| Mathbox for Emmett Weisz |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > onsetreclem1 | Structured version Visualization version GIF version | ||
| Description: Lemma for onsetrec 49819. (Contributed by Emmett Weisz, 22-Jun-2021.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| onsetreclem1.1 | ⊢ 𝐹 = (𝑥 ∈ V ↦ {∪ 𝑥, suc ∪ 𝑥}) |
| Ref | Expression |
|---|---|
| onsetreclem1 | ⊢ (𝐹‘𝑎) = {∪ 𝑎, suc ∪ 𝑎} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | unieq 4867 | . . . 4 ⊢ (𝑥 = 𝑎 → ∪ 𝑥 = ∪ 𝑎) | |
| 2 | suceq 6374 | . . . . 5 ⊢ (∪ 𝑥 = ∪ 𝑎 → suc ∪ 𝑥 = suc ∪ 𝑎) | |
| 3 | 1, 2 | syl 17 | . . . 4 ⊢ (𝑥 = 𝑎 → suc ∪ 𝑥 = suc ∪ 𝑎) |
| 4 | 1, 3 | preq12d 4691 | . . 3 ⊢ (𝑥 = 𝑎 → {∪ 𝑥, suc ∪ 𝑥} = {∪ 𝑎, suc ∪ 𝑎}) |
| 5 | onsetreclem1.1 | . . 3 ⊢ 𝐹 = (𝑥 ∈ V ↦ {∪ 𝑥, suc ∪ 𝑥}) | |
| 6 | prex 5373 | . . 3 ⊢ {∪ 𝑎, suc ∪ 𝑎} ∈ V | |
| 7 | 4, 5, 6 | fvmpt 6929 | . 2 ⊢ (𝑎 ∈ V → (𝐹‘𝑎) = {∪ 𝑎, suc ∪ 𝑎}) |
| 8 | 7 | elv 3441 | 1 ⊢ (𝐹‘𝑎) = {∪ 𝑎, suc ∪ 𝑎} |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 Vcvv 3436 {cpr 4575 ∪ cuni 4856 ↦ cmpt 5170 suc csuc 6308 ‘cfv 6481 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-suc 6312 df-iota 6437 df-fun 6483 df-fv 6489 |
| This theorem is referenced by: onsetreclem2 49817 onsetreclem3 49818 |
| Copyright terms: Public domain | W3C validator |