MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  unblem4 Structured version   Visualization version   GIF version

Theorem unblem4 9297
Description: Lemma for unbnn 9298. The function 𝐹 maps the set of natural numbers one-to-one to the set of unbounded natural numbers 𝐴. (Contributed by NM, 3-Dec-2003.)
Hypothesis
Ref Expression
unblem.2 𝐹 = (rec((𝑥 ∈ V ↦ (𝐴 ∖ suc 𝑥)), 𝐴) ↾ ω)
Assertion
Ref Expression
unblem4 ((𝐴 ⊆ ω ∧ ∀𝑤 ∈ ω ∃𝑣𝐴 𝑤𝑣) → 𝐹:ω–1-1𝐴)
Distinct variable groups:   𝑤,𝑣,𝑥,𝐴   𝑣,𝐹,𝑤
Allowed substitution hint:   𝐹(𝑥)

Proof of Theorem unblem4
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 omsson 7858 . . . 4 ω ⊆ On
2 sstr 3990 . . . 4 ((𝐴 ⊆ ω ∧ ω ⊆ On) → 𝐴 ⊆ On)
31, 2mpan2 689 . . 3 (𝐴 ⊆ ω → 𝐴 ⊆ On)
43adantr 481 . 2 ((𝐴 ⊆ ω ∧ ∀𝑤 ∈ ω ∃𝑣𝐴 𝑤𝑣) → 𝐴 ⊆ On)
5 frfnom 8434 . . . 4 (rec((𝑥 ∈ V ↦ (𝐴 ∖ suc 𝑥)), 𝐴) ↾ ω) Fn ω
6 unblem.2 . . . . 5 𝐹 = (rec((𝑥 ∈ V ↦ (𝐴 ∖ suc 𝑥)), 𝐴) ↾ ω)
76fneq1i 6646 . . . 4 (𝐹 Fn ω ↔ (rec((𝑥 ∈ V ↦ (𝐴 ∖ suc 𝑥)), 𝐴) ↾ ω) Fn ω)
85, 7mpbir 230 . . 3 𝐹 Fn ω
96unblem2 9295 . . . 4 ((𝐴 ⊆ ω ∧ ∀𝑤 ∈ ω ∃𝑣𝐴 𝑤𝑣) → (𝑧 ∈ ω → (𝐹𝑧) ∈ 𝐴))
109ralrimiv 3145 . . 3 ((𝐴 ⊆ ω ∧ ∀𝑤 ∈ ω ∃𝑣𝐴 𝑤𝑣) → ∀𝑧 ∈ ω (𝐹𝑧) ∈ 𝐴)
11 ffnfv 7117 . . . 4 (𝐹:ω⟶𝐴 ↔ (𝐹 Fn ω ∧ ∀𝑧 ∈ ω (𝐹𝑧) ∈ 𝐴))
1211biimpri 227 . . 3 ((𝐹 Fn ω ∧ ∀𝑧 ∈ ω (𝐹𝑧) ∈ 𝐴) → 𝐹:ω⟶𝐴)
138, 10, 12sylancr 587 . 2 ((𝐴 ⊆ ω ∧ ∀𝑤 ∈ ω ∃𝑣𝐴 𝑤𝑣) → 𝐹:ω⟶𝐴)
146unblem3 9296 . . 3 ((𝐴 ⊆ ω ∧ ∀𝑤 ∈ ω ∃𝑣𝐴 𝑤𝑣) → (𝑧 ∈ ω → (𝐹𝑧) ∈ (𝐹‘suc 𝑧)))
1514ralrimiv 3145 . 2 ((𝐴 ⊆ ω ∧ ∀𝑤 ∈ ω ∃𝑣𝐴 𝑤𝑣) → ∀𝑧 ∈ ω (𝐹𝑧) ∈ (𝐹‘suc 𝑧))
16 omsmo 8656 . 2 (((𝐴 ⊆ On ∧ 𝐹:ω⟶𝐴) ∧ ∀𝑧 ∈ ω (𝐹𝑧) ∈ (𝐹‘suc 𝑧)) → 𝐹:ω–1-1𝐴)
174, 13, 15, 16syl21anc 836 1 ((𝐴 ⊆ ω ∧ ∀𝑤 ∈ ω ∃𝑣𝐴 𝑤𝑣) → 𝐹:ω–1-1𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1541  wcel 2106  wral 3061  wrex 3070  Vcvv 3474  cdif 3945  wss 3948   cint 4950  cmpt 5231  cres 5678  Oncon0 6364  suc csuc 6366   Fn wfn 6538  wf 6539  1-1wf1 6540  cfv 6543  ωcom 7854  reccrdg 8408
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pr 5427  ax-un 7724
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-ov 7411  df-om 7855  df-2nd 7975  df-frecs 8265  df-wrecs 8296  df-recs 8370  df-rdg 8409
This theorem is referenced by:  unbnn  9298
  Copyright terms: Public domain W3C validator