![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ontr2 | Structured version Visualization version GIF version |
Description: Transitive law for ordinal numbers. Exercise 3 of [TakeutiZaring] p. 40. (Contributed by NM, 6-Nov-2003.) |
Ref | Expression |
---|---|
ontr2 | ⊢ ((𝐴 ∈ On ∧ 𝐶 ∈ On) → ((𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝐶) → 𝐴 ∈ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eloni 6405 | . 2 ⊢ (𝐴 ∈ On → Ord 𝐴) | |
2 | eloni 6405 | . 2 ⊢ (𝐶 ∈ On → Ord 𝐶) | |
3 | ordtr2 6439 | . 2 ⊢ ((Ord 𝐴 ∧ Ord 𝐶) → ((𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝐶) → 𝐴 ∈ 𝐶)) | |
4 | 1, 2, 3 | syl2an 595 | 1 ⊢ ((𝐴 ∈ On ∧ 𝐶 ∈ On) → ((𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝐶) → 𝐴 ∈ 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2108 ⊆ wss 3976 Ord word 6394 Oncon0 6395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-tr 5284 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-ord 6398 df-on 6399 |
This theorem is referenced by: onelssex 6443 onunel 6500 oeordsuc 8650 oelimcl 8656 oeeui 8658 omopthlem2 8716 coflton 8727 cofon1 8728 cofon2 8729 naddssim 8741 omxpenlem 9139 oismo 9609 cantnflem1c 9756 cantnflem1 9758 cantnflem3 9760 rankr1ai 9867 rankxplim 9948 infxpenlem 10082 alephle 10157 pwcfsdom 10652 r1limwun 10805 oldbdayim 27945 addsbdaylem 28067 negsbdaylem 28106 ontopbas 36394 ontgval 36397 onexlimgt 43204 nnoeomeqom 43274 omabs2 43294 oaun3lem2 43337 nadd2rabex 43348 nadd1suc 43354 |
Copyright terms: Public domain | W3C validator |