![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ontri1 | Structured version Visualization version GIF version |
Description: A trichotomy law for ordinal numbers. (Contributed by NM, 6-Nov-2003.) |
Ref | Expression |
---|---|
ontri1 | ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ⊆ 𝐵 ↔ ¬ 𝐵 ∈ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eloni 6405 | . 2 ⊢ (𝐴 ∈ On → Ord 𝐴) | |
2 | eloni 6405 | . 2 ⊢ (𝐵 ∈ On → Ord 𝐵) | |
3 | ordtri1 6428 | . 2 ⊢ ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴 ⊆ 𝐵 ↔ ¬ 𝐵 ∈ 𝐴)) | |
4 | 1, 2, 3 | syl2an 595 | 1 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ⊆ 𝐵 ↔ ¬ 𝐵 ∈ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2108 ⊆ wss 3976 Ord word 6394 Oncon0 6395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-tr 5284 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-ord 6398 df-on 6399 |
This theorem is referenced by: oneqmini 6447 onmindif 6487 onint 7826 onnmin 7834 onmindif2 7843 dfom2 7905 ondif2 8558 oaword 8605 oawordeulem 8610 oaf1o 8619 odi 8635 omeulem1 8638 oeeulem 8657 oeeui 8658 nnmword 8689 cofonr 8730 naddel1 8743 naddss1 8745 domtriord 9189 sdomel 9190 onsdominel 9192 ordunifi 9354 cantnfp1lem3 9749 oemapvali 9753 cantnflem1b 9755 cantnflem1 9758 cnfcom3lem 9772 rankr1clem 9889 rankelb 9893 rankval3b 9895 rankr1a 9905 unbndrank 9911 rankxplim3 9950 cardne 10034 carden2b 10036 cardsdomel 10043 carddom2 10046 harcard 10047 domtri2 10058 infxpenlem 10082 alephord 10144 alephord3 10147 alephle 10157 dfac12k 10217 cflim2 10332 cofsmo 10338 cfsmolem 10339 isf32lem5 10426 pwcfsdom 10652 pwfseqlem3 10729 inar1 10844 om2uzlt2i 14002 sltval2 27719 sltres 27725 nosepssdm 27749 nolt02olem 27757 nolt02o 27758 nogt01o 27759 noetasuplem4 27799 noetainflem4 27803 nocvxminlem 27840 madebdaylemlrcut 27955 om2noseqlt2 28324 nummin 35067 onsuct0 36407 onint1 36415 onmaxnelsup 43184 onsupnmax 43189 onsupuni 43190 oninfint 43197 onsupmaxb 43200 onsupeqnmax 43208 oe0suclim 43239 cantnfresb 43286 cantnf2 43287 tfsconcatfv 43303 tfsnfin 43314 oadif1lem 43341 oadif1 43342 naddwordnexlem4 43363 ontric3g 43484 infordmin 43494 minregex 43496 alephiso3 43521 |
Copyright terms: Public domain | W3C validator |