![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ontr2 | Structured version Visualization version GIF version |
Description: Transitive law for ordinal numbers. Exercise 3 of [TakeutiZaring] p. 40. (Contributed by NM, 6-Nov-2003.) |
Ref | Expression |
---|---|
ontr2 | ⊢ ((𝐴 ∈ On ∧ 𝐶 ∈ On) → ((𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝐶) → 𝐴 ∈ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eloni 6395 | . 2 ⊢ (𝐴 ∈ On → Ord 𝐴) | |
2 | eloni 6395 | . 2 ⊢ (𝐶 ∈ On → Ord 𝐶) | |
3 | ordtr2 6429 | . 2 ⊢ ((Ord 𝐴 ∧ Ord 𝐶) → ((𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝐶) → 𝐴 ∈ 𝐶)) | |
4 | 1, 2, 3 | syl2an 596 | 1 ⊢ ((𝐴 ∈ On ∧ 𝐶 ∈ On) → ((𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝐶) → 𝐴 ∈ 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2105 ⊆ wss 3962 Ord word 6384 Oncon0 6385 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-ext 2705 ax-sep 5301 ax-nul 5311 ax-pr 5437 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-sb 2062 df-clab 2712 df-cleq 2726 df-clel 2813 df-ne 2938 df-ral 3059 df-rex 3068 df-rab 3433 df-v 3479 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-pss 3982 df-nul 4339 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-br 5148 df-opab 5210 df-tr 5265 df-eprel 5588 df-po 5596 df-so 5597 df-fr 5640 df-we 5642 df-ord 6388 df-on 6389 |
This theorem is referenced by: onelssex 6433 onunel 6490 oeordsuc 8630 oelimcl 8636 oeeui 8638 omopthlem2 8696 coflton 8707 cofon1 8708 cofon2 8709 naddssim 8721 omxpenlem 9111 oismo 9577 cantnflem1c 9724 cantnflem1 9726 cantnflem3 9728 rankr1ai 9835 rankxplim 9916 infxpenlem 10050 alephle 10125 pwcfsdom 10620 r1limwun 10773 oldbdayim 27941 addsbdaylem 28063 negsbdaylem 28102 ontopbas 36410 ontgval 36413 onexlimgt 43231 nnoeomeqom 43301 omabs2 43321 oaun3lem2 43364 nadd2rabex 43375 nadd1suc 43381 |
Copyright terms: Public domain | W3C validator |