![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > unblem4 | Structured version Visualization version GIF version |
Description: Lemma for unbnn 9329. The function 𝐹 maps the set of natural numbers one-to-one to the set of unbounded natural numbers 𝐴. (Contributed by NM, 3-Dec-2003.) |
Ref | Expression |
---|---|
unblem.2 | ⊢ 𝐹 = (rec((𝑥 ∈ V ↦ ∩ (𝐴 ∖ suc 𝑥)), ∩ 𝐴) ↾ ω) |
Ref | Expression |
---|---|
unblem4 | ⊢ ((𝐴 ⊆ ω ∧ ∀𝑤 ∈ ω ∃𝑣 ∈ 𝐴 𝑤 ∈ 𝑣) → 𝐹:ω–1-1→𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | omsson 7890 | . . . 4 ⊢ ω ⊆ On | |
2 | sstr 4003 | . . . 4 ⊢ ((𝐴 ⊆ ω ∧ ω ⊆ On) → 𝐴 ⊆ On) | |
3 | 1, 2 | mpan2 691 | . . 3 ⊢ (𝐴 ⊆ ω → 𝐴 ⊆ On) |
4 | 3 | adantr 480 | . 2 ⊢ ((𝐴 ⊆ ω ∧ ∀𝑤 ∈ ω ∃𝑣 ∈ 𝐴 𝑤 ∈ 𝑣) → 𝐴 ⊆ On) |
5 | frfnom 8473 | . . . 4 ⊢ (rec((𝑥 ∈ V ↦ ∩ (𝐴 ∖ suc 𝑥)), ∩ 𝐴) ↾ ω) Fn ω | |
6 | unblem.2 | . . . . 5 ⊢ 𝐹 = (rec((𝑥 ∈ V ↦ ∩ (𝐴 ∖ suc 𝑥)), ∩ 𝐴) ↾ ω) | |
7 | 6 | fneq1i 6665 | . . . 4 ⊢ (𝐹 Fn ω ↔ (rec((𝑥 ∈ V ↦ ∩ (𝐴 ∖ suc 𝑥)), ∩ 𝐴) ↾ ω) Fn ω) |
8 | 5, 7 | mpbir 231 | . . 3 ⊢ 𝐹 Fn ω |
9 | 6 | unblem2 9326 | . . . 4 ⊢ ((𝐴 ⊆ ω ∧ ∀𝑤 ∈ ω ∃𝑣 ∈ 𝐴 𝑤 ∈ 𝑣) → (𝑧 ∈ ω → (𝐹‘𝑧) ∈ 𝐴)) |
10 | 9 | ralrimiv 3142 | . . 3 ⊢ ((𝐴 ⊆ ω ∧ ∀𝑤 ∈ ω ∃𝑣 ∈ 𝐴 𝑤 ∈ 𝑣) → ∀𝑧 ∈ ω (𝐹‘𝑧) ∈ 𝐴) |
11 | ffnfv 7138 | . . . 4 ⊢ (𝐹:ω⟶𝐴 ↔ (𝐹 Fn ω ∧ ∀𝑧 ∈ ω (𝐹‘𝑧) ∈ 𝐴)) | |
12 | 11 | biimpri 228 | . . 3 ⊢ ((𝐹 Fn ω ∧ ∀𝑧 ∈ ω (𝐹‘𝑧) ∈ 𝐴) → 𝐹:ω⟶𝐴) |
13 | 8, 10, 12 | sylancr 587 | . 2 ⊢ ((𝐴 ⊆ ω ∧ ∀𝑤 ∈ ω ∃𝑣 ∈ 𝐴 𝑤 ∈ 𝑣) → 𝐹:ω⟶𝐴) |
14 | 6 | unblem3 9327 | . . 3 ⊢ ((𝐴 ⊆ ω ∧ ∀𝑤 ∈ ω ∃𝑣 ∈ 𝐴 𝑤 ∈ 𝑣) → (𝑧 ∈ ω → (𝐹‘𝑧) ∈ (𝐹‘suc 𝑧))) |
15 | 14 | ralrimiv 3142 | . 2 ⊢ ((𝐴 ⊆ ω ∧ ∀𝑤 ∈ ω ∃𝑣 ∈ 𝐴 𝑤 ∈ 𝑣) → ∀𝑧 ∈ ω (𝐹‘𝑧) ∈ (𝐹‘suc 𝑧)) |
16 | omsmo 8694 | . 2 ⊢ (((𝐴 ⊆ On ∧ 𝐹:ω⟶𝐴) ∧ ∀𝑧 ∈ ω (𝐹‘𝑧) ∈ (𝐹‘suc 𝑧)) → 𝐹:ω–1-1→𝐴) | |
17 | 4, 13, 15, 16 | syl21anc 838 | 1 ⊢ ((𝐴 ⊆ ω ∧ ∀𝑤 ∈ ω ∃𝑣 ∈ 𝐴 𝑤 ∈ 𝑣) → 𝐹:ω–1-1→𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1536 ∈ wcel 2105 ∀wral 3058 ∃wrex 3067 Vcvv 3477 ∖ cdif 3959 ⊆ wss 3962 ∩ cint 4950 ↦ cmpt 5230 ↾ cres 5690 Oncon0 6385 suc csuc 6387 Fn wfn 6557 ⟶wf 6558 –1-1→wf1 6559 ‘cfv 6562 ωcom 7886 reccrdg 8447 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-sep 5301 ax-nul 5311 ax-pr 5437 ax-un 7753 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ne 2938 df-ral 3059 df-rex 3068 df-reu 3378 df-rab 3433 df-v 3479 df-sbc 3791 df-csb 3908 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-pss 3982 df-nul 4339 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-int 4951 df-iun 4997 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5582 df-eprel 5588 df-po 5596 df-so 5597 df-fr 5640 df-we 5642 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-rn 5699 df-res 5700 df-ima 5701 df-pred 6322 df-ord 6388 df-on 6389 df-lim 6390 df-suc 6391 df-iota 6515 df-fun 6564 df-fn 6565 df-f 6566 df-f1 6567 df-fo 6568 df-f1o 6569 df-fv 6570 df-ov 7433 df-om 7887 df-2nd 8013 df-frecs 8304 df-wrecs 8335 df-recs 8409 df-rdg 8448 |
This theorem is referenced by: unbnn 9329 |
Copyright terms: Public domain | W3C validator |