Mathbox for Emmett Weisz |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > onsetreclem1 | Structured version Visualization version GIF version |
Description: Lemma for onsetrec 46084. (Contributed by Emmett Weisz, 22-Jun-2021.) (New usage is discouraged.) |
Ref | Expression |
---|---|
onsetreclem1.1 | ⊢ 𝐹 = (𝑥 ∈ V ↦ {∪ 𝑥, suc ∪ 𝑥}) |
Ref | Expression |
---|---|
onsetreclem1 | ⊢ (𝐹‘𝑎) = {∪ 𝑎, suc ∪ 𝑎} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | unieq 4830 | . . . 4 ⊢ (𝑥 = 𝑎 → ∪ 𝑥 = ∪ 𝑎) | |
2 | suceq 6278 | . . . . 5 ⊢ (∪ 𝑥 = ∪ 𝑎 → suc ∪ 𝑥 = suc ∪ 𝑎) | |
3 | 1, 2 | syl 17 | . . . 4 ⊢ (𝑥 = 𝑎 → suc ∪ 𝑥 = suc ∪ 𝑎) |
4 | 1, 3 | preq12d 4657 | . . 3 ⊢ (𝑥 = 𝑎 → {∪ 𝑥, suc ∪ 𝑥} = {∪ 𝑎, suc ∪ 𝑎}) |
5 | onsetreclem1.1 | . . 3 ⊢ 𝐹 = (𝑥 ∈ V ↦ {∪ 𝑥, suc ∪ 𝑥}) | |
6 | prex 5325 | . . 3 ⊢ {∪ 𝑎, suc ∪ 𝑎} ∈ V | |
7 | 4, 5, 6 | fvmpt 6818 | . 2 ⊢ (𝑎 ∈ V → (𝐹‘𝑎) = {∪ 𝑎, suc ∪ 𝑎}) |
8 | 7 | elv 3414 | 1 ⊢ (𝐹‘𝑎) = {∪ 𝑎, suc ∪ 𝑎} |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1543 Vcvv 3408 {cpr 4543 ∪ cuni 4819 ↦ cmpt 5135 suc csuc 6215 ‘cfv 6380 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-sep 5192 ax-nul 5199 ax-pr 5322 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ral 3066 df-rex 3067 df-rab 3070 df-v 3410 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-nul 4238 df-if 4440 df-sn 4542 df-pr 4544 df-op 4548 df-uni 4820 df-br 5054 df-opab 5116 df-mpt 5136 df-id 5455 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-suc 6219 df-iota 6338 df-fun 6382 df-fv 6388 |
This theorem is referenced by: onsetreclem2 46082 onsetreclem3 46083 |
Copyright terms: Public domain | W3C validator |