![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ontri1 | Structured version Visualization version GIF version |
Description: A trichotomy law for ordinal numbers. (Contributed by NM, 6-Nov-2003.) |
Ref | Expression |
---|---|
ontri1 | ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ⊆ 𝐵 ↔ ¬ 𝐵 ∈ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eloni 6395 | . 2 ⊢ (𝐴 ∈ On → Ord 𝐴) | |
2 | eloni 6395 | . 2 ⊢ (𝐵 ∈ On → Ord 𝐵) | |
3 | ordtri1 6418 | . 2 ⊢ ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴 ⊆ 𝐵 ↔ ¬ 𝐵 ∈ 𝐴)) | |
4 | 1, 2, 3 | syl2an 596 | 1 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ⊆ 𝐵 ↔ ¬ 𝐵 ∈ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2105 ⊆ wss 3962 Ord word 6384 Oncon0 6385 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-ext 2705 ax-sep 5301 ax-nul 5311 ax-pr 5437 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-sb 2062 df-clab 2712 df-cleq 2726 df-clel 2813 df-ne 2938 df-ral 3059 df-rex 3068 df-rab 3433 df-v 3479 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-pss 3982 df-nul 4339 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-br 5148 df-opab 5210 df-tr 5265 df-eprel 5588 df-po 5596 df-so 5597 df-fr 5640 df-we 5642 df-ord 6388 df-on 6389 |
This theorem is referenced by: oneqmini 6437 onmindif 6477 onint 7809 onnmin 7817 onmindif2 7826 dfom2 7888 ondif2 8538 oaword 8585 oawordeulem 8590 oaf1o 8599 odi 8615 omeulem1 8618 oeeulem 8637 oeeui 8638 nnmword 8669 cofonr 8710 naddel1 8723 naddss1 8725 domtriord 9161 sdomel 9162 onsdominel 9164 ordunifi 9323 cantnfp1lem3 9717 oemapvali 9721 cantnflem1b 9723 cantnflem1 9726 cnfcom3lem 9740 rankr1clem 9857 rankelb 9861 rankval3b 9863 rankr1a 9873 unbndrank 9879 rankxplim3 9918 cardne 10002 carden2b 10004 cardsdomel 10011 carddom2 10014 harcard 10015 domtri2 10026 infxpenlem 10050 alephord 10112 alephord3 10115 alephle 10125 dfac12k 10185 cflim2 10300 cofsmo 10306 cfsmolem 10307 isf32lem5 10394 pwcfsdom 10620 pwfseqlem3 10697 inar1 10812 om2uzlt2i 13988 sltval2 27715 sltres 27721 nosepssdm 27745 nolt02olem 27753 nolt02o 27754 nogt01o 27755 noetasuplem4 27795 noetainflem4 27799 nocvxminlem 27836 madebdaylemlrcut 27951 om2noseqlt2 28320 nummin 35083 onsuct0 36423 onint1 36431 onmaxnelsup 43211 onsupnmax 43216 onsupuni 43217 oninfint 43224 onsupmaxb 43227 onsupeqnmax 43235 oe0suclim 43266 cantnfresb 43313 cantnf2 43314 tfsconcatfv 43330 tfsnfin 43341 oadif1lem 43368 oadif1 43369 naddwordnexlem4 43390 ontric3g 43511 infordmin 43521 minregex 43523 alephiso3 43548 |
Copyright terms: Public domain | W3C validator |