Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > onelssex | Structured version Visualization version GIF version |
Description: Ordinal less than is equivalent to having an ordinal between them. (Contributed by Scott Fenton, 8-Aug-2024.) |
Ref | Expression |
---|---|
onelssex | ⊢ ((𝐴 ∈ On ∧ 𝐶 ∈ On) → (𝐴 ∈ 𝐶 ↔ ∃𝑏 ∈ 𝐶 𝐴 ⊆ 𝑏)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssid 3916 | . . 3 ⊢ 𝐴 ⊆ 𝐴 | |
2 | sseq2 3920 | . . . 4 ⊢ (𝑏 = 𝐴 → (𝐴 ⊆ 𝑏 ↔ 𝐴 ⊆ 𝐴)) | |
3 | 2 | rspcev 3543 | . . 3 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐴 ⊆ 𝐴) → ∃𝑏 ∈ 𝐶 𝐴 ⊆ 𝑏) |
4 | 1, 3 | mpan2 690 | . 2 ⊢ (𝐴 ∈ 𝐶 → ∃𝑏 ∈ 𝐶 𝐴 ⊆ 𝑏) |
5 | ontr2 6221 | . . . 4 ⊢ ((𝐴 ∈ On ∧ 𝐶 ∈ On) → ((𝐴 ⊆ 𝑏 ∧ 𝑏 ∈ 𝐶) → 𝐴 ∈ 𝐶)) | |
6 | 5 | expcomd 420 | . . 3 ⊢ ((𝐴 ∈ On ∧ 𝐶 ∈ On) → (𝑏 ∈ 𝐶 → (𝐴 ⊆ 𝑏 → 𝐴 ∈ 𝐶))) |
7 | 6 | rexlimdv 3207 | . 2 ⊢ ((𝐴 ∈ On ∧ 𝐶 ∈ On) → (∃𝑏 ∈ 𝐶 𝐴 ⊆ 𝑏 → 𝐴 ∈ 𝐶)) |
8 | 4, 7 | impbid2 229 | 1 ⊢ ((𝐴 ∈ On ∧ 𝐶 ∈ On) → (𝐴 ∈ 𝐶 ↔ ∃𝑏 ∈ 𝐶 𝐴 ⊆ 𝑏)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 ∈ wcel 2111 ∃wrex 3071 ⊆ wss 3860 Oncon0 6174 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-sep 5173 ax-nul 5180 ax-pr 5302 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-ral 3075 df-rex 3076 df-rab 3079 df-v 3411 df-sbc 3699 df-dif 3863 df-un 3865 df-in 3867 df-ss 3877 df-pss 3879 df-nul 4228 df-if 4424 df-sn 4526 df-pr 4528 df-op 4532 df-uni 4802 df-br 5037 df-opab 5099 df-tr 5143 df-eprel 5439 df-po 5447 df-so 5448 df-fr 5487 df-we 5489 df-ord 6177 df-on 6178 |
This theorem is referenced by: madebdayim 33661 madebdaylemold 33669 |
Copyright terms: Public domain | W3C validator |