Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  onelssex Structured version   Visualization version   GIF version

Theorem onelssex 33563
Description: Ordinal less than is equivalent to having an ordinal between them. (Contributed by Scott Fenton, 8-Aug-2024.)
Assertion
Ref Expression
onelssex ((𝐴 ∈ On ∧ 𝐶 ∈ On) → (𝐴𝐶 ↔ ∃𝑏𝐶 𝐴𝑏))
Distinct variable groups:   𝐴,𝑏   𝐶,𝑏

Proof of Theorem onelssex
StepHypRef Expression
1 ssid 3939 . . 3 𝐴𝐴
2 sseq2 3943 . . . 4 (𝑏 = 𝐴 → (𝐴𝑏𝐴𝐴))
32rspcev 3552 . . 3 ((𝐴𝐶𝐴𝐴) → ∃𝑏𝐶 𝐴𝑏)
41, 3mpan2 687 . 2 (𝐴𝐶 → ∃𝑏𝐶 𝐴𝑏)
5 ontr2 6298 . . . 4 ((𝐴 ∈ On ∧ 𝐶 ∈ On) → ((𝐴𝑏𝑏𝐶) → 𝐴𝐶))
65expcomd 416 . . 3 ((𝐴 ∈ On ∧ 𝐶 ∈ On) → (𝑏𝐶 → (𝐴𝑏𝐴𝐶)))
76rexlimdv 3211 . 2 ((𝐴 ∈ On ∧ 𝐶 ∈ On) → (∃𝑏𝐶 𝐴𝑏𝐴𝐶))
84, 7impbid2 225 1 ((𝐴 ∈ On ∧ 𝐶 ∈ On) → (𝐴𝐶 ↔ ∃𝑏𝐶 𝐴𝑏))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  wcel 2108  wrex 3064  wss 3883  Oncon0 6251
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-11 2156  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-tr 5188  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-ord 6254  df-on 6255
This theorem is referenced by:  madebdayim  33997  madebdaylemold  34005
  Copyright terms: Public domain W3C validator