Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ontri1 | Structured version Visualization version GIF version |
Description: A trichotomy law for ordinal numbers. (Contributed by NM, 6-Nov-2003.) |
Ref | Expression |
---|---|
ontri1 | ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ⊆ 𝐵 ↔ ¬ 𝐵 ∈ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eloni 6223 | . 2 ⊢ (𝐴 ∈ On → Ord 𝐴) | |
2 | eloni 6223 | . 2 ⊢ (𝐵 ∈ On → Ord 𝐵) | |
3 | ordtri1 6246 | . 2 ⊢ ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴 ⊆ 𝐵 ↔ ¬ 𝐵 ∈ 𝐴)) | |
4 | 1, 2, 3 | syl2an 599 | 1 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ⊆ 𝐵 ↔ ¬ 𝐵 ∈ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 209 ∧ wa 399 ∈ wcel 2110 ⊆ wss 3866 Ord word 6212 Oncon0 6213 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-11 2158 ax-ext 2708 ax-sep 5192 ax-nul 5199 ax-pr 5322 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-sb 2071 df-clab 2715 df-cleq 2729 df-clel 2816 df-ne 2941 df-ral 3066 df-rex 3067 df-rab 3070 df-v 3410 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-pss 3885 df-nul 4238 df-if 4440 df-sn 4542 df-pr 4544 df-op 4548 df-uni 4820 df-br 5054 df-opab 5116 df-tr 5162 df-eprel 5460 df-po 5468 df-so 5469 df-fr 5509 df-we 5511 df-ord 6216 df-on 6217 |
This theorem is referenced by: oneqmini 6264 onmindif 6302 onint 7574 onnmin 7582 onmindif2 7591 dfom2 7646 ondif2 8229 oaword 8277 oawordeulem 8282 oaf1o 8291 odi 8307 omeulem1 8310 oeeulem 8329 oeeui 8330 nnmword 8361 domtriord 8792 sdomel 8793 onsdominel 8795 ordunifi 8921 cantnfp1lem3 9295 oemapvali 9299 cantnflem1b 9301 cantnflem1 9304 cnfcom3lem 9318 rankr1clem 9436 rankelb 9440 rankval3b 9442 rankr1a 9452 unbndrank 9458 rankxplim3 9497 cardne 9581 carden2b 9583 cardsdomel 9590 carddom2 9593 harcard 9594 domtri2 9605 infxpenlem 9627 alephord 9689 alephord3 9692 alephle 9702 dfac12k 9761 cflim2 9877 cofsmo 9883 cfsmolem 9884 isf32lem5 9971 pwcfsdom 10197 pwfseqlem3 10274 inar1 10389 om2uzlt2i 13524 nummin 32776 naddel1 33576 naddss1 33578 sltval2 33596 sltres 33602 nosepssdm 33626 nolt02olem 33634 nolt02o 33635 nogt01o 33636 noetasuplem4 33676 noetainflem4 33680 nocvxminlem 33709 madebdaylemlrcut 33816 onsuct0 34367 onint1 34375 ontric3g 40814 infordmin 40824 alephiso3 40842 |
Copyright terms: Public domain | W3C validator |