Step | Hyp | Ref
| Expression |
1 | | breq1 5073 |
. . . . 5
⊢ (𝑥 = ∅ → (𝑥 ≺ 𝐴 ↔ ∅ ≺ 𝐴)) |
2 | | breq1 5073 |
. . . . 5
⊢ (𝑥 = 𝑛 → (𝑥 ≺ 𝐴 ↔ 𝑛 ≺ 𝐴)) |
3 | | breq1 5073 |
. . . . 5
⊢ (𝑥 = suc 𝑛 → (𝑥 ≺ 𝐴 ↔ suc 𝑛 ≺ 𝐴)) |
4 | | 0elon 6304 |
. . . . . . . 8
⊢ ∅
∈ On |
5 | | breq1 5073 |
. . . . . . . . 9
⊢ (𝑦 = ∅ → (𝑦 ≈ 𝐴 ↔ ∅ ≈ 𝐴)) |
6 | 5 | rspcev 3552 |
. . . . . . . 8
⊢ ((∅
∈ On ∧ ∅ ≈ 𝐴) → ∃𝑦 ∈ On 𝑦 ≈ 𝐴) |
7 | 4, 6 | mpan 686 |
. . . . . . 7
⊢ (∅
≈ 𝐴 →
∃𝑦 ∈ On 𝑦 ≈ 𝐴) |
8 | 7 | con3i 154 |
. . . . . 6
⊢ (¬
∃𝑦 ∈ On 𝑦 ≈ 𝐴 → ¬ ∅ ≈ 𝐴) |
9 | | card2inf.1 |
. . . . . . . 8
⊢ 𝐴 ∈ V |
10 | 9 | 0dom 8843 |
. . . . . . 7
⊢ ∅
≼ 𝐴 |
11 | | brsdom 8718 |
. . . . . . 7
⊢ (∅
≺ 𝐴 ↔ (∅
≼ 𝐴 ∧ ¬
∅ ≈ 𝐴)) |
12 | 10, 11 | mpbiran 705 |
. . . . . 6
⊢ (∅
≺ 𝐴 ↔ ¬
∅ ≈ 𝐴) |
13 | 8, 12 | sylibr 233 |
. . . . 5
⊢ (¬
∃𝑦 ∈ On 𝑦 ≈ 𝐴 → ∅ ≺ 𝐴) |
14 | | sucdom2 8822 |
. . . . . . . 8
⊢ (𝑛 ≺ 𝐴 → suc 𝑛 ≼ 𝐴) |
15 | 14 | ad2antll 725 |
. . . . . . 7
⊢ ((𝑛 ∈ ω ∧ (¬
∃𝑦 ∈ On 𝑦 ≈ 𝐴 ∧ 𝑛 ≺ 𝐴)) → suc 𝑛 ≼ 𝐴) |
16 | | nnon 7693 |
. . . . . . . . . 10
⊢ (𝑛 ∈ ω → 𝑛 ∈ On) |
17 | | suceloni 7635 |
. . . . . . . . . 10
⊢ (𝑛 ∈ On → suc 𝑛 ∈ On) |
18 | | breq1 5073 |
. . . . . . . . . . . 12
⊢ (𝑦 = suc 𝑛 → (𝑦 ≈ 𝐴 ↔ suc 𝑛 ≈ 𝐴)) |
19 | 18 | rspcev 3552 |
. . . . . . . . . . 11
⊢ ((suc
𝑛 ∈ On ∧ suc 𝑛 ≈ 𝐴) → ∃𝑦 ∈ On 𝑦 ≈ 𝐴) |
20 | 19 | ex 412 |
. . . . . . . . . 10
⊢ (suc
𝑛 ∈ On → (suc
𝑛 ≈ 𝐴 → ∃𝑦 ∈ On 𝑦 ≈ 𝐴)) |
21 | 16, 17, 20 | 3syl 18 |
. . . . . . . . 9
⊢ (𝑛 ∈ ω → (suc
𝑛 ≈ 𝐴 → ∃𝑦 ∈ On 𝑦 ≈ 𝐴)) |
22 | 21 | con3dimp 408 |
. . . . . . . 8
⊢ ((𝑛 ∈ ω ∧ ¬
∃𝑦 ∈ On 𝑦 ≈ 𝐴) → ¬ suc 𝑛 ≈ 𝐴) |
23 | 22 | adantrr 713 |
. . . . . . 7
⊢ ((𝑛 ∈ ω ∧ (¬
∃𝑦 ∈ On 𝑦 ≈ 𝐴 ∧ 𝑛 ≺ 𝐴)) → ¬ suc 𝑛 ≈ 𝐴) |
24 | | brsdom 8718 |
. . . . . . 7
⊢ (suc
𝑛 ≺ 𝐴 ↔ (suc 𝑛 ≼ 𝐴 ∧ ¬ suc 𝑛 ≈ 𝐴)) |
25 | 15, 23, 24 | sylanbrc 582 |
. . . . . 6
⊢ ((𝑛 ∈ ω ∧ (¬
∃𝑦 ∈ On 𝑦 ≈ 𝐴 ∧ 𝑛 ≺ 𝐴)) → suc 𝑛 ≺ 𝐴) |
26 | 25 | exp32 420 |
. . . . 5
⊢ (𝑛 ∈ ω → (¬
∃𝑦 ∈ On 𝑦 ≈ 𝐴 → (𝑛 ≺ 𝐴 → suc 𝑛 ≺ 𝐴))) |
27 | 1, 2, 3, 13, 26 | finds2 7721 |
. . . 4
⊢ (𝑥 ∈ ω → (¬
∃𝑦 ∈ On 𝑦 ≈ 𝐴 → 𝑥 ≺ 𝐴)) |
28 | 27 | com12 32 |
. . 3
⊢ (¬
∃𝑦 ∈ On 𝑦 ≈ 𝐴 → (𝑥 ∈ ω → 𝑥 ≺ 𝐴)) |
29 | 28 | ralrimiv 3106 |
. 2
⊢ (¬
∃𝑦 ∈ On 𝑦 ≈ 𝐴 → ∀𝑥 ∈ ω 𝑥 ≺ 𝐴) |
30 | | omsson 7691 |
. . 3
⊢ ω
⊆ On |
31 | | ssrab 4002 |
. . 3
⊢ (ω
⊆ {𝑥 ∈ On
∣ 𝑥 ≺ 𝐴} ↔ (ω ⊆ On
∧ ∀𝑥 ∈
ω 𝑥 ≺ 𝐴)) |
32 | 30, 31 | mpbiran 705 |
. 2
⊢ (ω
⊆ {𝑥 ∈ On
∣ 𝑥 ≺ 𝐴} ↔ ∀𝑥 ∈ ω 𝑥 ≺ 𝐴) |
33 | 29, 32 | sylibr 233 |
1
⊢ (¬
∃𝑦 ∈ On 𝑦 ≈ 𝐴 → ω ⊆ {𝑥 ∈ On ∣ 𝑥 ≺ 𝐴}) |