Users' Mathboxes Mathbox for Emmett Weisz < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  onsetreclem1 Structured version   Visualization version   GIF version

Theorem onsetreclem1 49700
Description: Lemma for onsetrec 49703. (Contributed by Emmett Weisz, 22-Jun-2021.) (New usage is discouraged.)
Hypothesis
Ref Expression
onsetreclem1.1 𝐹 = (𝑥 ∈ V ↦ { 𝑥, suc 𝑥})
Assertion
Ref Expression
onsetreclem1 (𝐹𝑎) = { 𝑎, suc 𝑎}
Distinct variable group:   𝑥,𝑎
Allowed substitution hints:   𝐹(𝑥,𝑎)

Proof of Theorem onsetreclem1
StepHypRef Expression
1 unieq 4869 . . . 4 (𝑥 = 𝑎 𝑥 = 𝑎)
2 suceq 6375 . . . . 5 ( 𝑥 = 𝑎 → suc 𝑥 = suc 𝑎)
31, 2syl 17 . . . 4 (𝑥 = 𝑎 → suc 𝑥 = suc 𝑎)
41, 3preq12d 4693 . . 3 (𝑥 = 𝑎 → { 𝑥, suc 𝑥} = { 𝑎, suc 𝑎})
5 onsetreclem1.1 . . 3 𝐹 = (𝑥 ∈ V ↦ { 𝑥, suc 𝑥})
6 prex 5376 . . 3 { 𝑎, suc 𝑎} ∈ V
74, 5, 6fvmpt 6930 . 2 (𝑎 ∈ V → (𝐹𝑎) = { 𝑎, suc 𝑎})
87elv 3441 1 (𝐹𝑎) = { 𝑎, suc 𝑎}
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  Vcvv 3436  {cpr 4579   cuni 4858  cmpt 5173  suc csuc 6309  cfv 6482
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pr 5371
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ral 3045  df-rex 3054  df-rab 3395  df-v 3438  df-dif 3906  df-un 3908  df-ss 3920  df-nul 4285  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-suc 6313  df-iota 6438  df-fun 6484  df-fv 6490
This theorem is referenced by:  onsetreclem2  49701  onsetreclem3  49702
  Copyright terms: Public domain W3C validator