![]() |
Mathbox for Emmett Weisz |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > onsetreclem1 | Structured version Visualization version GIF version |
Description: Lemma for onsetrec 48052. (Contributed by Emmett Weisz, 22-Jun-2021.) (New usage is discouraged.) |
Ref | Expression |
---|---|
onsetreclem1.1 | ⊢ 𝐹 = (𝑥 ∈ V ↦ {∪ 𝑥, suc ∪ 𝑥}) |
Ref | Expression |
---|---|
onsetreclem1 | ⊢ (𝐹‘𝑎) = {∪ 𝑎, suc ∪ 𝑎} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | unieq 4914 | . . . 4 ⊢ (𝑥 = 𝑎 → ∪ 𝑥 = ∪ 𝑎) | |
2 | suceq 6429 | . . . . 5 ⊢ (∪ 𝑥 = ∪ 𝑎 → suc ∪ 𝑥 = suc ∪ 𝑎) | |
3 | 1, 2 | syl 17 | . . . 4 ⊢ (𝑥 = 𝑎 → suc ∪ 𝑥 = suc ∪ 𝑎) |
4 | 1, 3 | preq12d 4741 | . . 3 ⊢ (𝑥 = 𝑎 → {∪ 𝑥, suc ∪ 𝑥} = {∪ 𝑎, suc ∪ 𝑎}) |
5 | onsetreclem1.1 | . . 3 ⊢ 𝐹 = (𝑥 ∈ V ↦ {∪ 𝑥, suc ∪ 𝑥}) | |
6 | prex 5428 | . . 3 ⊢ {∪ 𝑎, suc ∪ 𝑎} ∈ V | |
7 | 4, 5, 6 | fvmpt 6999 | . 2 ⊢ (𝑎 ∈ V → (𝐹‘𝑎) = {∪ 𝑎, suc ∪ 𝑎}) |
8 | 7 | elv 3475 | 1 ⊢ (𝐹‘𝑎) = {∪ 𝑎, suc ∪ 𝑎} |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1534 Vcvv 3469 {cpr 4626 ∪ cuni 4903 ↦ cmpt 5225 suc csuc 6365 ‘cfv 6542 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-sep 5293 ax-nul 5300 ax-pr 5423 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ral 3057 df-rex 3066 df-rab 3428 df-v 3471 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4319 df-if 4525 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-br 5143 df-opab 5205 df-mpt 5226 df-id 5570 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-suc 6369 df-iota 6494 df-fun 6544 df-fv 6550 |
This theorem is referenced by: onsetreclem2 48050 onsetreclem3 48051 |
Copyright terms: Public domain | W3C validator |