Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > unblem4 | Structured version Visualization version GIF version |
Description: Lemma for unbnn 9048. The function 𝐹 maps the set of natural numbers one-to-one to the set of unbounded natural numbers 𝐴. (Contributed by NM, 3-Dec-2003.) |
Ref | Expression |
---|---|
unblem.2 | ⊢ 𝐹 = (rec((𝑥 ∈ V ↦ ∩ (𝐴 ∖ suc 𝑥)), ∩ 𝐴) ↾ ω) |
Ref | Expression |
---|---|
unblem4 | ⊢ ((𝐴 ⊆ ω ∧ ∀𝑤 ∈ ω ∃𝑣 ∈ 𝐴 𝑤 ∈ 𝑣) → 𝐹:ω–1-1→𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | omsson 7710 | . . . 4 ⊢ ω ⊆ On | |
2 | sstr 3934 | . . . 4 ⊢ ((𝐴 ⊆ ω ∧ ω ⊆ On) → 𝐴 ⊆ On) | |
3 | 1, 2 | mpan2 688 | . . 3 ⊢ (𝐴 ⊆ ω → 𝐴 ⊆ On) |
4 | 3 | adantr 481 | . 2 ⊢ ((𝐴 ⊆ ω ∧ ∀𝑤 ∈ ω ∃𝑣 ∈ 𝐴 𝑤 ∈ 𝑣) → 𝐴 ⊆ On) |
5 | frfnom 8257 | . . . 4 ⊢ (rec((𝑥 ∈ V ↦ ∩ (𝐴 ∖ suc 𝑥)), ∩ 𝐴) ↾ ω) Fn ω | |
6 | unblem.2 | . . . . 5 ⊢ 𝐹 = (rec((𝑥 ∈ V ↦ ∩ (𝐴 ∖ suc 𝑥)), ∩ 𝐴) ↾ ω) | |
7 | 6 | fneq1i 6528 | . . . 4 ⊢ (𝐹 Fn ω ↔ (rec((𝑥 ∈ V ↦ ∩ (𝐴 ∖ suc 𝑥)), ∩ 𝐴) ↾ ω) Fn ω) |
8 | 5, 7 | mpbir 230 | . . 3 ⊢ 𝐹 Fn ω |
9 | 6 | unblem2 9045 | . . . 4 ⊢ ((𝐴 ⊆ ω ∧ ∀𝑤 ∈ ω ∃𝑣 ∈ 𝐴 𝑤 ∈ 𝑣) → (𝑧 ∈ ω → (𝐹‘𝑧) ∈ 𝐴)) |
10 | 9 | ralrimiv 3109 | . . 3 ⊢ ((𝐴 ⊆ ω ∧ ∀𝑤 ∈ ω ∃𝑣 ∈ 𝐴 𝑤 ∈ 𝑣) → ∀𝑧 ∈ ω (𝐹‘𝑧) ∈ 𝐴) |
11 | ffnfv 6989 | . . . 4 ⊢ (𝐹:ω⟶𝐴 ↔ (𝐹 Fn ω ∧ ∀𝑧 ∈ ω (𝐹‘𝑧) ∈ 𝐴)) | |
12 | 11 | biimpri 227 | . . 3 ⊢ ((𝐹 Fn ω ∧ ∀𝑧 ∈ ω (𝐹‘𝑧) ∈ 𝐴) → 𝐹:ω⟶𝐴) |
13 | 8, 10, 12 | sylancr 587 | . 2 ⊢ ((𝐴 ⊆ ω ∧ ∀𝑤 ∈ ω ∃𝑣 ∈ 𝐴 𝑤 ∈ 𝑣) → 𝐹:ω⟶𝐴) |
14 | 6 | unblem3 9046 | . . 3 ⊢ ((𝐴 ⊆ ω ∧ ∀𝑤 ∈ ω ∃𝑣 ∈ 𝐴 𝑤 ∈ 𝑣) → (𝑧 ∈ ω → (𝐹‘𝑧) ∈ (𝐹‘suc 𝑧))) |
15 | 14 | ralrimiv 3109 | . 2 ⊢ ((𝐴 ⊆ ω ∧ ∀𝑤 ∈ ω ∃𝑣 ∈ 𝐴 𝑤 ∈ 𝑣) → ∀𝑧 ∈ ω (𝐹‘𝑧) ∈ (𝐹‘suc 𝑧)) |
16 | omsmo 8471 | . 2 ⊢ (((𝐴 ⊆ On ∧ 𝐹:ω⟶𝐴) ∧ ∀𝑧 ∈ ω (𝐹‘𝑧) ∈ (𝐹‘suc 𝑧)) → 𝐹:ω–1-1→𝐴) | |
17 | 4, 13, 15, 16 | syl21anc 835 | 1 ⊢ ((𝐴 ⊆ ω ∧ ∀𝑤 ∈ ω ∃𝑣 ∈ 𝐴 𝑤 ∈ 𝑣) → 𝐹:ω–1-1→𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1542 ∈ wcel 2110 ∀wral 3066 ∃wrex 3067 Vcvv 3431 ∖ cdif 3889 ⊆ wss 3892 ∩ cint 4885 ↦ cmpt 5162 ↾ cres 5592 Oncon0 6265 suc csuc 6267 Fn wfn 6427 ⟶wf 6428 –1-1→wf1 6429 ‘cfv 6432 ωcom 7706 reccrdg 8231 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-sep 5227 ax-nul 5234 ax-pr 5356 ax-un 7582 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ne 2946 df-ral 3071 df-rex 3072 df-reu 3073 df-rab 3075 df-v 3433 df-sbc 3721 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4568 df-pr 4570 df-op 4574 df-uni 4846 df-int 4886 df-iun 4932 df-br 5080 df-opab 5142 df-mpt 5163 df-tr 5197 df-id 5490 df-eprel 5496 df-po 5504 df-so 5505 df-fr 5545 df-we 5547 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-res 5602 df-ima 5603 df-pred 6201 df-ord 6268 df-on 6269 df-lim 6270 df-suc 6271 df-iota 6390 df-fun 6434 df-fn 6435 df-f 6436 df-f1 6437 df-fo 6438 df-f1o 6439 df-fv 6440 df-ov 7274 df-om 7707 df-2nd 7825 df-frecs 8088 df-wrecs 8119 df-recs 8193 df-rdg 8232 |
This theorem is referenced by: unbnn 9048 |
Copyright terms: Public domain | W3C validator |