| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ontri1 | Structured version Visualization version GIF version | ||
| Description: A trichotomy law for ordinal numbers. (Contributed by NM, 6-Nov-2003.) |
| Ref | Expression |
|---|---|
| ontri1 | ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ⊆ 𝐵 ↔ ¬ 𝐵 ∈ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eloni 6345 | . 2 ⊢ (𝐴 ∈ On → Ord 𝐴) | |
| 2 | eloni 6345 | . 2 ⊢ (𝐵 ∈ On → Ord 𝐵) | |
| 3 | ordtri1 6368 | . 2 ⊢ ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴 ⊆ 𝐵 ↔ ¬ 𝐵 ∈ 𝐴)) | |
| 4 | 1, 2, 3 | syl2an 596 | 1 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ⊆ 𝐵 ↔ ¬ 𝐵 ∈ 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2109 ⊆ wss 3917 Ord word 6334 Oncon0 6335 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-tr 5218 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-ord 6338 df-on 6339 |
| This theorem is referenced by: oneqmini 6388 onmindif 6429 onint 7769 onnmin 7777 onmindif2 7786 dfom2 7847 ondif2 8469 oaword 8516 oawordeulem 8521 oaf1o 8530 odi 8546 omeulem1 8549 oeeulem 8568 oeeui 8569 nnmword 8600 cofonr 8641 naddel1 8654 naddss1 8656 domtriord 9093 sdomel 9094 onsdominel 9096 ordunifi 9244 cantnfp1lem3 9640 oemapvali 9644 cantnflem1b 9646 cantnflem1 9649 cnfcom3lem 9663 rankr1clem 9780 rankelb 9784 rankval3b 9786 rankr1a 9796 unbndrank 9802 rankxplim3 9841 cardne 9925 carden2b 9927 cardsdomel 9934 carddom2 9937 harcard 9938 domtri2 9949 infxpenlem 9973 alephord 10035 alephord3 10038 alephle 10048 dfac12k 10108 cflim2 10223 cofsmo 10229 cfsmolem 10230 isf32lem5 10317 pwcfsdom 10543 pwfseqlem3 10620 inar1 10735 om2uzlt2i 13923 sltval2 27575 sltres 27581 nosepssdm 27605 nolt02olem 27613 nolt02o 27614 nogt01o 27615 noetasuplem4 27655 noetainflem4 27659 nocvxminlem 27696 madebdaylemlrcut 27817 onscutlt 28172 onnolt 28174 onsiso 28176 om2noseqlt2 28201 nummin 35088 vonf1owev 35102 onsuct0 36436 onint1 36444 onmaxnelsup 43219 onsupnmax 43224 onsupuni 43225 oninfint 43232 onsupmaxb 43235 onsupeqnmax 43243 oe0suclim 43273 cantnfresb 43320 cantnf2 43321 tfsconcatfv 43337 tfsnfin 43348 oadif1lem 43375 oadif1 43376 naddwordnexlem4 43397 ontric3g 43518 infordmin 43528 minregex 43530 alephiso3 43555 |
| Copyright terms: Public domain | W3C validator |