Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ontri1 | Structured version Visualization version GIF version |
Description: A trichotomy law for ordinal numbers. (Contributed by NM, 6-Nov-2003.) |
Ref | Expression |
---|---|
ontri1 | ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ⊆ 𝐵 ↔ ¬ 𝐵 ∈ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eloni 6276 | . 2 ⊢ (𝐴 ∈ On → Ord 𝐴) | |
2 | eloni 6276 | . 2 ⊢ (𝐵 ∈ On → Ord 𝐵) | |
3 | ordtri1 6299 | . 2 ⊢ ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴 ⊆ 𝐵 ↔ ¬ 𝐵 ∈ 𝐴)) | |
4 | 1, 2, 3 | syl2an 596 | 1 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ⊆ 𝐵 ↔ ¬ 𝐵 ∈ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 396 ∈ wcel 2106 ⊆ wss 3887 Ord word 6265 Oncon0 6266 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-11 2154 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ne 2944 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-tr 5192 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-ord 6269 df-on 6270 |
This theorem is referenced by: oneqmini 6317 onmindif 6355 onint 7640 onnmin 7648 onmindif2 7657 dfom2 7714 ondif2 8332 oaword 8380 oawordeulem 8385 oaf1o 8394 odi 8410 omeulem1 8413 oeeulem 8432 oeeui 8433 nnmword 8464 domtriord 8910 sdomel 8911 onsdominel 8913 ordunifi 9064 cantnfp1lem3 9438 oemapvali 9442 cantnflem1b 9444 cantnflem1 9447 cnfcom3lem 9461 rankr1clem 9578 rankelb 9582 rankval3b 9584 rankr1a 9594 unbndrank 9600 rankxplim3 9639 cardne 9723 carden2b 9725 cardsdomel 9732 carddom2 9735 harcard 9736 domtri2 9747 infxpenlem 9769 alephord 9831 alephord3 9834 alephle 9844 dfac12k 9903 cflim2 10019 cofsmo 10025 cfsmolem 10026 isf32lem5 10113 pwcfsdom 10339 pwfseqlem3 10416 inar1 10531 om2uzlt2i 13671 nummin 33063 naddel1 33839 naddss1 33841 sltval2 33859 sltres 33865 nosepssdm 33889 nolt02olem 33897 nolt02o 33898 nogt01o 33899 noetasuplem4 33939 noetainflem4 33943 nocvxminlem 33972 madebdaylemlrcut 34079 onsuct0 34630 onint1 34638 ontric3g 41129 infordmin 41139 minregex 41141 alephiso3 41166 |
Copyright terms: Public domain | W3C validator |