Users' Mathboxes Mathbox for Emmett Weisz < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  onsetreclem3 Structured version   Visualization version   GIF version

Theorem onsetreclem3 49538
Description: Lemma for onsetrec 49539. (Contributed by Emmett Weisz, 22-Jun-2021.) (New usage is discouraged.)
Hypothesis
Ref Expression
onsetreclem3.1 𝐹 = (𝑥 ∈ V ↦ { 𝑥, suc 𝑥})
Assertion
Ref Expression
onsetreclem3 (𝑎 ∈ On → 𝑎 ∈ (𝐹𝑎))
Distinct variable group:   𝑥,𝑎
Allowed substitution hints:   𝐹(𝑥,𝑎)

Proof of Theorem onsetreclem3
StepHypRef Expression
1 eloni 6367 . . . 4 (𝑎 ∈ On → Ord 𝑎)
2 orduniorsuc 7829 . . . 4 (Ord 𝑎 → (𝑎 = 𝑎𝑎 = suc 𝑎))
31, 2syl 17 . . 3 (𝑎 ∈ On → (𝑎 = 𝑎𝑎 = suc 𝑎))
4 vex 3468 . . . 4 𝑎 ∈ V
54elpr 4631 . . 3 (𝑎 ∈ { 𝑎, suc 𝑎} ↔ (𝑎 = 𝑎𝑎 = suc 𝑎))
63, 5sylibr 234 . 2 (𝑎 ∈ On → 𝑎 ∈ { 𝑎, suc 𝑎})
7 onsetreclem3.1 . . 3 𝐹 = (𝑥 ∈ V ↦ { 𝑥, suc 𝑥})
87onsetreclem1 49536 . 2 (𝐹𝑎) = { 𝑎, suc 𝑎}
96, 8eleqtrrdi 2846 1 (𝑎 ∈ On → 𝑎 ∈ (𝐹𝑎))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 847   = wceq 1540  wcel 2109  Vcvv 3464  {cpr 4608   cuni 4888  cmpt 5206  Ord word 6356  Oncon0 6357  suc csuc 6359  cfv 6536
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pr 5407
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-ord 6360  df-on 6361  df-suc 6363  df-iota 6489  df-fun 6538  df-fv 6544
This theorem is referenced by:  onsetrec  49539
  Copyright terms: Public domain W3C validator