| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ontri1 | Structured version Visualization version GIF version | ||
| Description: A trichotomy law for ordinal numbers. (Contributed by NM, 6-Nov-2003.) |
| Ref | Expression |
|---|---|
| ontri1 | ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ⊆ 𝐵 ↔ ¬ 𝐵 ∈ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eloni 6317 | . 2 ⊢ (𝐴 ∈ On → Ord 𝐴) | |
| 2 | eloni 6317 | . 2 ⊢ (𝐵 ∈ On → Ord 𝐵) | |
| 3 | ordtri1 6340 | . 2 ⊢ ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴 ⊆ 𝐵 ↔ ¬ 𝐵 ∈ 𝐴)) | |
| 4 | 1, 2, 3 | syl2an 596 | 1 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ⊆ 𝐵 ↔ ¬ 𝐵 ∈ 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2109 ⊆ wss 3903 Ord word 6306 Oncon0 6307 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pr 5371 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-opab 5155 df-tr 5200 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-ord 6310 df-on 6311 |
| This theorem is referenced by: oneqmini 6360 onmindif 6401 onint 7726 onnmin 7734 onmindif2 7743 dfom2 7801 ondif2 8420 oaword 8467 oawordeulem 8472 oaf1o 8481 odi 8497 omeulem1 8500 oeeulem 8519 oeeui 8520 nnmword 8551 cofonr 8592 naddel1 8605 naddss1 8607 domtriord 9040 sdomel 9041 onsdominel 9043 ordunifi 9179 cantnfp1lem3 9576 oemapvali 9580 cantnflem1b 9582 cantnflem1 9585 cnfcom3lem 9599 rankr1clem 9716 rankelb 9720 rankval3b 9722 rankr1a 9732 unbndrank 9738 rankxplim3 9777 cardne 9861 carden2b 9863 cardsdomel 9870 carddom2 9873 harcard 9874 domtri2 9885 infxpenlem 9907 alephord 9969 alephord3 9972 alephle 9982 dfac12k 10042 cflim2 10157 cofsmo 10163 cfsmolem 10164 isf32lem5 10251 pwcfsdom 10477 pwfseqlem3 10554 inar1 10669 om2uzlt2i 13858 sltval2 27566 sltres 27572 nosepssdm 27596 nolt02olem 27604 nolt02o 27605 nogt01o 27606 noetasuplem4 27646 noetainflem4 27650 nocvxminlem 27688 madebdaylemlrcut 27815 onscutlt 28172 onnolt 28174 onsiso 28176 om2noseqlt2 28201 nummin 35074 vonf1owev 35101 onsuct0 36435 onint1 36443 onmaxnelsup 43216 onsupnmax 43221 onsupuni 43222 oninfint 43229 onsupmaxb 43232 onsupeqnmax 43240 oe0suclim 43270 cantnfresb 43317 cantnf2 43318 tfsconcatfv 43334 tfsnfin 43345 oadif1lem 43372 oadif1 43373 naddwordnexlem4 43394 ontric3g 43515 infordmin 43525 minregex 43527 alephiso3 43552 |
| Copyright terms: Public domain | W3C validator |