 ⊢ ((𝑛 ∈ ω ∧ (¬ ∃𝑦 ∈ On 𝑦 ≈ 𝐴 ∧ 𝑛 ≺ 𝐴)) → ¬ suc 𝑛 ≈ 𝐴) |
24 | brsdom 9023 | . . . . . . 7 ⊢ (suc 𝑛 ≺ 𝐴 ↔ (suc 𝑛 ≼ 𝐴 ∧ ¬ suc 𝑛 ≈ 𝐴)) | |
25 | 15, 23, 24 | sylanbrc 583 | . . . . . 6 ⊢ ((𝑛 ∈ ω ∧ (¬ ∃𝑦 ∈ On 𝑦 ≈ 𝐴 ∧ 𝑛 ≺ 𝐴)) → suc 𝑛 ≺ 𝐴) |
26 | 25 | exp32 420 | . . . . 5 ⊢ (𝑛 ∈ ω → (¬ ∃𝑦 ∈ On 𝑦 ≈ 𝐴 → (𝑛 ≺ 𝐴 → suc 𝑛 ≺ 𝐴))) |
27 | 1, 2, 3, 13, 26 | finds2 7928 | . . . 4 ⊢ (𝑥 ∈ ω → (¬ ∃𝑦 ∈ On 𝑦 ≈ 𝐴 → 𝑥 ≺ 𝐴)) |
28 | 27 | com12 32 | . . 3 ⊢ (¬ ∃𝑦 ∈ On 𝑦 ≈ 𝐴 → (𝑥 ∈ ω → 𝑥 ≺ 𝐴)) |
29 | 28 | ralrimiv 3145 | . 2 ⊢ (¬ ∃𝑦 ∈ On 𝑦 ≈ 𝐴 → ∀𝑥 ∈ ω 𝑥 ≺ 𝐴) |
30 | omsson 7898 | . . 3 ⊢ ω ⊆ On | |
31 | ssrab 4086 | . . 3 ⊢ (ω ⊆ {𝑥 ∈ On ∣ 𝑥 ≺ 𝐴} ↔ (ω ⊆ On ∧ ∀𝑥 ∈ ω 𝑥 ≺ 𝐴)) | |
32 | 30, 31 | mpbiran 709 | . 2 ⊢ (ω ⊆ {𝑥 ∈ On ∣ 𝑥 ≺ 𝐴} ↔ ∀𝑥 ∈ ω 𝑥 ≺ 𝐴) |
33 | 29, 32 | sylibr 234 | 1 ⊢ (¬ ∃𝑦 ∈ On 𝑦 ≈ 𝐴 → ω ⊆ {𝑥 ∈ On ∣ 𝑥 ≺ 𝐴}) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∈ wcel 2108 ∀wral 3061 ∃wrex 3070 {crab 3436 Vcvv 3481 ⊆ wss 3966 ∅c0 4342 class class class wbr 5151 Oncon0 6392 suc csuc 6394 ωcom 7894 ≈ cen 8990 ≼ cdom 8991 ≺ csdm 8992 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5305 ax-nul 5315 ax-pr 5441 ax-un 7761 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3381 df-rab 3437 df-v 3483 df-sbc 3795 df-dif 3969 df-un 3971 df-in 3973 df-ss 3983 df-pss 3986 df-nul 4343 df-if 4535 df-pw 4610 df-sn 4635 df-pr 4637 df-op 4641 df-uni 4916 df-br 5152 df-opab 5214 df-tr 5269 df-id 5587 df-eprel 5593 df-po 5601 df-so 5602 df-fr 5645 df-we 5647 df-xp 5699 df-rel 5700 df-cnv 5701 df-co 5702 df-dm 5703 df-rn 5704 df-res 5705 df-ima 5706 df-ord 6395 df-on 6396 df-lim 6397 df-suc 6398 df-iota 6522 df-fun 6571 df-fn 6572 df-f 6573 df-f1 6574 df-fo 6575 df-f1o 6576 df-fv 6577 df-om 7895 df-1o 8514 df-en 8994 df-dom 8995 df-sdom 8996 df-fin 8997 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |