| Mathbox for Emmett Weisz |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > onsetreclem3 | Structured version Visualization version GIF version | ||
| Description: Lemma for onsetrec 49697. (Contributed by Emmett Weisz, 22-Jun-2021.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| onsetreclem3.1 | ⊢ 𝐹 = (𝑥 ∈ V ↦ {∪ 𝑥, suc ∪ 𝑥}) |
| Ref | Expression |
|---|---|
| onsetreclem3 | ⊢ (𝑎 ∈ On → 𝑎 ∈ (𝐹‘𝑎)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eloni 6317 | . . . 4 ⊢ (𝑎 ∈ On → Ord 𝑎) | |
| 2 | orduniorsuc 7763 | . . . 4 ⊢ (Ord 𝑎 → (𝑎 = ∪ 𝑎 ∨ 𝑎 = suc ∪ 𝑎)) | |
| 3 | 1, 2 | syl 17 | . . 3 ⊢ (𝑎 ∈ On → (𝑎 = ∪ 𝑎 ∨ 𝑎 = suc ∪ 𝑎)) |
| 4 | vex 3440 | . . . 4 ⊢ 𝑎 ∈ V | |
| 5 | 4 | elpr 4602 | . . 3 ⊢ (𝑎 ∈ {∪ 𝑎, suc ∪ 𝑎} ↔ (𝑎 = ∪ 𝑎 ∨ 𝑎 = suc ∪ 𝑎)) |
| 6 | 3, 5 | sylibr 234 | . 2 ⊢ (𝑎 ∈ On → 𝑎 ∈ {∪ 𝑎, suc ∪ 𝑎}) |
| 7 | onsetreclem3.1 | . . 3 ⊢ 𝐹 = (𝑥 ∈ V ↦ {∪ 𝑥, suc ∪ 𝑥}) | |
| 8 | 7 | onsetreclem1 49694 | . 2 ⊢ (𝐹‘𝑎) = {∪ 𝑎, suc ∪ 𝑎} |
| 9 | 6, 8 | eleqtrrdi 2839 | 1 ⊢ (𝑎 ∈ On → 𝑎 ∈ (𝐹‘𝑎)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∨ wo 847 = wceq 1540 ∈ wcel 2109 Vcvv 3436 {cpr 4579 ∪ cuni 4858 ↦ cmpt 5173 Ord word 6306 Oncon0 6307 suc csuc 6309 ‘cfv 6482 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pr 5371 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-ord 6310 df-on 6311 df-suc 6313 df-iota 6438 df-fun 6484 df-fv 6490 |
| This theorem is referenced by: onsetrec 49697 |
| Copyright terms: Public domain | W3C validator |