| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ontri1 | Structured version Visualization version GIF version | ||
| Description: A trichotomy law for ordinal numbers. (Contributed by NM, 6-Nov-2003.) |
| Ref | Expression |
|---|---|
| ontri1 | ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ⊆ 𝐵 ↔ ¬ 𝐵 ∈ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eloni 6342 | . 2 ⊢ (𝐴 ∈ On → Ord 𝐴) | |
| 2 | eloni 6342 | . 2 ⊢ (𝐵 ∈ On → Ord 𝐵) | |
| 3 | ordtri1 6365 | . 2 ⊢ ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴 ⊆ 𝐵 ↔ ¬ 𝐵 ∈ 𝐴)) | |
| 4 | 1, 2, 3 | syl2an 596 | 1 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ⊆ 𝐵 ↔ ¬ 𝐵 ∈ 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2109 ⊆ wss 3914 Ord word 6331 Oncon0 6332 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-tr 5215 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-ord 6335 df-on 6336 |
| This theorem is referenced by: oneqmini 6385 onmindif 6426 onint 7766 onnmin 7774 onmindif2 7783 dfom2 7844 ondif2 8466 oaword 8513 oawordeulem 8518 oaf1o 8527 odi 8543 omeulem1 8546 oeeulem 8565 oeeui 8566 nnmword 8597 cofonr 8638 naddel1 8651 naddss1 8653 domtriord 9087 sdomel 9088 onsdominel 9090 ordunifi 9237 cantnfp1lem3 9633 oemapvali 9637 cantnflem1b 9639 cantnflem1 9642 cnfcom3lem 9656 rankr1clem 9773 rankelb 9777 rankval3b 9779 rankr1a 9789 unbndrank 9795 rankxplim3 9834 cardne 9918 carden2b 9920 cardsdomel 9927 carddom2 9930 harcard 9931 domtri2 9942 infxpenlem 9966 alephord 10028 alephord3 10031 alephle 10041 dfac12k 10101 cflim2 10216 cofsmo 10222 cfsmolem 10223 isf32lem5 10310 pwcfsdom 10536 pwfseqlem3 10613 inar1 10728 om2uzlt2i 13916 sltval2 27568 sltres 27574 nosepssdm 27598 nolt02olem 27606 nolt02o 27607 nogt01o 27608 noetasuplem4 27648 noetainflem4 27652 nocvxminlem 27689 madebdaylemlrcut 27810 onscutlt 28165 onnolt 28167 onsiso 28169 om2noseqlt2 28194 nummin 35081 vonf1owev 35095 onsuct0 36429 onint1 36437 onmaxnelsup 43212 onsupnmax 43217 onsupuni 43218 oninfint 43225 onsupmaxb 43228 onsupeqnmax 43236 oe0suclim 43266 cantnfresb 43313 cantnf2 43314 tfsconcatfv 43330 tfsnfin 43341 oadif1lem 43368 oadif1 43369 naddwordnexlem4 43390 ontric3g 43511 infordmin 43521 minregex 43523 alephiso3 43548 |
| Copyright terms: Public domain | W3C validator |