| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ontr2 | Structured version Visualization version GIF version | ||
| Description: Transitive law for ordinal numbers. Exercise 3 of [TakeutiZaring] p. 40. (Contributed by NM, 6-Nov-2003.) |
| Ref | Expression |
|---|---|
| ontr2 | ⊢ ((𝐴 ∈ On ∧ 𝐶 ∈ On) → ((𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝐶) → 𝐴 ∈ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eloni 6317 | . 2 ⊢ (𝐴 ∈ On → Ord 𝐴) | |
| 2 | eloni 6317 | . 2 ⊢ (𝐶 ∈ On → Ord 𝐶) | |
| 3 | ordtr2 6352 | . 2 ⊢ ((Ord 𝐴 ∧ Ord 𝐶) → ((𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝐶) → 𝐴 ∈ 𝐶)) | |
| 4 | 1, 2, 3 | syl2an 596 | 1 ⊢ ((𝐴 ∈ On ∧ 𝐶 ∈ On) → ((𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝐶) → 𝐴 ∈ 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 ⊆ wss 3903 Ord word 6306 Oncon0 6307 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pr 5371 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-opab 5155 df-tr 5200 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-ord 6310 df-on 6311 |
| This theorem is referenced by: onelssex 6356 onunel 6414 oeordsuc 8512 oelimcl 8518 oeeui 8520 omopthlem2 8578 coflton 8589 cofon1 8590 cofon2 8591 naddssim 8603 omxpenlem 8995 oismo 9432 cantnflem1c 9583 cantnflem1 9585 cantnflem3 9587 rankr1ai 9694 rankxplim 9775 infxpenlem 9907 alephle 9982 pwcfsdom 10477 r1limwun 10630 oldbdayim 27803 addsbdaylem 27928 negsbdaylem 27967 onscutlt 28170 ontopbas 36402 ontgval 36405 onexlimgt 43216 nnoeomeqom 43285 omabs2 43305 oaun3lem2 43348 nadd2rabex 43359 nadd1suc 43365 |
| Copyright terms: Public domain | W3C validator |