MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  onelssex Structured version   Visualization version   GIF version

Theorem onelssex 6412
Description: Ordinal less than is equivalent to having an ordinal between them. (Contributed by Scott Fenton, 8-Aug-2024.)
Assertion
Ref Expression
onelssex ((𝐴 ∈ On ∧ 𝐶 ∈ On) → (𝐴𝐶 ↔ ∃𝑏𝐶 𝐴𝑏))
Distinct variable groups:   𝐴,𝑏   𝐶,𝑏

Proof of Theorem onelssex
StepHypRef Expression
1 ssid 3986 . . 3 𝐴𝐴
2 sseq2 3990 . . . 4 (𝑏 = 𝐴 → (𝐴𝑏𝐴𝐴))
32rspcev 3605 . . 3 ((𝐴𝐶𝐴𝐴) → ∃𝑏𝐶 𝐴𝑏)
41, 3mpan2 691 . 2 (𝐴𝐶 → ∃𝑏𝐶 𝐴𝑏)
5 ontr2 6411 . . . 4 ((𝐴 ∈ On ∧ 𝐶 ∈ On) → ((𝐴𝑏𝑏𝐶) → 𝐴𝐶))
65expcomd 416 . . 3 ((𝐴 ∈ On ∧ 𝐶 ∈ On) → (𝑏𝐶 → (𝐴𝑏𝐴𝐶)))
76rexlimdv 3140 . 2 ((𝐴 ∈ On ∧ 𝐶 ∈ On) → (∃𝑏𝐶 𝐴𝑏𝐴𝐶))
84, 7impbid2 226 1 ((𝐴 ∈ On ∧ 𝐶 ∈ On) → (𝐴𝐶 ↔ ∃𝑏𝐶 𝐴𝑏))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wcel 2107  wrex 3059  wss 3931  Oncon0 6363
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-ext 2706  ax-sep 5276  ax-nul 5286  ax-pr 5412
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-sb 2064  df-clab 2713  df-cleq 2726  df-clel 2808  df-ne 2932  df-ral 3051  df-rex 3060  df-rab 3420  df-v 3465  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-br 5124  df-opab 5186  df-tr 5240  df-eprel 5564  df-po 5572  df-so 5573  df-fr 5617  df-we 5619  df-ord 6366  df-on 6367
This theorem is referenced by:  madebdayim  27862  madebdaylemold  27872
  Copyright terms: Public domain W3C validator