Users' Mathboxes Mathbox for Emmett Weisz < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  onsetreclem3 Structured version   Visualization version   GIF version

Theorem onsetreclem3 49669
Description: Lemma for onsetrec 49670. (Contributed by Emmett Weisz, 22-Jun-2021.) (New usage is discouraged.)
Hypothesis
Ref Expression
onsetreclem3.1 𝐹 = (𝑥 ∈ V ↦ { 𝑥, suc 𝑥})
Assertion
Ref Expression
onsetreclem3 (𝑎 ∈ On → 𝑎 ∈ (𝐹𝑎))
Distinct variable group:   𝑥,𝑎
Allowed substitution hints:   𝐹(𝑥,𝑎)

Proof of Theorem onsetreclem3
StepHypRef Expression
1 eloni 6330 . . . 4 (𝑎 ∈ On → Ord 𝑎)
2 orduniorsuc 7785 . . . 4 (Ord 𝑎 → (𝑎 = 𝑎𝑎 = suc 𝑎))
31, 2syl 17 . . 3 (𝑎 ∈ On → (𝑎 = 𝑎𝑎 = suc 𝑎))
4 vex 3448 . . . 4 𝑎 ∈ V
54elpr 4610 . . 3 (𝑎 ∈ { 𝑎, suc 𝑎} ↔ (𝑎 = 𝑎𝑎 = suc 𝑎))
63, 5sylibr 234 . 2 (𝑎 ∈ On → 𝑎 ∈ { 𝑎, suc 𝑎})
7 onsetreclem3.1 . . 3 𝐹 = (𝑥 ∈ V ↦ { 𝑥, suc 𝑥})
87onsetreclem1 49667 . 2 (𝐹𝑎) = { 𝑎, suc 𝑎}
96, 8eleqtrrdi 2839 1 (𝑎 ∈ On → 𝑎 ∈ (𝐹𝑎))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 847   = wceq 1540  wcel 2109  Vcvv 3444  {cpr 4587   cuni 4867  cmpt 5183  Ord word 6319  Oncon0 6320  suc csuc 6322  cfv 6499
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pr 5382
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-ord 6323  df-on 6324  df-suc 6326  df-iota 6452  df-fun 6501  df-fv 6507
This theorem is referenced by:  onsetrec  49670
  Copyright terms: Public domain W3C validator