Users' Mathboxes Mathbox for Emmett Weisz < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  onsetreclem1 Structured version   Visualization version   GIF version

Theorem onsetreclem1 48936
Description: Lemma for onsetrec 48939. (Contributed by Emmett Weisz, 22-Jun-2021.) (New usage is discouraged.)
Hypothesis
Ref Expression
onsetreclem1.1 𝐹 = (𝑥 ∈ V ↦ { 𝑥, suc 𝑥})
Assertion
Ref Expression
onsetreclem1 (𝐹𝑎) = { 𝑎, suc 𝑎}
Distinct variable group:   𝑥,𝑎
Allowed substitution hints:   𝐹(𝑥,𝑎)

Proof of Theorem onsetreclem1
StepHypRef Expression
1 unieq 4923 . . . 4 (𝑥 = 𝑎 𝑥 = 𝑎)
2 suceq 6452 . . . . 5 ( 𝑥 = 𝑎 → suc 𝑥 = suc 𝑎)
31, 2syl 17 . . . 4 (𝑥 = 𝑎 → suc 𝑥 = suc 𝑎)
41, 3preq12d 4746 . . 3 (𝑥 = 𝑎 → { 𝑥, suc 𝑥} = { 𝑎, suc 𝑎})
5 onsetreclem1.1 . . 3 𝐹 = (𝑥 ∈ V ↦ { 𝑥, suc 𝑥})
6 prex 5443 . . 3 { 𝑎, suc 𝑎} ∈ V
74, 5, 6fvmpt 7016 . 2 (𝑎 ∈ V → (𝐹𝑎) = { 𝑎, suc 𝑎})
87elv 3483 1 (𝐹𝑎) = { 𝑎, suc 𝑎}
Colors of variables: wff setvar class
Syntax hints:   = wceq 1537  Vcvv 3478  {cpr 4633   cuni 4912  cmpt 5231  suc csuc 6388  cfv 6563
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-suc 6392  df-iota 6516  df-fun 6565  df-fv 6571
This theorem is referenced by:  onsetreclem2  48937  onsetreclem3  48938
  Copyright terms: Public domain W3C validator