| Mathbox for Emmett Weisz |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > onsetreclem1 | Structured version Visualization version GIF version | ||
| Description: Lemma for onsetrec 49539. (Contributed by Emmett Weisz, 22-Jun-2021.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| onsetreclem1.1 | ⊢ 𝐹 = (𝑥 ∈ V ↦ {∪ 𝑥, suc ∪ 𝑥}) |
| Ref | Expression |
|---|---|
| onsetreclem1 | ⊢ (𝐹‘𝑎) = {∪ 𝑎, suc ∪ 𝑎} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | unieq 4899 | . . . 4 ⊢ (𝑥 = 𝑎 → ∪ 𝑥 = ∪ 𝑎) | |
| 2 | suceq 6424 | . . . . 5 ⊢ (∪ 𝑥 = ∪ 𝑎 → suc ∪ 𝑥 = suc ∪ 𝑎) | |
| 3 | 1, 2 | syl 17 | . . . 4 ⊢ (𝑥 = 𝑎 → suc ∪ 𝑥 = suc ∪ 𝑎) |
| 4 | 1, 3 | preq12d 4722 | . . 3 ⊢ (𝑥 = 𝑎 → {∪ 𝑥, suc ∪ 𝑥} = {∪ 𝑎, suc ∪ 𝑎}) |
| 5 | onsetreclem1.1 | . . 3 ⊢ 𝐹 = (𝑥 ∈ V ↦ {∪ 𝑥, suc ∪ 𝑥}) | |
| 6 | prex 5412 | . . 3 ⊢ {∪ 𝑎, suc ∪ 𝑎} ∈ V | |
| 7 | 4, 5, 6 | fvmpt 6991 | . 2 ⊢ (𝑎 ∈ V → (𝐹‘𝑎) = {∪ 𝑎, suc ∪ 𝑎}) |
| 8 | 7 | elv 3469 | 1 ⊢ (𝐹‘𝑎) = {∪ 𝑎, suc ∪ 𝑎} |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 Vcvv 3464 {cpr 4608 ∪ cuni 4888 ↦ cmpt 5206 suc csuc 6359 ‘cfv 6536 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-suc 6363 df-iota 6489 df-fun 6538 df-fv 6544 |
| This theorem is referenced by: onsetreclem2 49537 onsetreclem3 49538 |
| Copyright terms: Public domain | W3C validator |