Users' Mathboxes Mathbox for Emmett Weisz < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  onsetreclem1 Structured version   Visualization version   GIF version

Theorem onsetreclem1 48797
Description: Lemma for onsetrec 48800. (Contributed by Emmett Weisz, 22-Jun-2021.) (New usage is discouraged.)
Hypothesis
Ref Expression
onsetreclem1.1 𝐹 = (𝑥 ∈ V ↦ { 𝑥, suc 𝑥})
Assertion
Ref Expression
onsetreclem1 (𝐹𝑎) = { 𝑎, suc 𝑎}
Distinct variable group:   𝑥,𝑎
Allowed substitution hints:   𝐹(𝑥,𝑎)

Proof of Theorem onsetreclem1
StepHypRef Expression
1 unieq 4942 . . . 4 (𝑥 = 𝑎 𝑥 = 𝑎)
2 suceq 6461 . . . . 5 ( 𝑥 = 𝑎 → suc 𝑥 = suc 𝑎)
31, 2syl 17 . . . 4 (𝑥 = 𝑎 → suc 𝑥 = suc 𝑎)
41, 3preq12d 4766 . . 3 (𝑥 = 𝑎 → { 𝑥, suc 𝑥} = { 𝑎, suc 𝑎})
5 onsetreclem1.1 . . 3 𝐹 = (𝑥 ∈ V ↦ { 𝑥, suc 𝑥})
6 prex 5452 . . 3 { 𝑎, suc 𝑎} ∈ V
74, 5, 6fvmpt 7029 . 2 (𝑎 ∈ V → (𝐹𝑎) = { 𝑎, suc 𝑎})
87elv 3493 1 (𝐹𝑎) = { 𝑎, suc 𝑎}
Colors of variables: wff setvar class
Syntax hints:   = wceq 1537  Vcvv 3488  {cpr 4650   cuni 4931  cmpt 5249  suc csuc 6397  cfv 6573
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-suc 6401  df-iota 6525  df-fun 6575  df-fv 6581
This theorem is referenced by:  onsetreclem2  48798  onsetreclem3  48799
  Copyright terms: Public domain W3C validator