| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ontri1 | Structured version Visualization version GIF version | ||
| Description: A trichotomy law for ordinal numbers. (Contributed by NM, 6-Nov-2003.) |
| Ref | Expression |
|---|---|
| ontri1 | ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ⊆ 𝐵 ↔ ¬ 𝐵 ∈ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eloni 6330 | . 2 ⊢ (𝐴 ∈ On → Ord 𝐴) | |
| 2 | eloni 6330 | . 2 ⊢ (𝐵 ∈ On → Ord 𝐵) | |
| 3 | ordtri1 6353 | . 2 ⊢ ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴 ⊆ 𝐵 ↔ ¬ 𝐵 ∈ 𝐴)) | |
| 4 | 1, 2, 3 | syl2an 596 | 1 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ⊆ 𝐵 ↔ ¬ 𝐵 ∈ 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2109 ⊆ wss 3911 Ord word 6319 Oncon0 6320 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-tr 5210 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-ord 6323 df-on 6324 |
| This theorem is referenced by: oneqmini 6373 onmindif 6414 onint 7746 onnmin 7754 onmindif2 7763 dfom2 7824 ondif2 8443 oaword 8490 oawordeulem 8495 oaf1o 8504 odi 8520 omeulem1 8523 oeeulem 8542 oeeui 8543 nnmword 8574 cofonr 8615 naddel1 8628 naddss1 8630 domtriord 9064 sdomel 9065 onsdominel 9067 ordunifi 9213 cantnfp1lem3 9611 oemapvali 9615 cantnflem1b 9617 cantnflem1 9620 cnfcom3lem 9634 rankr1clem 9751 rankelb 9755 rankval3b 9757 rankr1a 9767 unbndrank 9773 rankxplim3 9812 cardne 9896 carden2b 9898 cardsdomel 9905 carddom2 9908 harcard 9909 domtri2 9920 infxpenlem 9944 alephord 10006 alephord3 10009 alephle 10019 dfac12k 10079 cflim2 10194 cofsmo 10200 cfsmolem 10201 isf32lem5 10288 pwcfsdom 10514 pwfseqlem3 10591 inar1 10706 om2uzlt2i 13894 sltval2 27602 sltres 27608 nosepssdm 27632 nolt02olem 27640 nolt02o 27641 nogt01o 27642 noetasuplem4 27682 noetainflem4 27686 nocvxminlem 27724 madebdaylemlrcut 27849 onscutlt 28206 onnolt 28208 onsiso 28210 om2noseqlt2 28235 nummin 35075 vonf1owev 35089 onsuct0 36423 onint1 36431 onmaxnelsup 43206 onsupnmax 43211 onsupuni 43212 oninfint 43219 onsupmaxb 43222 onsupeqnmax 43230 oe0suclim 43260 cantnfresb 43307 cantnf2 43308 tfsconcatfv 43324 tfsnfin 43335 oadif1lem 43362 oadif1 43363 naddwordnexlem4 43384 ontric3g 43505 infordmin 43515 minregex 43517 alephiso3 43542 |
| Copyright terms: Public domain | W3C validator |