| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ontri1 | Structured version Visualization version GIF version | ||
| Description: A trichotomy law for ordinal numbers. (Contributed by NM, 6-Nov-2003.) |
| Ref | Expression |
|---|---|
| ontri1 | ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ⊆ 𝐵 ↔ ¬ 𝐵 ∈ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eloni 6362 | . 2 ⊢ (𝐴 ∈ On → Ord 𝐴) | |
| 2 | eloni 6362 | . 2 ⊢ (𝐵 ∈ On → Ord 𝐵) | |
| 3 | ordtri1 6385 | . 2 ⊢ ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴 ⊆ 𝐵 ↔ ¬ 𝐵 ∈ 𝐴)) | |
| 4 | 1, 2, 3 | syl2an 596 | 1 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ⊆ 𝐵 ↔ ¬ 𝐵 ∈ 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2108 ⊆ wss 3926 Ord word 6351 Oncon0 6352 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-tr 5230 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-ord 6355 df-on 6356 |
| This theorem is referenced by: oneqmini 6405 onmindif 6445 onint 7782 onnmin 7790 onmindif2 7799 dfom2 7861 ondif2 8512 oaword 8559 oawordeulem 8564 oaf1o 8573 odi 8589 omeulem1 8592 oeeulem 8611 oeeui 8612 nnmword 8643 cofonr 8684 naddel1 8697 naddss1 8699 domtriord 9135 sdomel 9136 onsdominel 9138 ordunifi 9296 cantnfp1lem3 9692 oemapvali 9696 cantnflem1b 9698 cantnflem1 9701 cnfcom3lem 9715 rankr1clem 9832 rankelb 9836 rankval3b 9838 rankr1a 9848 unbndrank 9854 rankxplim3 9893 cardne 9977 carden2b 9979 cardsdomel 9986 carddom2 9989 harcard 9990 domtri2 10001 infxpenlem 10025 alephord 10087 alephord3 10090 alephle 10100 dfac12k 10160 cflim2 10275 cofsmo 10281 cfsmolem 10282 isf32lem5 10369 pwcfsdom 10595 pwfseqlem3 10672 inar1 10787 om2uzlt2i 13967 sltval2 27618 sltres 27624 nosepssdm 27648 nolt02olem 27656 nolt02o 27657 nogt01o 27658 noetasuplem4 27698 noetainflem4 27702 nocvxminlem 27739 madebdaylemlrcut 27854 om2noseqlt2 28223 nummin 35068 onsuct0 36405 onint1 36413 onmaxnelsup 43194 onsupnmax 43199 onsupuni 43200 oninfint 43207 onsupmaxb 43210 onsupeqnmax 43218 oe0suclim 43248 cantnfresb 43295 cantnf2 43296 tfsconcatfv 43312 tfsnfin 43323 oadif1lem 43350 oadif1 43351 naddwordnexlem4 43372 ontric3g 43493 infordmin 43503 minregex 43505 alephiso3 43530 |
| Copyright terms: Public domain | W3C validator |