Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > onelssex | Structured version Visualization version GIF version |
Description: Ordinal less than is equivalent to having an ordinal between them. (Contributed by Scott Fenton, 8-Aug-2024.) |
Ref | Expression |
---|---|
onelssex | ⊢ ((𝐴 ∈ On ∧ 𝐶 ∈ On) → (𝐴 ∈ 𝐶 ↔ ∃𝑏 ∈ 𝐶 𝐴 ⊆ 𝑏)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssid 3943 | . . 3 ⊢ 𝐴 ⊆ 𝐴 | |
2 | sseq2 3947 | . . . 4 ⊢ (𝑏 = 𝐴 → (𝐴 ⊆ 𝑏 ↔ 𝐴 ⊆ 𝐴)) | |
3 | 2 | rspcev 3561 | . . 3 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐴 ⊆ 𝐴) → ∃𝑏 ∈ 𝐶 𝐴 ⊆ 𝑏) |
4 | 1, 3 | mpan2 688 | . 2 ⊢ (𝐴 ∈ 𝐶 → ∃𝑏 ∈ 𝐶 𝐴 ⊆ 𝑏) |
5 | ontr2 6313 | . . . 4 ⊢ ((𝐴 ∈ On ∧ 𝐶 ∈ On) → ((𝐴 ⊆ 𝑏 ∧ 𝑏 ∈ 𝐶) → 𝐴 ∈ 𝐶)) | |
6 | 5 | expcomd 417 | . . 3 ⊢ ((𝐴 ∈ On ∧ 𝐶 ∈ On) → (𝑏 ∈ 𝐶 → (𝐴 ⊆ 𝑏 → 𝐴 ∈ 𝐶))) |
7 | 6 | rexlimdv 3212 | . 2 ⊢ ((𝐴 ∈ On ∧ 𝐶 ∈ On) → (∃𝑏 ∈ 𝐶 𝐴 ⊆ 𝑏 → 𝐴 ∈ 𝐶)) |
8 | 4, 7 | impbid2 225 | 1 ⊢ ((𝐴 ∈ On ∧ 𝐶 ∈ On) → (𝐴 ∈ 𝐶 ↔ ∃𝑏 ∈ 𝐶 𝐴 ⊆ 𝑏)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∈ wcel 2106 ∃wrex 3065 ⊆ wss 3887 Oncon0 6266 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-11 2154 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ne 2944 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-tr 5192 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-ord 6269 df-on 6270 |
This theorem is referenced by: madebdayim 34070 madebdaylemold 34078 |
Copyright terms: Public domain | W3C validator |