MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  card2inf Structured version   Visualization version   GIF version

Theorem card2inf 9602
Description: The alternate definition of the cardinal of a set given in cardval2 10038 has the curious property that for non-numerable sets (for which ndmfv 6949 yields ), it still evaluates to a nonempty set, and indeed it contains ω. (Contributed by Mario Carneiro, 15-Jan-2013.) (Revised by Mario Carneiro, 27-Apr-2015.)
Hypothesis
Ref Expression
card2inf.1 𝐴 ∈ V
Assertion
Ref Expression
card2inf (¬ ∃𝑦 ∈ On 𝑦𝐴 → ω ⊆ {𝑥 ∈ On ∣ 𝑥𝐴})
Distinct variable group:   𝑥,𝐴,𝑦

Proof of Theorem card2inf
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 breq1 5154 . . . . 5 (𝑥 = ∅ → (𝑥𝐴 ↔ ∅ ≺ 𝐴))
2 breq1 5154 . . . . 5 (𝑥 = 𝑛 → (𝑥𝐴𝑛𝐴))
3 breq1 5154 . . . . 5 (𝑥 = suc 𝑛 → (𝑥𝐴 ↔ suc 𝑛𝐴))
4 0elon 6446 . . . . . . . 8 ∅ ∈ On
5 breq1 5154 . . . . . . . . 9 (𝑦 = ∅ → (𝑦𝐴 ↔ ∅ ≈ 𝐴))
65rspcev 3625 . . . . . . . 8 ((∅ ∈ On ∧ ∅ ≈ 𝐴) → ∃𝑦 ∈ On 𝑦𝐴)
74, 6mpan 690 . . . . . . 7 (∅ ≈ 𝐴 → ∃𝑦 ∈ On 𝑦𝐴)
87con3i 154 . . . . . 6 (¬ ∃𝑦 ∈ On 𝑦𝐴 → ¬ ∅ ≈ 𝐴)
9 card2inf.1 . . . . . . . 8 𝐴 ∈ V
1090dom 9154 . . . . . . 7 ∅ ≼ 𝐴
11 brsdom 9023 . . . . . . 7 (∅ ≺ 𝐴 ↔ (∅ ≼ 𝐴 ∧ ¬ ∅ ≈ 𝐴))
1210, 11mpbiran 709 . . . . . 6 (∅ ≺ 𝐴 ↔ ¬ ∅ ≈ 𝐴)
138, 12sylibr 234 . . . . 5 (¬ ∃𝑦 ∈ On 𝑦𝐴 → ∅ ≺ 𝐴)
14 sucdom2 9250 . . . . . . . 8 (𝑛𝐴 → suc 𝑛𝐴)
1514ad2antll 729 . . . . . . 7 ((𝑛 ∈ ω ∧ (¬ ∃𝑦 ∈ On 𝑦𝐴𝑛𝐴)) → suc 𝑛𝐴)
16 nnon 7900 . . . . . . . . . 10 (𝑛 ∈ ω → 𝑛 ∈ On)
17 onsuc 7838 . . . . . . . . . 10 (𝑛 ∈ On → suc 𝑛 ∈ On)
18 breq1 5154 . . . . . . . . . . . 12 (𝑦 = suc 𝑛 → (𝑦𝐴 ↔ suc 𝑛𝐴))
1918rspcev 3625 . . . . . . . . . . 11 ((suc 𝑛 ∈ On ∧ suc 𝑛𝐴) → ∃𝑦 ∈ On 𝑦𝐴)
2019ex 412 . . . . . . . . . 10 (suc 𝑛 ∈ On → (suc 𝑛𝐴 → ∃𝑦 ∈ On 𝑦𝐴))
2116, 17, 203syl 18 . . . . . . . . 9 (𝑛 ∈ ω → (suc 𝑛𝐴 → ∃𝑦 ∈ On 𝑦𝐴))
2221con3dimp 408 . . . . . . . 8 ((𝑛 ∈ ω ∧ ¬ ∃𝑦 ∈ On 𝑦𝐴) → ¬ suc 𝑛𝐴)
2322adantrr 717 . . . . . . 7 ((𝑛 ∈ ω ∧ (¬ ∃𝑦 ∈ On 𝑦𝐴𝑛𝐴)) → ¬ suc 𝑛𝐴)
24 brsdom 9023 . . . . . . 7 (suc 𝑛𝐴 ↔ (suc 𝑛𝐴 ∧ ¬ suc 𝑛𝐴))
2515, 23, 24sylanbrc 583 . . . . . 6 ((𝑛 ∈ ω ∧ (¬ ∃𝑦 ∈ On 𝑦𝐴𝑛𝐴)) → suc 𝑛𝐴)
2625exp32 420 . . . . 5 (𝑛 ∈ ω → (¬ ∃𝑦 ∈ On 𝑦𝐴 → (𝑛𝐴 → suc 𝑛𝐴)))
271, 2, 3, 13, 26finds2 7928 . . . 4 (𝑥 ∈ ω → (¬ ∃𝑦 ∈ On 𝑦𝐴𝑥𝐴))
2827com12 32 . . 3 (¬ ∃𝑦 ∈ On 𝑦𝐴 → (𝑥 ∈ ω → 𝑥𝐴))
2928ralrimiv 3145 . 2 (¬ ∃𝑦 ∈ On 𝑦𝐴 → ∀𝑥 ∈ ω 𝑥𝐴)
30 omsson 7898 . . 3 ω ⊆ On
31 ssrab 4086 . . 3 (ω ⊆ {𝑥 ∈ On ∣ 𝑥𝐴} ↔ (ω ⊆ On ∧ ∀𝑥 ∈ ω 𝑥𝐴))
3230, 31mpbiran 709 . 2 (ω ⊆ {𝑥 ∈ On ∣ 𝑥𝐴} ↔ ∀𝑥 ∈ ω 𝑥𝐴)
3329, 32sylibr 234 1 (¬ ∃𝑦 ∈ On 𝑦𝐴 → ω ⊆ {𝑥 ∈ On ∣ 𝑥𝐴})
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wcel 2108  wral 3061  wrex 3070  {crab 3436  Vcvv 3481  wss 3966  c0 4342   class class class wbr 5151  Oncon0 6392  suc csuc 6394  ωcom 7894  cen 8990  cdom 8991  csdm 8992
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5305  ax-nul 5315  ax-pr 5441  ax-un 7761
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3483  df-sbc 3795  df-dif 3969  df-un 3971  df-in 3973  df-ss 3983  df-pss 3986  df-nul 4343  df-if 4535  df-pw 4610  df-sn 4635  df-pr 4637  df-op 4641  df-uni 4916  df-br 5152  df-opab 5214  df-tr 5269  df-id 5587  df-eprel 5593  df-po 5601  df-so 5602  df-fr 5645  df-we 5647  df-xp 5699  df-rel 5700  df-cnv 5701  df-co 5702  df-dm 5703  df-rn 5704  df-res 5705  df-ima 5706  df-ord 6395  df-on 6396  df-lim 6397  df-suc 6398  df-iota 6522  df-fun 6571  df-fn 6572  df-f 6573  df-f1 6574  df-fo 6575  df-f1o 6576  df-fv 6577  df-om 7895  df-1o 8514  df-en 8994  df-dom 8995  df-sdom 8996  df-fin 8997
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator