![]() |
Mathbox for Emmett Weisz |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > onsetreclem3 | Structured version Visualization version GIF version |
Description: Lemma for onsetrec 47706. (Contributed by Emmett Weisz, 22-Jun-2021.) (New usage is discouraged.) |
Ref | Expression |
---|---|
onsetreclem3.1 | ⊢ 𝐹 = (𝑥 ∈ V ↦ {∪ 𝑥, suc ∪ 𝑥}) |
Ref | Expression |
---|---|
onsetreclem3 | ⊢ (𝑎 ∈ On → 𝑎 ∈ (𝐹‘𝑎)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eloni 6371 | . . . 4 ⊢ (𝑎 ∈ On → Ord 𝑎) | |
2 | orduniorsuc 7814 | . . . 4 ⊢ (Ord 𝑎 → (𝑎 = ∪ 𝑎 ∨ 𝑎 = suc ∪ 𝑎)) | |
3 | 1, 2 | syl 17 | . . 3 ⊢ (𝑎 ∈ On → (𝑎 = ∪ 𝑎 ∨ 𝑎 = suc ∪ 𝑎)) |
4 | vex 3478 | . . . 4 ⊢ 𝑎 ∈ V | |
5 | 4 | elpr 4650 | . . 3 ⊢ (𝑎 ∈ {∪ 𝑎, suc ∪ 𝑎} ↔ (𝑎 = ∪ 𝑎 ∨ 𝑎 = suc ∪ 𝑎)) |
6 | 3, 5 | sylibr 233 | . 2 ⊢ (𝑎 ∈ On → 𝑎 ∈ {∪ 𝑎, suc ∪ 𝑎}) |
7 | onsetreclem3.1 | . . 3 ⊢ 𝐹 = (𝑥 ∈ V ↦ {∪ 𝑥, suc ∪ 𝑥}) | |
8 | 7 | onsetreclem1 47703 | . 2 ⊢ (𝐹‘𝑎) = {∪ 𝑎, suc ∪ 𝑎} |
9 | 6, 8 | eleqtrrdi 2844 | 1 ⊢ (𝑎 ∈ On → 𝑎 ∈ (𝐹‘𝑎)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ wo 845 = wceq 1541 ∈ wcel 2106 Vcvv 3474 {cpr 4629 ∪ cuni 4907 ↦ cmpt 5230 Ord word 6360 Oncon0 6361 suc csuc 6363 ‘cfv 6540 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pr 5426 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-ord 6364 df-on 6365 df-suc 6367 df-iota 6492 df-fun 6542 df-fv 6548 |
This theorem is referenced by: onsetrec 47706 |
Copyright terms: Public domain | W3C validator |