![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > card2inf | Structured version Visualization version GIF version |
Description: The alternate definition of the cardinal of a set given in cardval2 10060 has the curious property that for non-numerable sets (for which ndmfv 6955 yields ∅), it still evaluates to a nonempty set, and indeed it contains ω. (Contributed by Mario Carneiro, 15-Jan-2013.) (Revised by Mario Carneiro, 27-Apr-2015.) |
Ref | Expression |
---|---|
card2inf.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
card2inf | ⊢ (¬ ∃𝑦 ∈ On 𝑦 ≈ 𝐴 → ω ⊆ {𝑥 ∈ On ∣ 𝑥 ≺ 𝐴}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq1 5169 | . . . . 5 ⊢ (𝑥 = ∅ → (𝑥 ≺ 𝐴 ↔ ∅ ≺ 𝐴)) | |
2 | breq1 5169 | . . . . 5 ⊢ (𝑥 = 𝑛 → (𝑥 ≺ 𝐴 ↔ 𝑛 ≺ 𝐴)) | |
3 | breq1 5169 | . . . . 5 ⊢ (𝑥 = suc 𝑛 → (𝑥 ≺ 𝐴 ↔ suc 𝑛 ≺ 𝐴)) | |
4 | 0elon 6449 | . . . . . . . 8 ⊢ ∅ ∈ On | |
5 | breq1 5169 | . . . . . . . . 9 ⊢ (𝑦 = ∅ → (𝑦 ≈ 𝐴 ↔ ∅ ≈ 𝐴)) | |
6 | 5 | rspcev 3635 | . . . . . . . 8 ⊢ ((∅ ∈ On ∧ ∅ ≈ 𝐴) → ∃𝑦 ∈ On 𝑦 ≈ 𝐴) |
7 | 4, 6 | mpan 689 | . . . . . . 7 ⊢ (∅ ≈ 𝐴 → ∃𝑦 ∈ On 𝑦 ≈ 𝐴) |
8 | 7 | con3i 154 | . . . . . 6 ⊢ (¬ ∃𝑦 ∈ On 𝑦 ≈ 𝐴 → ¬ ∅ ≈ 𝐴) |
9 | card2inf.1 | . . . . . . . 8 ⊢ 𝐴 ∈ V | |
10 | 9 | 0dom 9172 | . . . . . . 7 ⊢ ∅ ≼ 𝐴 |
11 | brsdom 9035 | . . . . . . 7 ⊢ (∅ ≺ 𝐴 ↔ (∅ ≼ 𝐴 ∧ ¬ ∅ ≈ 𝐴)) | |
12 | 10, 11 | mpbiran 708 | . . . . . 6 ⊢ (∅ ≺ 𝐴 ↔ ¬ ∅ ≈ 𝐴) |
13 | 8, 12 | sylibr 234 | . . . . 5 ⊢ (¬ ∃𝑦 ∈ On 𝑦 ≈ 𝐴 → ∅ ≺ 𝐴) |
14 | sucdom2 9269 | . . . . . . . 8 ⊢ (𝑛 ≺ 𝐴 → suc 𝑛 ≼ 𝐴) | |
15 | 14 | ad2antll 728 | . . . . . . 7 ⊢ ((𝑛 ∈ ω ∧ (¬ ∃𝑦 ∈ On 𝑦 ≈ 𝐴 ∧ 𝑛 ≺ 𝐴)) → suc 𝑛 ≼ 𝐴) |
16 | nnon 7909 | . . . . . . . . . 10 ⊢ (𝑛 ∈ ω → 𝑛 ∈ On) | |
