MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  card2inf Structured version   Visualization version   GIF version

Theorem card2inf 9508
Description: The alternate definition of the cardinal of a set given in cardval2 9944 has the curious property that for non-numerable sets (for which ndmfv 6893 yields ), it still evaluates to a nonempty set, and indeed it contains ω. (Contributed by Mario Carneiro, 15-Jan-2013.) (Revised by Mario Carneiro, 27-Apr-2015.)
Hypothesis
Ref Expression
card2inf.1 𝐴 ∈ V
Assertion
Ref Expression
card2inf (¬ ∃𝑦 ∈ On 𝑦𝐴 → ω ⊆ {𝑥 ∈ On ∣ 𝑥𝐴})
Distinct variable group:   𝑥,𝐴,𝑦

Proof of Theorem card2inf
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 breq1 5110 . . . . 5 (𝑥 = ∅ → (𝑥𝐴 ↔ ∅ ≺ 𝐴))
2 breq1 5110 . . . . 5 (𝑥 = 𝑛 → (𝑥𝐴𝑛𝐴))
3 breq1 5110 . . . . 5 (𝑥 = suc 𝑛 → (𝑥𝐴 ↔ suc 𝑛𝐴))
4 0elon 6387 . . . . . . . 8 ∅ ∈ On
5 breq1 5110 . . . . . . . . 9 (𝑦 = ∅ → (𝑦𝐴 ↔ ∅ ≈ 𝐴))
65rspcev 3588 . . . . . . . 8 ((∅ ∈ On ∧ ∅ ≈ 𝐴) → ∃𝑦 ∈ On 𝑦𝐴)
74, 6mpan 690 . . . . . . 7 (∅ ≈ 𝐴 → ∃𝑦 ∈ On 𝑦𝐴)
87con3i 154 . . . . . 6 (¬ ∃𝑦 ∈ On 𝑦𝐴 → ¬ ∅ ≈ 𝐴)
9 card2inf.1 . . . . . . . 8 𝐴 ∈ V
1090dom 9071 . . . . . . 7 ∅ ≼ 𝐴
11 brsdom 8946 . . . . . . 7 (∅ ≺ 𝐴 ↔ (∅ ≼ 𝐴 ∧ ¬ ∅ ≈ 𝐴))
1210, 11mpbiran 709 . . . . . 6 (∅ ≺ 𝐴 ↔ ¬ ∅ ≈ 𝐴)
138, 12sylibr 234 . . . . 5 (¬ ∃𝑦 ∈ On 𝑦𝐴 → ∅ ≺ 𝐴)
14 sucdom2 9167 . . . . . . . 8 (𝑛𝐴 → suc 𝑛𝐴)
1514ad2antll 729 . . . . . . 7 ((𝑛 ∈ ω ∧ (¬ ∃𝑦 ∈ On 𝑦𝐴𝑛𝐴)) → suc 𝑛𝐴)
16 nnon 7848 . . . . . . . . . 10 (𝑛 ∈ ω → 𝑛 ∈ On)
17 onsuc 7787 . . . . . . . . . 10 (𝑛 ∈ On → suc 𝑛 ∈ On)
18 breq1 5110 . . . . . . . . . . . 12 (𝑦 = suc 𝑛 → (𝑦𝐴 ↔ suc 𝑛𝐴))
1918rspcev 3588 . . . . . . . . . . 11 ((suc 𝑛 ∈ On ∧ suc 𝑛𝐴) → ∃𝑦 ∈ On 𝑦𝐴)
2019ex 412 . . . . . . . . . 10 (suc 𝑛 ∈ On → (suc 𝑛𝐴 → ∃𝑦 ∈ On 𝑦𝐴))
2116, 17, 203syl 18 . . . . . . . . 9 (𝑛 ∈ ω → (suc 𝑛𝐴 → ∃𝑦 ∈ On 𝑦𝐴))
2221con3dimp 408 . . . . . . . 8 ((𝑛 ∈ ω ∧ ¬ ∃𝑦 ∈ On 𝑦𝐴) → ¬ suc 𝑛𝐴)
2322adantrr 717 . . . . . . 7 ((𝑛 ∈ ω ∧ (¬ ∃𝑦 ∈ On 𝑦𝐴𝑛𝐴)) → ¬ suc 𝑛𝐴)
24 brsdom 8946 . . . . . . 7 (suc 𝑛𝐴 ↔ (suc 𝑛𝐴 ∧ ¬ suc 𝑛𝐴))
2515, 23, 24sylanbrc 583 . . . . . 6 ((𝑛 ∈ ω ∧ (¬ ∃𝑦 ∈ On 𝑦𝐴𝑛𝐴)) → suc 𝑛𝐴)
2625exp32 420 . . . . 5 (𝑛 ∈ ω → (¬ ∃𝑦 ∈ On 𝑦𝐴 → (𝑛𝐴 → suc 𝑛𝐴)))
271, 2, 3, 13, 26finds2 7874 . . . 4 (𝑥 ∈ ω → (¬ ∃𝑦 ∈ On 𝑦𝐴𝑥𝐴))
2827com12 32 . . 3 (¬ ∃𝑦 ∈ On 𝑦𝐴 → (𝑥 ∈ ω → 𝑥𝐴))
2928ralrimiv 3124 . 2 (¬ ∃𝑦 ∈ On 𝑦𝐴 → ∀𝑥 ∈ ω 𝑥𝐴)
30 omsson 7846 . . 3 ω ⊆ On
31 ssrab 4036 . . 3 (ω ⊆ {𝑥 ∈ On ∣ 𝑥𝐴} ↔ (ω ⊆ On ∧ ∀𝑥 ∈ ω 𝑥𝐴))
3230, 31mpbiran 709 . 2 (ω ⊆ {𝑥 ∈ On ∣ 𝑥𝐴} ↔ ∀𝑥 ∈ ω 𝑥𝐴)
3329, 32sylibr 234 1 (¬ ∃𝑦 ∈ On 𝑦𝐴 → ω ⊆ {𝑥 ∈ On ∣ 𝑥𝐴})
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wcel 2109  wral 3044  wrex 3053  {crab 3405  Vcvv 3447  wss 3914  c0 4296   class class class wbr 5107  Oncon0 6332  suc csuc 6334  ωcom 7842  cen 8915  cdom 8916  csdm 8917
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-om 7843  df-1o 8434  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator