Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ontri1 | Structured version Visualization version GIF version |
Description: A trichotomy law for ordinal numbers. (Contributed by NM, 6-Nov-2003.) |
Ref | Expression |
---|---|
ontri1 | ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ⊆ 𝐵 ↔ ¬ 𝐵 ∈ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eloni 6261 | . 2 ⊢ (𝐴 ∈ On → Ord 𝐴) | |
2 | eloni 6261 | . 2 ⊢ (𝐵 ∈ On → Ord 𝐵) | |
3 | ordtri1 6284 | . 2 ⊢ ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴 ⊆ 𝐵 ↔ ¬ 𝐵 ∈ 𝐴)) | |
4 | 1, 2, 3 | syl2an 595 | 1 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ⊆ 𝐵 ↔ ¬ 𝐵 ∈ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 395 ∈ wcel 2108 ⊆ wss 3883 Ord word 6250 Oncon0 6251 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-11 2156 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-tr 5188 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-ord 6254 df-on 6255 |
This theorem is referenced by: oneqmini 6302 onmindif 6340 onint 7617 onnmin 7625 onmindif2 7634 dfom2 7689 ondif2 8294 oaword 8342 oawordeulem 8347 oaf1o 8356 odi 8372 omeulem1 8375 oeeulem 8394 oeeui 8395 nnmword 8426 domtriord 8859 sdomel 8860 onsdominel 8862 ordunifi 8994 cantnfp1lem3 9368 oemapvali 9372 cantnflem1b 9374 cantnflem1 9377 cnfcom3lem 9391 rankr1clem 9509 rankelb 9513 rankval3b 9515 rankr1a 9525 unbndrank 9531 rankxplim3 9570 cardne 9654 carden2b 9656 cardsdomel 9663 carddom2 9666 harcard 9667 domtri2 9678 infxpenlem 9700 alephord 9762 alephord3 9765 alephle 9775 dfac12k 9834 cflim2 9950 cofsmo 9956 cfsmolem 9957 isf32lem5 10044 pwcfsdom 10270 pwfseqlem3 10347 inar1 10462 om2uzlt2i 13599 nummin 32963 naddel1 33766 naddss1 33768 sltval2 33786 sltres 33792 nosepssdm 33816 nolt02olem 33824 nolt02o 33825 nogt01o 33826 noetasuplem4 33866 noetainflem4 33870 nocvxminlem 33899 madebdaylemlrcut 34006 onsuct0 34557 onint1 34565 ontric3g 41027 infordmin 41037 alephiso3 41055 |
Copyright terms: Public domain | W3C validator |