| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > onelssex | Structured version Visualization version GIF version | ||
| Description: Ordinal less than is equivalent to having an ordinal between them. (Contributed by Scott Fenton, 8-Aug-2024.) |
| Ref | Expression |
|---|---|
| onelssex | ⊢ ((𝐴 ∈ On ∧ 𝐶 ∈ On) → (𝐴 ∈ 𝐶 ↔ ∃𝑏 ∈ 𝐶 𝐴 ⊆ 𝑏)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssid 3966 | . . 3 ⊢ 𝐴 ⊆ 𝐴 | |
| 2 | sseq2 3970 | . . . 4 ⊢ (𝑏 = 𝐴 → (𝐴 ⊆ 𝑏 ↔ 𝐴 ⊆ 𝐴)) | |
| 3 | 2 | rspcev 3585 | . . 3 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐴 ⊆ 𝐴) → ∃𝑏 ∈ 𝐶 𝐴 ⊆ 𝑏) |
| 4 | 1, 3 | mpan2 691 | . 2 ⊢ (𝐴 ∈ 𝐶 → ∃𝑏 ∈ 𝐶 𝐴 ⊆ 𝑏) |
| 5 | ontr2 6368 | . . . 4 ⊢ ((𝐴 ∈ On ∧ 𝐶 ∈ On) → ((𝐴 ⊆ 𝑏 ∧ 𝑏 ∈ 𝐶) → 𝐴 ∈ 𝐶)) | |
| 6 | 5 | expcomd 416 | . . 3 ⊢ ((𝐴 ∈ On ∧ 𝐶 ∈ On) → (𝑏 ∈ 𝐶 → (𝐴 ⊆ 𝑏 → 𝐴 ∈ 𝐶))) |
| 7 | 6 | rexlimdv 3132 | . 2 ⊢ ((𝐴 ∈ On ∧ 𝐶 ∈ On) → (∃𝑏 ∈ 𝐶 𝐴 ⊆ 𝑏 → 𝐴 ∈ 𝐶)) |
| 8 | 4, 7 | impbid2 226 | 1 ⊢ ((𝐴 ∈ On ∧ 𝐶 ∈ On) → (𝐴 ∈ 𝐶 ↔ ∃𝑏 ∈ 𝐶 𝐴 ⊆ 𝑏)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2109 ∃wrex 3053 ⊆ wss 3911 Oncon0 6320 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-tr 5210 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-ord 6323 df-on 6324 |
| This theorem is referenced by: madebdayim 27837 madebdaylemold 27847 |
| Copyright terms: Public domain | W3C validator |