Mathbox for Emmett Weisz |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > onsetreclem3 | Structured version Visualization version GIF version |
Description: Lemma for onsetrec 46299. (Contributed by Emmett Weisz, 22-Jun-2021.) (New usage is discouraged.) |
Ref | Expression |
---|---|
onsetreclem3.1 | ⊢ 𝐹 = (𝑥 ∈ V ↦ {∪ 𝑥, suc ∪ 𝑥}) |
Ref | Expression |
---|---|
onsetreclem3 | ⊢ (𝑎 ∈ On → 𝑎 ∈ (𝐹‘𝑎)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eloni 6261 | . . . 4 ⊢ (𝑎 ∈ On → Ord 𝑎) | |
2 | orduniorsuc 7652 | . . . 4 ⊢ (Ord 𝑎 → (𝑎 = ∪ 𝑎 ∨ 𝑎 = suc ∪ 𝑎)) | |
3 | 1, 2 | syl 17 | . . 3 ⊢ (𝑎 ∈ On → (𝑎 = ∪ 𝑎 ∨ 𝑎 = suc ∪ 𝑎)) |
4 | vex 3426 | . . . 4 ⊢ 𝑎 ∈ V | |
5 | 4 | elpr 4581 | . . 3 ⊢ (𝑎 ∈ {∪ 𝑎, suc ∪ 𝑎} ↔ (𝑎 = ∪ 𝑎 ∨ 𝑎 = suc ∪ 𝑎)) |
6 | 3, 5 | sylibr 233 | . 2 ⊢ (𝑎 ∈ On → 𝑎 ∈ {∪ 𝑎, suc ∪ 𝑎}) |
7 | onsetreclem3.1 | . . 3 ⊢ 𝐹 = (𝑥 ∈ V ↦ {∪ 𝑥, suc ∪ 𝑥}) | |
8 | 7 | onsetreclem1 46296 | . 2 ⊢ (𝐹‘𝑎) = {∪ 𝑎, suc ∪ 𝑎} |
9 | 6, 8 | eleqtrrdi 2850 | 1 ⊢ (𝑎 ∈ On → 𝑎 ∈ (𝐹‘𝑎)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ wo 843 = wceq 1539 ∈ wcel 2108 Vcvv 3422 {cpr 4560 ∪ cuni 4836 ↦ cmpt 5153 Ord word 6250 Oncon0 6251 suc csuc 6253 ‘cfv 6418 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-ord 6254 df-on 6255 df-suc 6257 df-iota 6376 df-fun 6420 df-fv 6426 |
This theorem is referenced by: onsetrec 46299 |
Copyright terms: Public domain | W3C validator |