Users' Mathboxes Mathbox for Emmett Weisz < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  onsetreclem3 Structured version   Visualization version   GIF version

Theorem onsetreclem3 49226
Description: Lemma for onsetrec 49227. (Contributed by Emmett Weisz, 22-Jun-2021.) (New usage is discouraged.)
Hypothesis
Ref Expression
onsetreclem3.1 𝐹 = (𝑥 ∈ V ↦ { 𝑥, suc 𝑥})
Assertion
Ref Expression
onsetreclem3 (𝑎 ∈ On → 𝑎 ∈ (𝐹𝑎))
Distinct variable group:   𝑥,𝑎
Allowed substitution hints:   𝐹(𝑥,𝑎)

Proof of Theorem onsetreclem3
StepHypRef Expression
1 eloni 6394 . . . 4 (𝑎 ∈ On → Ord 𝑎)
2 orduniorsuc 7850 . . . 4 (Ord 𝑎 → (𝑎 = 𝑎𝑎 = suc 𝑎))
31, 2syl 17 . . 3 (𝑎 ∈ On → (𝑎 = 𝑎𝑎 = suc 𝑎))
4 vex 3484 . . . 4 𝑎 ∈ V
54elpr 4650 . . 3 (𝑎 ∈ { 𝑎, suc 𝑎} ↔ (𝑎 = 𝑎𝑎 = suc 𝑎))
63, 5sylibr 234 . 2 (𝑎 ∈ On → 𝑎 ∈ { 𝑎, suc 𝑎})
7 onsetreclem3.1 . . 3 𝐹 = (𝑥 ∈ V ↦ { 𝑥, suc 𝑥})
87onsetreclem1 49224 . 2 (𝐹𝑎) = { 𝑎, suc 𝑎}
96, 8eleqtrrdi 2852 1 (𝑎 ∈ On → 𝑎 ∈ (𝐹𝑎))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 848   = wceq 1540  wcel 2108  Vcvv 3480  {cpr 4628   cuni 4907  cmpt 5225  Ord word 6383  Oncon0 6384  suc csuc 6386  cfv 6561
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pr 5432
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3482  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-ord 6387  df-on 6388  df-suc 6390  df-iota 6514  df-fun 6563  df-fv 6569
This theorem is referenced by:  onsetrec  49227
  Copyright terms: Public domain W3C validator