![]() |
Mathbox for Emmett Weisz |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > onsetreclem3 | Structured version Visualization version GIF version |
Description: Lemma for onsetrec 43559. (Contributed by Emmett Weisz, 22-Jun-2021.) (New usage is discouraged.) |
Ref | Expression |
---|---|
onsetreclem3.1 | ⊢ 𝐹 = (𝑥 ∈ V ↦ {∪ 𝑥, suc ∪ 𝑥}) |
Ref | Expression |
---|---|
onsetreclem3 | ⊢ (𝑎 ∈ On → 𝑎 ∈ (𝐹‘𝑎)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eloni 5986 | . . . 4 ⊢ (𝑎 ∈ On → Ord 𝑎) | |
2 | orduniorsuc 7308 | . . . 4 ⊢ (Ord 𝑎 → (𝑎 = ∪ 𝑎 ∨ 𝑎 = suc ∪ 𝑎)) | |
3 | 1, 2 | syl 17 | . . 3 ⊢ (𝑎 ∈ On → (𝑎 = ∪ 𝑎 ∨ 𝑎 = suc ∪ 𝑎)) |
4 | vex 3401 | . . . 4 ⊢ 𝑎 ∈ V | |
5 | 4 | elpr 4421 | . . 3 ⊢ (𝑎 ∈ {∪ 𝑎, suc ∪ 𝑎} ↔ (𝑎 = ∪ 𝑎 ∨ 𝑎 = suc ∪ 𝑎)) |
6 | 3, 5 | sylibr 226 | . 2 ⊢ (𝑎 ∈ On → 𝑎 ∈ {∪ 𝑎, suc ∪ 𝑎}) |
7 | onsetreclem3.1 | . . 3 ⊢ 𝐹 = (𝑥 ∈ V ↦ {∪ 𝑥, suc ∪ 𝑥}) | |
8 | 7 | onsetreclem1 43556 | . 2 ⊢ (𝐹‘𝑎) = {∪ 𝑎, suc ∪ 𝑎} |
9 | 6, 8 | syl6eleqr 2870 | 1 ⊢ (𝑎 ∈ On → 𝑎 ∈ (𝐹‘𝑎)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ wo 836 = wceq 1601 ∈ wcel 2107 Vcvv 3398 {cpr 4400 ∪ cuni 4671 ↦ cmpt 4965 Ord word 5975 Oncon0 5976 suc csuc 5978 ‘cfv 6135 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-8 2109 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-sep 5017 ax-nul 5025 ax-pr 5138 ax-un 7226 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3or 1072 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2551 df-eu 2587 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ne 2970 df-ral 3095 df-rex 3096 df-rab 3099 df-v 3400 df-sbc 3653 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-pss 3808 df-nul 4142 df-if 4308 df-sn 4399 df-pr 4401 df-tp 4403 df-op 4405 df-uni 4672 df-br 4887 df-opab 4949 df-mpt 4966 df-tr 4988 df-id 5261 df-eprel 5266 df-po 5274 df-so 5275 df-fr 5314 df-we 5316 df-xp 5361 df-rel 5362 df-cnv 5363 df-co 5364 df-dm 5365 df-ord 5979 df-on 5980 df-suc 5982 df-iota 6099 df-fun 6137 df-fv 6143 |
This theorem is referenced by: onsetrec 43559 |
Copyright terms: Public domain | W3C validator |