| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > unblem4 | Structured version Visualization version GIF version | ||
| Description: Lemma for unbnn 9250. The function 𝐹 maps the set of natural numbers one-to-one to the set of unbounded natural numbers 𝐴. (Contributed by NM, 3-Dec-2003.) |
| Ref | Expression |
|---|---|
| unblem.2 | ⊢ 𝐹 = (rec((𝑥 ∈ V ↦ ∩ (𝐴 ∖ suc 𝑥)), ∩ 𝐴) ↾ ω) |
| Ref | Expression |
|---|---|
| unblem4 | ⊢ ((𝐴 ⊆ ω ∧ ∀𝑤 ∈ ω ∃𝑣 ∈ 𝐴 𝑤 ∈ 𝑣) → 𝐹:ω–1-1→𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | omsson 7849 | . . . 4 ⊢ ω ⊆ On | |
| 2 | sstr 3958 | . . . 4 ⊢ ((𝐴 ⊆ ω ∧ ω ⊆ On) → 𝐴 ⊆ On) | |
| 3 | 1, 2 | mpan2 691 | . . 3 ⊢ (𝐴 ⊆ ω → 𝐴 ⊆ On) |
| 4 | 3 | adantr 480 | . 2 ⊢ ((𝐴 ⊆ ω ∧ ∀𝑤 ∈ ω ∃𝑣 ∈ 𝐴 𝑤 ∈ 𝑣) → 𝐴 ⊆ On) |
| 5 | frfnom 8406 | . . . 4 ⊢ (rec((𝑥 ∈ V ↦ ∩ (𝐴 ∖ suc 𝑥)), ∩ 𝐴) ↾ ω) Fn ω | |
| 6 | unblem.2 | . . . . 5 ⊢ 𝐹 = (rec((𝑥 ∈ V ↦ ∩ (𝐴 ∖ suc 𝑥)), ∩ 𝐴) ↾ ω) | |
| 7 | 6 | fneq1i 6618 | . . . 4 ⊢ (𝐹 Fn ω ↔ (rec((𝑥 ∈ V ↦ ∩ (𝐴 ∖ suc 𝑥)), ∩ 𝐴) ↾ ω) Fn ω) |
| 8 | 5, 7 | mpbir 231 | . . 3 ⊢ 𝐹 Fn ω |
| 9 | 6 | unblem2 9247 | . . . 4 ⊢ ((𝐴 ⊆ ω ∧ ∀𝑤 ∈ ω ∃𝑣 ∈ 𝐴 𝑤 ∈ 𝑣) → (𝑧 ∈ ω → (𝐹‘𝑧) ∈ 𝐴)) |
| 10 | 9 | ralrimiv 3125 | . . 3 ⊢ ((𝐴 ⊆ ω ∧ ∀𝑤 ∈ ω ∃𝑣 ∈ 𝐴 𝑤 ∈ 𝑣) → ∀𝑧 ∈ ω (𝐹‘𝑧) ∈ 𝐴) |
| 11 | ffnfv 7094 | . . . 4 ⊢ (𝐹:ω⟶𝐴 ↔ (𝐹 Fn ω ∧ ∀𝑧 ∈ ω (𝐹‘𝑧) ∈ 𝐴)) | |
| 12 | 11 | biimpri 228 | . . 3 ⊢ ((𝐹 Fn ω ∧ ∀𝑧 ∈ ω (𝐹‘𝑧) ∈ 𝐴) → 𝐹:ω⟶𝐴) |
| 13 | 8, 10, 12 | sylancr 587 | . 2 ⊢ ((𝐴 ⊆ ω ∧ ∀𝑤 ∈ ω ∃𝑣 ∈ 𝐴 𝑤 ∈ 𝑣) → 𝐹:ω⟶𝐴) |
| 14 | 6 | unblem3 9248 | . . 3 ⊢ ((𝐴 ⊆ ω ∧ ∀𝑤 ∈ ω ∃𝑣 ∈ 𝐴 𝑤 ∈ 𝑣) → (𝑧 ∈ ω → (𝐹‘𝑧) ∈ (𝐹‘suc 𝑧))) |
| 15 | 14 | ralrimiv 3125 | . 2 ⊢ ((𝐴 ⊆ ω ∧ ∀𝑤 ∈ ω ∃𝑣 ∈ 𝐴 𝑤 ∈ 𝑣) → ∀𝑧 ∈ ω (𝐹‘𝑧) ∈ (𝐹‘suc 𝑧)) |
| 16 | omsmo 8625 | . 2 ⊢ (((𝐴 ⊆ On ∧ 𝐹:ω⟶𝐴) ∧ ∀𝑧 ∈ ω (𝐹‘𝑧) ∈ (𝐹‘suc 𝑧)) → 𝐹:ω–1-1→𝐴) | |
| 17 | 4, 13, 15, 16 | syl21anc 837 | 1 ⊢ ((𝐴 ⊆ ω ∧ ∀𝑤 ∈ ω ∃𝑣 ∈ 𝐴 𝑤 ∈ 𝑣) → 𝐹:ω–1-1→𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3045 ∃wrex 3054 Vcvv 3450 ∖ cdif 3914 ⊆ wss 3917 ∩ cint 4913 ↦ cmpt 5191 ↾ cres 5643 Oncon0 6335 suc csuc 6337 Fn wfn 6509 ⟶wf 6510 –1-1→wf1 6511 ‘cfv 6514 ωcom 7845 reccrdg 8380 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-ov 7393 df-om 7846 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 |
| This theorem is referenced by: unbnn 9250 |
| Copyright terms: Public domain | W3C validator |