17 | onsuc 7847 | . . . . . . . . . 10 ⊢ (𝑛 ∈ On → suc 𝑛 ∈ On) | |
18 | breq1 5169 | . . . . . . . . . . . 12 ⊢ (𝑦 = suc 𝑛 → (𝑦 ≈ 𝐴 ↔ suc 𝑛 ≈ 𝐴)) | |
19 | 18 | rspcev 3635 | . . . . . . . . . . 11 ⊢ ((suc 𝑛 ∈ On ∧ suc 𝑛 ≈ 𝐴) → ∃𝑦 ∈ On 𝑦 ≈ 𝐴) |
20 | 19 | ex 412 | . . . . . . . . . 10 ⊢ (suc 𝑛 ∈ On → (suc 𝑛 ≈ 𝐴 → ∃𝑦 ∈ On 𝑦 ≈ 𝐴)) |
21 | 16, 17, 20 | 3syl 18 | . . . . . . . . 9 ⊢ (𝑛 ∈ ω → (suc 𝑛 ≈ 𝐴 → ∃𝑦 ∈ On 𝑦 ≈ 𝐴)) |
22 | 21 | con3dimp 408 | . . . . . . . 8 ⊢ ((𝑛 ∈ ω ∧ ¬ ∃𝑦 ∈ On 𝑦 ≈ 𝐴) → ¬ suc 𝑛 ≈ 𝐴) |
23 | 22 | adantrr 716 | . . . . . . 7 ⊢ ((𝑛 ∈ ω ∧ (¬ ∃𝑦 ∈ On 𝑦 ≈ 𝐴 ∧ 𝑛 ≺ 𝐴)) → ¬ suc 𝑛 ≈ 𝐴) |
24 | brsdom 9035 | . . . . . . 7 ⊢ (suc 𝑛 ≺ 𝐴 ↔ (suc 𝑛 ≼ 𝐴 ∧ ¬ suc 𝑛 ≈ 𝐴)) | |
25 | 15, 23, 24 | sylanbrc 582 | . . . . . 6 ⊢ ((𝑛 ∈ ω ∧ (¬ ∃𝑦 ∈ On 𝑦 ≈ 𝐴 ∧ 𝑛 ≺ 𝐴)) → suc 𝑛 ≺ 𝐴) |
26 | 25 | exp32 420 | . . . . 5 ⊢ (𝑛 ∈ ω → (¬ ∃𝑦 ∈ On 𝑦 ≈ 𝐴 → (𝑛 ≺ 𝐴 → suc 𝑛 ≺ 𝐴))) |
27 | 1, 2, 3, 13, 26 | finds2 7938 | . . . 4 ⊢ (𝑥 ∈ ω → (¬ ∃𝑦 ∈ On 𝑦 ≈ 𝐴 → 𝑥 ≺ 𝐴)) |
28 | 27 | com12 32 | . . 3 ⊢ (¬ ∃𝑦 ∈ On 𝑦 ≈ 𝐴 → (𝑥 ∈ ω → 𝑥 ≺ 𝐴)) |
29 | 28 | ralrimiv 3151 | . 2 ⊢ (¬ ∃𝑦 ∈ On 𝑦 ≈ 𝐴 → ∀𝑥 ∈ ω 𝑥 ≺ 𝐴) |
30 | omsson 7907 | . . 3 ⊢ ω ⊆ On | |
31 | ssrab 4096 | . . 3 ⊢ (ω ⊆ {𝑥 ∈ On ∣ 𝑥 ≺ 𝐴} ↔ (ω ⊆ On ∧ ∀𝑥 ∈ ω 𝑥 ≺ 𝐴)) | |
32 | 30, 31 | mpbiran 708 | . 2 ⊢ (ω ⊆ {𝑥 ∈ On ∣ 𝑥 ≺ 𝐴} ↔ ∀𝑥 ∈ ω 𝑥 ≺ 𝐴) |
33 | 29, 32 | sylibr 234 | 1 ⊢ (¬ ∃𝑦 ∈ On 𝑦 ≈ 𝐴 → ω ⊆ {𝑥 ∈ On ∣ 𝑥 ≺ 𝐴}) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∈ wcel 2108 ∀wral 3067 ∃wrex 3076 {crab 3443 Vcvv 3488 ⊆ wss 3976 ∅c0 4352 class class class wbr 5166 Oncon0 6395 suc csuc 6397 ωcom 7903 ≈ cen 9000 ≼ cdom 9001 ≺ csdm 9002 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-om 7904 df-1o 8522 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |