| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ontr2 | Structured version Visualization version GIF version | ||
| Description: Transitive law for ordinal numbers. Exercise 3 of [TakeutiZaring] p. 40. (Contributed by NM, 6-Nov-2003.) |
| Ref | Expression |
|---|---|
| ontr2 | ⊢ ((𝐴 ∈ On ∧ 𝐶 ∈ On) → ((𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝐶) → 𝐴 ∈ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eloni 6330 | . 2 ⊢ (𝐴 ∈ On → Ord 𝐴) | |
| 2 | eloni 6330 | . 2 ⊢ (𝐶 ∈ On → Ord 𝐶) | |
| 3 | ordtr2 6365 | . 2 ⊢ ((Ord 𝐴 ∧ Ord 𝐶) → ((𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝐶) → 𝐴 ∈ 𝐶)) | |
| 4 | 1, 2, 3 | syl2an 596 | 1 ⊢ ((𝐴 ∈ On ∧ 𝐶 ∈ On) → ((𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝐶) → 𝐴 ∈ 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 ⊆ wss 3911 Ord word 6319 Oncon0 6320 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-tr 5210 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-ord 6323 df-on 6324 |
| This theorem is referenced by: onelssex 6369 onunel 6427 oeordsuc 8535 oelimcl 8541 oeeui 8543 omopthlem2 8601 coflton 8612 cofon1 8613 cofon2 8614 naddssim 8626 omxpenlem 9019 oismo 9469 cantnflem1c 9616 cantnflem1 9618 cantnflem3 9620 rankr1ai 9727 rankxplim 9808 infxpenlem 9942 alephle 10017 pwcfsdom 10512 r1limwun 10665 oldbdayim 27776 addsbdaylem 27899 negsbdaylem 27938 onscutlt 28141 ontopbas 36389 ontgval 36392 onexlimgt 43205 nnoeomeqom 43274 omabs2 43294 oaun3lem2 43337 nadd2rabex 43348 nadd1suc 43354 |
| Copyright terms: Public domain | W3C validator |