![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ontr2 | Structured version Visualization version GIF version |
Description: Transitive law for ordinal numbers. Exercise 3 of [TakeutiZaring] p. 40. (Contributed by NM, 6-Nov-2003.) |
Ref | Expression |
---|---|
ontr2 | ⊢ ((𝐴 ∈ On ∧ 𝐶 ∈ On) → ((𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝐶) → 𝐴 ∈ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eloni 6371 | . 2 ⊢ (𝐴 ∈ On → Ord 𝐴) | |
2 | eloni 6371 | . 2 ⊢ (𝐶 ∈ On → Ord 𝐶) | |
3 | ordtr2 6405 | . 2 ⊢ ((Ord 𝐴 ∧ Ord 𝐶) → ((𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝐶) → 𝐴 ∈ 𝐶)) | |
4 | 1, 2, 3 | syl2an 597 | 1 ⊢ ((𝐴 ∈ On ∧ 𝐶 ∈ On) → ((𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝐶) → 𝐴 ∈ 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 ∈ wcel 2107 ⊆ wss 3947 Ord word 6360 Oncon0 6361 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 ax-sep 5298 ax-nul 5305 ax-pr 5426 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-br 5148 df-opab 5210 df-tr 5265 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-ord 6364 df-on 6365 |
This theorem is referenced by: onelssex 6409 onunel 6466 oeordsuc 8590 oelimcl 8596 oeeui 8598 omopthlem2 8655 coflton 8666 cofon1 8667 cofon2 8668 naddssim 8680 omxpenlem 9069 oismo 9531 cantnflem1c 9678 cantnflem1 9680 cantnflem3 9682 rankr1ai 9789 rankxplim 9870 infxpenlem 10004 alephle 10079 pwcfsdom 10574 r1limwun 10727 oldbdayim 27363 negsbdaylem 27510 ontopbas 35251 ontgval 35254 onexlimgt 41925 nnoeomeqom 41995 omabs2 42015 oaun3lem2 42058 nadd2rabex 42069 nadd1suc 42075 |
Copyright terms: Public domain | W3C validator |