MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  card2inf Structured version   Visualization version   GIF version

Theorem card2inf 9588
Description: The alternate definition of the cardinal of a set given in cardval2 10024 has the curious property that for non-numerable sets (for which ndmfv 6937 yields ), it still evaluates to a nonempty set, and indeed it contains ω. (Contributed by Mario Carneiro, 15-Jan-2013.) (Revised by Mario Carneiro, 27-Apr-2015.)
Hypothesis
Ref Expression
card2inf.1 𝐴 ∈ V
Assertion
Ref Expression
card2inf (¬ ∃𝑦 ∈ On 𝑦𝐴 → ω ⊆ {𝑥 ∈ On ∣ 𝑥𝐴})
Distinct variable group:   𝑥,𝐴,𝑦

Proof of Theorem card2inf
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 breq1 5155 . . . . 5 (𝑥 = ∅ → (𝑥𝐴 ↔ ∅ ≺ 𝐴))
2 breq1 5155 . . . . 5 (𝑥 = 𝑛 → (𝑥𝐴𝑛𝐴))
3 breq1 5155 . . . . 5 (𝑥 = suc 𝑛 → (𝑥𝐴 ↔ suc 𝑛𝐴))
4 0elon 6428 . . . . . . . 8 ∅ ∈ On
5 breq1 5155 . . . . . . . . 9 (𝑦 = ∅ → (𝑦𝐴 ↔ ∅ ≈ 𝐴))
65rspcev 3611 . . . . . . . 8 ((∅ ∈ On ∧ ∅ ≈ 𝐴) → ∃𝑦 ∈ On 𝑦𝐴)
74, 6mpan 688 . . . . . . 7 (∅ ≈ 𝐴 → ∃𝑦 ∈ On 𝑦𝐴)
87con3i 154 . . . . . 6 (¬ ∃𝑦 ∈ On 𝑦𝐴 → ¬ ∅ ≈ 𝐴)
9 card2inf.1 . . . . . . . 8 𝐴 ∈ V
1090dom 9139 . . . . . . 7 ∅ ≼ 𝐴
11 brsdom 9004 . . . . . . 7 (∅ ≺ 𝐴 ↔ (∅ ≼ 𝐴 ∧ ¬ ∅ ≈ 𝐴))
1210, 11mpbiran 707 . . . . . 6 (∅ ≺ 𝐴 ↔ ¬ ∅ ≈ 𝐴)
138, 12sylibr 233 . . . . 5 (¬ ∃𝑦 ∈ On 𝑦𝐴 → ∅ ≺ 𝐴)
14 sucdom2 9239 . . . . . . . 8 (𝑛𝐴 → suc 𝑛𝐴)
1514ad2antll 727 . . . . . . 7 ((𝑛 ∈ ω ∧ (¬ ∃𝑦 ∈ On 𝑦𝐴𝑛𝐴)) → suc 𝑛𝐴)
16 nnon 7884 . . . . . . . . . 10 (𝑛 ∈ ω → 𝑛 ∈ On)
17 onsuc 7822 . . . . . . . . . 10 (𝑛 ∈ On → suc 𝑛 ∈ On)
18 breq1 5155 . . . . . . . . . . . 12 (𝑦 = suc 𝑛 → (𝑦𝐴 ↔ suc 𝑛𝐴))
1918rspcev 3611 . . . . . . . . . . 11 ((suc 𝑛 ∈ On ∧ suc 𝑛𝐴) → ∃𝑦 ∈ On 𝑦𝐴)
2019ex 411 . . . . . . . . . 10 (suc 𝑛 ∈ On → (suc 𝑛𝐴 → ∃𝑦 ∈ On 𝑦𝐴))
2116, 17, 203syl 18 . . . . . . . . 9 (𝑛 ∈ ω → (suc 𝑛𝐴 → ∃𝑦 ∈ On 𝑦𝐴))
2221con3dimp 407 . . . . . . . 8 ((𝑛 ∈ ω ∧ ¬ ∃𝑦 ∈ On 𝑦𝐴) → ¬ suc 𝑛𝐴)
2322adantrr 715 . . . . . . 7 ((𝑛 ∈ ω ∧ (¬ ∃𝑦 ∈ On 𝑦𝐴𝑛𝐴)) → ¬ suc 𝑛𝐴)
24 brsdom 9004 . . . . . . 7 (suc 𝑛𝐴 ↔ (suc 𝑛𝐴 ∧ ¬ suc 𝑛𝐴))
2515, 23, 24sylanbrc 581 . . . . . 6 ((𝑛 ∈ ω ∧ (¬ ∃𝑦 ∈ On 𝑦𝐴𝑛𝐴)) → suc 𝑛𝐴)
2625exp32 419 . . . . 5 (𝑛 ∈ ω → (¬ ∃𝑦 ∈ On 𝑦𝐴 → (𝑛𝐴 → suc 𝑛𝐴)))
271, 2, 3, 13, 26finds2 7914 . . . 4 (𝑥 ∈ ω → (¬ ∃𝑦 ∈ On 𝑦𝐴𝑥𝐴))
2827com12 32 . . 3 (¬ ∃𝑦 ∈ On 𝑦𝐴 → (𝑥 ∈ ω → 𝑥𝐴))
2928ralrimiv 3142 . 2 (¬ ∃𝑦 ∈ On 𝑦𝐴 → ∀𝑥 ∈ ω 𝑥𝐴)
30 omsson 7882 . . 3 ω ⊆ On
31 ssrab 4070 . . 3 (ω ⊆ {𝑥 ∈ On ∣ 𝑥𝐴} ↔ (ω ⊆ On ∧ ∀𝑥 ∈ ω 𝑥𝐴))
3230, 31mpbiran 707 . 2 (ω ⊆ {𝑥 ∈ On ∣ 𝑥𝐴} ↔ ∀𝑥 ∈ ω 𝑥𝐴)
3329, 32sylibr 233 1 (¬ ∃𝑦 ∈ On 𝑦𝐴 → ω ⊆ {𝑥 ∈ On ∣ 𝑥𝐴})
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 394  wcel 2098  wral 3058  wrex 3067  {crab 3430  Vcvv 3473  wss 3949  c0 4326   class class class wbr 5152  Oncon0 6374  suc csuc 6376  ωcom 7878  cen 8969  cdom 8970  csdm 8971
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2699  ax-sep 5303  ax-nul 5310  ax-pr 5433  ax-un 7748
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-ral 3059  df-rex 3068  df-reu 3375  df-rab 3431  df-v 3475  df-sbc 3779  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4327  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4913  df-br 5153  df-opab 5215  df-tr 5270  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-ord 6377  df-on 6378  df-lim 6379  df-suc 6380  df-iota 6505  df-fun 6555  df-fn 6556  df-f 6557  df-f1 6558  df-fo 6559  df-f1o 6560  df-fv 6561  df-om 7879  df-1o 8495  df-en 8973  df-dom 8974  df-sdom 8975  df-fin 8976
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator