| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ontr2 | Structured version Visualization version GIF version | ||
| Description: Transitive law for ordinal numbers. Exercise 3 of [TakeutiZaring] p. 40. (Contributed by NM, 6-Nov-2003.) |
| Ref | Expression |
|---|---|
| ontr2 | ⊢ ((𝐴 ∈ On ∧ 𝐶 ∈ On) → ((𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝐶) → 𝐴 ∈ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eloni 6342 | . 2 ⊢ (𝐴 ∈ On → Ord 𝐴) | |
| 2 | eloni 6342 | . 2 ⊢ (𝐶 ∈ On → Ord 𝐶) | |
| 3 | ordtr2 6377 | . 2 ⊢ ((Ord 𝐴 ∧ Ord 𝐶) → ((𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝐶) → 𝐴 ∈ 𝐶)) | |
| 4 | 1, 2, 3 | syl2an 596 | 1 ⊢ ((𝐴 ∈ On ∧ 𝐶 ∈ On) → ((𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝐶) → 𝐴 ∈ 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 ⊆ wss 3914 Ord word 6331 Oncon0 6332 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-tr 5215 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-ord 6335 df-on 6336 |
| This theorem is referenced by: onelssex 6381 onunel 6439 oeordsuc 8558 oelimcl 8564 oeeui 8566 omopthlem2 8624 coflton 8635 cofon1 8636 cofon2 8637 naddssim 8649 omxpenlem 9042 oismo 9493 cantnflem1c 9640 cantnflem1 9642 cantnflem3 9644 rankr1ai 9751 rankxplim 9832 infxpenlem 9966 alephle 10041 pwcfsdom 10536 r1limwun 10689 oldbdayim 27800 addsbdaylem 27923 negsbdaylem 27962 onscutlt 28165 ontopbas 36416 ontgval 36419 onexlimgt 43232 nnoeomeqom 43301 omabs2 43321 oaun3lem2 43364 nadd2rabex 43375 nadd1suc 43381 |
| Copyright terms: Public domain | W3C validator |