| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ontri1 | Structured version Visualization version GIF version | ||
| Description: A trichotomy law for ordinal numbers. (Contributed by NM, 6-Nov-2003.) |
| Ref | Expression |
|---|---|
| ontri1 | ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ⊆ 𝐵 ↔ ¬ 𝐵 ∈ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eloni 6330 | . 2 ⊢ (𝐴 ∈ On → Ord 𝐴) | |
| 2 | eloni 6330 | . 2 ⊢ (𝐵 ∈ On → Ord 𝐵) | |
| 3 | ordtri1 6353 | . 2 ⊢ ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴 ⊆ 𝐵 ↔ ¬ 𝐵 ∈ 𝐴)) | |
| 4 | 1, 2, 3 | syl2an 596 | 1 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ⊆ 𝐵 ↔ ¬ 𝐵 ∈ 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2109 ⊆ wss 3911 Ord word 6319 Oncon0 6320 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-tr 5210 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-ord 6323 df-on 6324 |
| This theorem is referenced by: oneqmini 6373 onmindif 6414 onint 7746 onnmin 7754 onmindif2 7763 dfom2 7824 ondif2 8443 oaword 8490 oawordeulem 8495 oaf1o 8504 odi 8520 omeulem1 8523 oeeulem 8542 oeeui 8543 nnmword 8574 cofonr 8615 naddel1 8628 naddss1 8630 domtriord 9064 sdomel 9065 onsdominel 9067 ordunifi 9213 cantnfp1lem3 9609 oemapvali 9613 cantnflem1b 9615 cantnflem1 9618 cnfcom3lem 9632 rankr1clem 9749 rankelb 9753 rankval3b 9755 rankr1a 9765 unbndrank 9771 rankxplim3 9810 cardne 9894 carden2b 9896 cardsdomel 9903 carddom2 9906 harcard 9907 domtri2 9918 infxpenlem 9942 alephord 10004 alephord3 10007 alephle 10017 dfac12k 10077 cflim2 10192 cofsmo 10198 cfsmolem 10199 isf32lem5 10286 pwcfsdom 10512 pwfseqlem3 10589 inar1 10704 om2uzlt2i 13892 sltval2 27601 sltres 27607 nosepssdm 27631 nolt02olem 27639 nolt02o 27640 nogt01o 27641 noetasuplem4 27681 noetainflem4 27685 nocvxminlem 27723 madebdaylemlrcut 27848 onscutlt 28205 onnolt 28207 onsiso 28209 om2noseqlt2 28234 nummin 35074 vonf1owev 35088 onsuct0 36422 onint1 36430 onmaxnelsup 43205 onsupnmax 43210 onsupuni 43211 oninfint 43218 onsupmaxb 43221 onsupeqnmax 43229 oe0suclim 43259 cantnfresb 43306 cantnf2 43307 tfsconcatfv 43323 tfsnfin 43334 oadif1lem 43361 oadif1 43362 naddwordnexlem4 43383 ontric3g 43504 infordmin 43514 minregex 43516 alephiso3 43541 |
| Copyright terms: Public domain | W3C validator |