![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > unblem4 | Structured version Visualization version GIF version |
Description: Lemma for unbnn 9250. The function 𝐹 maps the set of natural numbers one-to-one to the set of unbounded natural numbers 𝐴. (Contributed by NM, 3-Dec-2003.) |
Ref | Expression |
---|---|
unblem.2 | ⊢ 𝐹 = (rec((𝑥 ∈ V ↦ ∩ (𝐴 ∖ suc 𝑥)), ∩ 𝐴) ↾ ω) |
Ref | Expression |
---|---|
unblem4 | ⊢ ((𝐴 ⊆ ω ∧ ∀𝑤 ∈ ω ∃𝑣 ∈ 𝐴 𝑤 ∈ 𝑣) → 𝐹:ω–1-1→𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | omsson 7811 | . . . 4 ⊢ ω ⊆ On | |
2 | sstr 3957 | . . . 4 ⊢ ((𝐴 ⊆ ω ∧ ω ⊆ On) → 𝐴 ⊆ On) | |
3 | 1, 2 | mpan2 690 | . . 3 ⊢ (𝐴 ⊆ ω → 𝐴 ⊆ On) |
4 | 3 | adantr 482 | . 2 ⊢ ((𝐴 ⊆ ω ∧ ∀𝑤 ∈ ω ∃𝑣 ∈ 𝐴 𝑤 ∈ 𝑣) → 𝐴 ⊆ On) |
5 | frfnom 8386 | . . . 4 ⊢ (rec((𝑥 ∈ V ↦ ∩ (𝐴 ∖ suc 𝑥)), ∩ 𝐴) ↾ ω) Fn ω | |
6 | unblem.2 | . . . . 5 ⊢ 𝐹 = (rec((𝑥 ∈ V ↦ ∩ (𝐴 ∖ suc 𝑥)), ∩ 𝐴) ↾ ω) | |
7 | 6 | fneq1i 6604 | . . . 4 ⊢ (𝐹 Fn ω ↔ (rec((𝑥 ∈ V ↦ ∩ (𝐴 ∖ suc 𝑥)), ∩ 𝐴) ↾ ω) Fn ω) |
8 | 5, 7 | mpbir 230 | . . 3 ⊢ 𝐹 Fn ω |
9 | 6 | unblem2 9247 | . . . 4 ⊢ ((𝐴 ⊆ ω ∧ ∀𝑤 ∈ ω ∃𝑣 ∈ 𝐴 𝑤 ∈ 𝑣) → (𝑧 ∈ ω → (𝐹‘𝑧) ∈ 𝐴)) |
10 | 9 | ralrimiv 3143 | . . 3 ⊢ ((𝐴 ⊆ ω ∧ ∀𝑤 ∈ ω ∃𝑣 ∈ 𝐴 𝑤 ∈ 𝑣) → ∀𝑧 ∈ ω (𝐹‘𝑧) ∈ 𝐴) |
11 | ffnfv 7071 | . . . 4 ⊢ (𝐹:ω⟶𝐴 ↔ (𝐹 Fn ω ∧ ∀𝑧 ∈ ω (𝐹‘𝑧) ∈ 𝐴)) | |
12 | 11 | biimpri 227 | . . 3 ⊢ ((𝐹 Fn ω ∧ ∀𝑧 ∈ ω (𝐹‘𝑧) ∈ 𝐴) → 𝐹:ω⟶𝐴) |
13 | 8, 10, 12 | sylancr 588 | . 2 ⊢ ((𝐴 ⊆ ω ∧ ∀𝑤 ∈ ω ∃𝑣 ∈ 𝐴 𝑤 ∈ 𝑣) → 𝐹:ω⟶𝐴) |
14 | 6 | unblem3 9248 | . . 3 ⊢ ((𝐴 ⊆ ω ∧ ∀𝑤 ∈ ω ∃𝑣 ∈ 𝐴 𝑤 ∈ 𝑣) → (𝑧 ∈ ω → (𝐹‘𝑧) ∈ (𝐹‘suc 𝑧))) |
15 | 14 | ralrimiv 3143 | . 2 ⊢ ((𝐴 ⊆ ω ∧ ∀𝑤 ∈ ω ∃𝑣 ∈ 𝐴 𝑤 ∈ 𝑣) → ∀𝑧 ∈ ω (𝐹‘𝑧) ∈ (𝐹‘suc 𝑧)) |
16 | omsmo 8609 | . 2 ⊢ (((𝐴 ⊆ On ∧ 𝐹:ω⟶𝐴) ∧ ∀𝑧 ∈ ω (𝐹‘𝑧) ∈ (𝐹‘suc 𝑧)) → 𝐹:ω–1-1→𝐴) | |
17 | 4, 13, 15, 16 | syl21anc 837 | 1 ⊢ ((𝐴 ⊆ ω ∧ ∀𝑤 ∈ ω ∃𝑣 ∈ 𝐴 𝑤 ∈ 𝑣) → 𝐹:ω–1-1→𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1542 ∈ wcel 2107 ∀wral 3065 ∃wrex 3074 Vcvv 3448 ∖ cdif 3912 ⊆ wss 3915 ∩ cint 4912 ↦ cmpt 5193 ↾ cres 5640 Oncon0 6322 suc csuc 6324 Fn wfn 6496 ⟶wf 6497 –1-1→wf1 6498 ‘cfv 6501 ωcom 7807 reccrdg 8360 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2708 ax-sep 5261 ax-nul 5268 ax-pr 5389 ax-un 7677 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2890 df-ne 2945 df-ral 3066 df-rex 3075 df-reu 3357 df-rab 3411 df-v 3450 df-sbc 3745 df-csb 3861 df-dif 3918 df-un 3920 df-in 3922 df-ss 3932 df-pss 3934 df-nul 4288 df-if 4492 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4871 df-int 4913 df-iun 4961 df-br 5111 df-opab 5173 df-mpt 5194 df-tr 5228 df-id 5536 df-eprel 5542 df-po 5550 df-so 5551 df-fr 5593 df-we 5595 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6258 df-ord 6325 df-on 6326 df-lim 6327 df-suc 6328 df-iota 6453 df-fun 6503 df-fn 6504 df-f 6505 df-f1 6506 df-fo 6507 df-f1o 6508 df-fv 6509 df-ov 7365 df-om 7808 df-2nd 7927 df-frecs 8217 df-wrecs 8248 df-recs 8322 df-rdg 8361 |
This theorem is referenced by: unbnn 9250 |
Copyright terms: Public domain | W3C validator |