MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  unblem4 Structured version   Visualization version   GIF version

Theorem unblem4 8765
Description: Lemma for unbnn 8766. The function 𝐹 maps the set of natural numbers one-to-one to the set of unbounded natural numbers 𝐴. (Contributed by NM, 3-Dec-2003.)
Hypothesis
Ref Expression
unblem.2 𝐹 = (rec((𝑥 ∈ V ↦ (𝐴 ∖ suc 𝑥)), 𝐴) ↾ ω)
Assertion
Ref Expression
unblem4 ((𝐴 ⊆ ω ∧ ∀𝑤 ∈ ω ∃𝑣𝐴 𝑤𝑣) → 𝐹:ω–1-1𝐴)
Distinct variable groups:   𝑤,𝑣,𝑥,𝐴   𝑣,𝐹,𝑤
Allowed substitution hint:   𝐹(𝑥)

Proof of Theorem unblem4
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 omsson 7576 . . . 4 ω ⊆ On
2 sstr 3973 . . . 4 ((𝐴 ⊆ ω ∧ ω ⊆ On) → 𝐴 ⊆ On)
31, 2mpan2 689 . . 3 (𝐴 ⊆ ω → 𝐴 ⊆ On)
43adantr 483 . 2 ((𝐴 ⊆ ω ∧ ∀𝑤 ∈ ω ∃𝑣𝐴 𝑤𝑣) → 𝐴 ⊆ On)
5 frfnom 8062 . . . 4 (rec((𝑥 ∈ V ↦ (𝐴 ∖ suc 𝑥)), 𝐴) ↾ ω) Fn ω
6 unblem.2 . . . . 5 𝐹 = (rec((𝑥 ∈ V ↦ (𝐴 ∖ suc 𝑥)), 𝐴) ↾ ω)
76fneq1i 6443 . . . 4 (𝐹 Fn ω ↔ (rec((𝑥 ∈ V ↦ (𝐴 ∖ suc 𝑥)), 𝐴) ↾ ω) Fn ω)
85, 7mpbir 233 . . 3 𝐹 Fn ω
96unblem2 8763 . . . 4 ((𝐴 ⊆ ω ∧ ∀𝑤 ∈ ω ∃𝑣𝐴 𝑤𝑣) → (𝑧 ∈ ω → (𝐹𝑧) ∈ 𝐴))
109ralrimiv 3179 . . 3 ((𝐴 ⊆ ω ∧ ∀𝑤 ∈ ω ∃𝑣𝐴 𝑤𝑣) → ∀𝑧 ∈ ω (𝐹𝑧) ∈ 𝐴)
11 ffnfv 6875 . . . 4 (𝐹:ω⟶𝐴 ↔ (𝐹 Fn ω ∧ ∀𝑧 ∈ ω (𝐹𝑧) ∈ 𝐴))
1211biimpri 230 . . 3 ((𝐹 Fn ω ∧ ∀𝑧 ∈ ω (𝐹𝑧) ∈ 𝐴) → 𝐹:ω⟶𝐴)
138, 10, 12sylancr 589 . 2 ((𝐴 ⊆ ω ∧ ∀𝑤 ∈ ω ∃𝑣𝐴 𝑤𝑣) → 𝐹:ω⟶𝐴)
146unblem3 8764 . . 3 ((𝐴 ⊆ ω ∧ ∀𝑤 ∈ ω ∃𝑣𝐴 𝑤𝑣) → (𝑧 ∈ ω → (𝐹𝑧) ∈ (𝐹‘suc 𝑧)))
1514ralrimiv 3179 . 2 ((𝐴 ⊆ ω ∧ ∀𝑤 ∈ ω ∃𝑣𝐴 𝑤𝑣) → ∀𝑧 ∈ ω (𝐹𝑧) ∈ (𝐹‘suc 𝑧))
16 omsmo 8273 . 2 (((𝐴 ⊆ On ∧ 𝐹:ω⟶𝐴) ∧ ∀𝑧 ∈ ω (𝐹𝑧) ∈ (𝐹‘suc 𝑧)) → 𝐹:ω–1-1𝐴)
174, 13, 15, 16syl21anc 835 1 ((𝐴 ⊆ ω ∧ ∀𝑤 ∈ ω ∃𝑣𝐴 𝑤𝑣) → 𝐹:ω–1-1𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1531  wcel 2108  wral 3136  wrex 3137  Vcvv 3493  cdif 3931  wss 3934   cint 4867  cmpt 5137  cres 5550  Oncon0 6184  suc csuc 6186   Fn wfn 6343  wf 6344  1-1wf1 6345  cfv 6348  ωcom 7572  reccrdg 8037
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1905  ax-6 1964  ax-7 2009  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2154  ax-12 2170  ax-ext 2791  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7453
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1083  df-3an 1084  df-tru 1534  df-ex 1775  df-nf 1779  df-sb 2064  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ne 3015  df-ral 3141  df-rex 3142  df-reu 3143  df-rab 3145  df-v 3495  df-sbc 3771  df-csb 3882  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-pss 3952  df-nul 4290  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-tp 4564  df-op 4566  df-uni 4831  df-int 4868  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-om 7573  df-wrecs 7939  df-recs 8000  df-rdg 8038
This theorem is referenced by:  unbnn  8766
  Copyright terms: Public domain W3C validator