MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  onelssex Structured version   Visualization version   GIF version

Theorem onelssex 6402
Description: Ordinal less than is equivalent to having an ordinal between them. (Contributed by Scott Fenton, 8-Aug-2024.)
Assertion
Ref Expression
onelssex ((𝐴 ∈ On ∧ 𝐶 ∈ On) → (𝐴𝐶 ↔ ∃𝑏𝐶 𝐴𝑏))
Distinct variable groups:   𝐴,𝑏   𝐶,𝑏

Proof of Theorem onelssex
StepHypRef Expression
1 ssid 3996 . . 3 𝐴𝐴
2 sseq2 4000 . . . 4 (𝑏 = 𝐴 → (𝐴𝑏𝐴𝐴))
32rspcev 3604 . . 3 ((𝐴𝐶𝐴𝐴) → ∃𝑏𝐶 𝐴𝑏)
41, 3mpan2 688 . 2 (𝐴𝐶 → ∃𝑏𝐶 𝐴𝑏)
5 ontr2 6401 . . . 4 ((𝐴 ∈ On ∧ 𝐶 ∈ On) → ((𝐴𝑏𝑏𝐶) → 𝐴𝐶))
65expcomd 416 . . 3 ((𝐴 ∈ On ∧ 𝐶 ∈ On) → (𝑏𝐶 → (𝐴𝑏𝐴𝐶)))
76rexlimdv 3145 . 2 ((𝐴 ∈ On ∧ 𝐶 ∈ On) → (∃𝑏𝐶 𝐴𝑏𝐴𝐶))
84, 7impbid2 225 1 ((𝐴 ∈ On ∧ 𝐶 ∈ On) → (𝐴𝐶 ↔ ∃𝑏𝐶 𝐴𝑏))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  wcel 2098  wrex 3062  wss 3940  Oncon0 6354
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2695  ax-sep 5289  ax-nul 5296  ax-pr 5417
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-sb 2060  df-clab 2702  df-cleq 2716  df-clel 2802  df-ne 2933  df-ral 3054  df-rex 3063  df-rab 3425  df-v 3468  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-pss 3959  df-nul 4315  df-if 4521  df-pw 4596  df-sn 4621  df-pr 4623  df-op 4627  df-uni 4900  df-br 5139  df-opab 5201  df-tr 5256  df-eprel 5570  df-po 5578  df-so 5579  df-fr 5621  df-we 5623  df-ord 6357  df-on 6358
This theorem is referenced by:  madebdayim  27730  madebdaylemold  27740
  Copyright terms: Public domain W3C validator