![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ontri1 | Structured version Visualization version GIF version |
Description: A trichotomy law for ordinal numbers. (Contributed by NM, 6-Nov-2003.) |
Ref | Expression |
---|---|
ontri1 | ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ⊆ 𝐵 ↔ ¬ 𝐵 ∈ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eloni 6076 | . 2 ⊢ (𝐴 ∈ On → Ord 𝐴) | |
2 | eloni 6076 | . 2 ⊢ (𝐵 ∈ On → Ord 𝐵) | |
3 | ordtri1 6099 | . 2 ⊢ ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴 ⊆ 𝐵 ↔ ¬ 𝐵 ∈ 𝐴)) | |
4 | 1, 2, 3 | syl2an 595 | 1 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ⊆ 𝐵 ↔ ¬ 𝐵 ∈ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 207 ∧ wa 396 ∈ wcel 2081 ⊆ wss 3859 Ord word 6065 Oncon0 6066 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1777 ax-4 1791 ax-5 1888 ax-6 1947 ax-7 1992 ax-8 2083 ax-9 2091 ax-10 2112 ax-11 2126 ax-12 2141 ax-13 2344 ax-ext 2769 ax-sep 5094 ax-nul 5101 ax-pr 5221 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3or 1081 df-3an 1082 df-tru 1525 df-ex 1762 df-nf 1766 df-sb 2043 df-mo 2576 df-eu 2612 df-clab 2776 df-cleq 2788 df-clel 2863 df-nfc 2935 df-ne 2985 df-ral 3110 df-rex 3111 df-rab 3114 df-v 3439 df-sbc 3707 df-dif 3862 df-un 3864 df-in 3866 df-ss 3874 df-pss 3876 df-nul 4212 df-if 4382 df-sn 4473 df-pr 4475 df-op 4479 df-uni 4746 df-br 4963 df-opab 5025 df-tr 5064 df-eprel 5353 df-po 5362 df-so 5363 df-fr 5402 df-we 5404 df-ord 6069 df-on 6070 |
This theorem is referenced by: oneqmini 6117 onmindif 6155 onint 7366 onnmin 7374 onmindif2 7383 dfom2 7438 ondif2 7978 oaword 8025 oawordeulem 8030 oaf1o 8039 odi 8055 omeulem1 8058 oeeulem 8077 oeeui 8078 nnmword 8109 domtriord 8510 sdomel 8511 onsdominel 8513 ordunifi 8614 cantnfp1lem3 8989 oemapvali 8993 cantnflem1b 8995 cantnflem1 8998 cnfcom3lem 9012 rankr1clem 9095 rankelb 9099 rankval3b 9101 rankr1a 9111 unbndrank 9117 rankxplim3 9156 cardne 9240 carden2b 9242 cardsdomel 9249 carddom2 9252 harcard 9253 domtri2 9264 infxpenlem 9285 alephord 9347 alephord3 9350 alephle 9360 dfac12k 9419 cflim2 9531 cofsmo 9537 cfsmolem 9538 isf32lem5 9625 pwcfsdom 9851 pwfseqlem3 9928 inar1 10043 om2uzlt2i 13169 sltval2 32772 sltres 32778 nosepssdm 32799 nolt02olem 32807 nolt02o 32808 noetalem3 32828 nocvxminlem 32856 onsuct0 33398 onint1 33406 ontric3g 39373 infordmin 39384 alephiso3 39403 |
Copyright terms: Public domain | W3C validator |