MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  unblem4 Structured version   Visualization version   GIF version

Theorem unblem4 8999
Description: Lemma for unbnn 9000. The function 𝐹 maps the set of natural numbers one-to-one to the set of unbounded natural numbers 𝐴. (Contributed by NM, 3-Dec-2003.)
Hypothesis
Ref Expression
unblem.2 𝐹 = (rec((𝑥 ∈ V ↦ (𝐴 ∖ suc 𝑥)), 𝐴) ↾ ω)
Assertion
Ref Expression
unblem4 ((𝐴 ⊆ ω ∧ ∀𝑤 ∈ ω ∃𝑣𝐴 𝑤𝑣) → 𝐹:ω–1-1𝐴)
Distinct variable groups:   𝑤,𝑣,𝑥,𝐴   𝑣,𝐹,𝑤
Allowed substitution hint:   𝐹(𝑥)

Proof of Theorem unblem4
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 omsson 7691 . . . 4 ω ⊆ On
2 sstr 3925 . . . 4 ((𝐴 ⊆ ω ∧ ω ⊆ On) → 𝐴 ⊆ On)
31, 2mpan2 687 . . 3 (𝐴 ⊆ ω → 𝐴 ⊆ On)
43adantr 480 . 2 ((𝐴 ⊆ ω ∧ ∀𝑤 ∈ ω ∃𝑣𝐴 𝑤𝑣) → 𝐴 ⊆ On)
5 frfnom 8236 . . . 4 (rec((𝑥 ∈ V ↦ (𝐴 ∖ suc 𝑥)), 𝐴) ↾ ω) Fn ω
6 unblem.2 . . . . 5 𝐹 = (rec((𝑥 ∈ V ↦ (𝐴 ∖ suc 𝑥)), 𝐴) ↾ ω)
76fneq1i 6514 . . . 4 (𝐹 Fn ω ↔ (rec((𝑥 ∈ V ↦ (𝐴 ∖ suc 𝑥)), 𝐴) ↾ ω) Fn ω)
85, 7mpbir 230 . . 3 𝐹 Fn ω
96unblem2 8997 . . . 4 ((𝐴 ⊆ ω ∧ ∀𝑤 ∈ ω ∃𝑣𝐴 𝑤𝑣) → (𝑧 ∈ ω → (𝐹𝑧) ∈ 𝐴))
109ralrimiv 3106 . . 3 ((𝐴 ⊆ ω ∧ ∀𝑤 ∈ ω ∃𝑣𝐴 𝑤𝑣) → ∀𝑧 ∈ ω (𝐹𝑧) ∈ 𝐴)
11 ffnfv 6974 . . . 4 (𝐹:ω⟶𝐴 ↔ (𝐹 Fn ω ∧ ∀𝑧 ∈ ω (𝐹𝑧) ∈ 𝐴))
1211biimpri 227 . . 3 ((𝐹 Fn ω ∧ ∀𝑧 ∈ ω (𝐹𝑧) ∈ 𝐴) → 𝐹:ω⟶𝐴)
138, 10, 12sylancr 586 . 2 ((𝐴 ⊆ ω ∧ ∀𝑤 ∈ ω ∃𝑣𝐴 𝑤𝑣) → 𝐹:ω⟶𝐴)
146unblem3 8998 . . 3 ((𝐴 ⊆ ω ∧ ∀𝑤 ∈ ω ∃𝑣𝐴 𝑤𝑣) → (𝑧 ∈ ω → (𝐹𝑧) ∈ (𝐹‘suc 𝑧)))
1514ralrimiv 3106 . 2 ((𝐴 ⊆ ω ∧ ∀𝑤 ∈ ω ∃𝑣𝐴 𝑤𝑣) → ∀𝑧 ∈ ω (𝐹𝑧) ∈ (𝐹‘suc 𝑧))
16 omsmo 8448 . 2 (((𝐴 ⊆ On ∧ 𝐹:ω⟶𝐴) ∧ ∀𝑧 ∈ ω (𝐹𝑧) ∈ (𝐹‘suc 𝑧)) → 𝐹:ω–1-1𝐴)
174, 13, 15, 16syl21anc 834 1 ((𝐴 ⊆ ω ∧ ∀𝑤 ∈ ω ∃𝑣𝐴 𝑤𝑣) → 𝐹:ω–1-1𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  wral 3063  wrex 3064  Vcvv 3422  cdif 3880  wss 3883   cint 4876  cmpt 5153  cres 5582  Oncon0 6251  suc csuc 6253   Fn wfn 6413  wf 6414  1-1wf1 6415  cfv 6418  ωcom 7687  reccrdg 8211
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-om 7688  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212
This theorem is referenced by:  unbnn  9000
  Copyright terms: Public domain W3C validator