| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ontri1 | Structured version Visualization version GIF version | ||
| Description: A trichotomy law for ordinal numbers. (Contributed by NM, 6-Nov-2003.) |
| Ref | Expression |
|---|---|
| ontri1 | ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ⊆ 𝐵 ↔ ¬ 𝐵 ∈ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eloni 6316 | . 2 ⊢ (𝐴 ∈ On → Ord 𝐴) | |
| 2 | eloni 6316 | . 2 ⊢ (𝐵 ∈ On → Ord 𝐵) | |
| 3 | ordtri1 6339 | . 2 ⊢ ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴 ⊆ 𝐵 ↔ ¬ 𝐵 ∈ 𝐴)) | |
| 4 | 1, 2, 3 | syl2an 596 | 1 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ⊆ 𝐵 ↔ ¬ 𝐵 ∈ 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2111 ⊆ wss 3897 Ord word 6305 Oncon0 6306 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-tr 5197 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-ord 6309 df-on 6310 |
| This theorem is referenced by: oneqmini 6359 onmindif 6400 onint 7723 onnmin 7731 onmindif2 7740 dfom2 7798 ondif2 8417 oaword 8464 oawordeulem 8469 oaf1o 8478 odi 8494 omeulem1 8497 oeeulem 8516 oeeui 8517 nnmword 8548 cofonr 8589 naddel1 8602 naddss1 8604 domtriord 9036 sdomel 9037 onsdominel 9039 ordunifi 9174 cantnfp1lem3 9570 oemapvali 9574 cantnflem1b 9576 cantnflem1 9579 cnfcom3lem 9593 rankr1clem 9713 rankelb 9717 rankval3b 9719 rankr1a 9729 unbndrank 9735 rankxplim3 9774 cardne 9858 carden2b 9860 cardsdomel 9867 carddom2 9870 harcard 9871 domtri2 9882 infxpenlem 9904 alephord 9966 alephord3 9969 alephle 9979 dfac12k 10039 cflim2 10154 cofsmo 10160 cfsmolem 10161 isf32lem5 10248 pwcfsdom 10474 pwfseqlem3 10551 inar1 10666 om2uzlt2i 13858 sltval2 27595 sltres 27601 nosepssdm 27625 nolt02olem 27633 nolt02o 27634 nogt01o 27635 noetasuplem4 27675 noetainflem4 27679 nocvxminlem 27717 madebdaylemlrcut 27844 onscutlt 28201 onnolt 28203 onsiso 28205 om2noseqlt2 28230 nummin 35104 vonf1owev 35152 onsuct0 36485 onint1 36493 onmaxnelsup 43315 onsupnmax 43320 onsupuni 43321 oninfint 43328 onsupmaxb 43331 onsupeqnmax 43339 oe0suclim 43369 cantnfresb 43416 cantnf2 43417 tfsconcatfv 43433 tfsnfin 43444 oadif1lem 43471 oadif1 43472 naddwordnexlem4 43493 ontric3g 43614 infordmin 43624 minregex 43626 alephiso3 43651 |
| Copyright terms: Public domain | W3C validator |