Users' Mathboxes Mathbox for Emmett Weisz < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  onsetrec Structured version   Visualization version   GIF version

Theorem onsetrec 49697
Description: Construct On using set recursion. When 𝑥 ∈ On, the function 𝐹 constructs the least ordinal greater than any of the elements of 𝑥, which is 𝑥 for a limit ordinal and suc 𝑥 for a successor ordinal.

For example, (𝐹‘{1o, 2o}) = { {1o, 2o}, suc {1o, 2o}} = {2o, 3o} which contains 3o, and (𝐹‘ω) = { ω, suc ω} = {ω, ω +o 1o}, which contains ω. If we start with the empty set and keep applying 𝐹 transfinitely many times, all ordinal numbers will be generated.

Any function 𝐹 fulfilling lemmas onsetreclem2 49695 and onsetreclem3 49696 will recursively generate On; for example, 𝐹 = (𝑥 ∈ V ↦ suc suc 𝑥}) also works. Whether this function or the function in the theorem is used, taking this theorem as a definition of On is unsatisfying because it relies on the different properties of limit and successor ordinals. A different approach could be to let 𝐹 = (𝑥 ∈ V ↦ {𝑦 ∈ 𝒫 𝑥 ∣ Tr 𝑦}), based on dfon2 35770.

The proof of this theorem uses the dummy variable 𝑎 rather than 𝑥 to avoid a distinct variable condition between 𝐹 and 𝑥. (Contributed by Emmett Weisz, 22-Jun-2021.)

Hypothesis
Ref Expression
onsetrec.1 𝐹 = (𝑥 ∈ V ↦ { 𝑥, suc 𝑥})
Assertion
Ref Expression
onsetrec setrecs(𝐹) = On

Proof of Theorem onsetrec
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 eqid 2729 . . . 4 setrecs(𝐹) = setrecs(𝐹)
2 onsetrec.1 . . . . . . 7 𝐹 = (𝑥 ∈ V ↦ { 𝑥, suc 𝑥})
32onsetreclem2 49695 . . . . . 6 (𝑎 ⊆ On → (𝐹𝑎) ⊆ On)
43ax-gen 1795 . . . . 5 𝑎(𝑎 ⊆ On → (𝐹𝑎) ⊆ On)
54a1i 11 . . . 4 (⊤ → ∀𝑎(𝑎 ⊆ On → (𝐹𝑎) ⊆ On))
61, 5setrec2v 49685 . . 3 (⊤ → setrecs(𝐹) ⊆ On)
76mptru 1547 . 2 setrecs(𝐹) ⊆ On
8 vex 3440 . . . . . . 7 𝑎 ∈ V
98a1i 11 . . . . . 6 (𝑎 ⊆ setrecs(𝐹) → 𝑎 ∈ V)
10 id 22 . . . . . 6 (𝑎 ⊆ setrecs(𝐹) → 𝑎 ⊆ setrecs(𝐹))
111, 9, 10setrec1 49680 . . . . 5 (𝑎 ⊆ setrecs(𝐹) → (𝐹𝑎) ⊆ setrecs(𝐹))
122onsetreclem3 49696 . . . . 5 (𝑎 ∈ On → 𝑎 ∈ (𝐹𝑎))
13 ssel 3929 . . . . 5 ((𝐹𝑎) ⊆ setrecs(𝐹) → (𝑎 ∈ (𝐹𝑎) → 𝑎 ∈ setrecs(𝐹)))
1411, 12, 13syl2im 40 . . . 4 (𝑎 ⊆ setrecs(𝐹) → (𝑎 ∈ On → 𝑎 ∈ setrecs(𝐹)))
1514com12 32 . . 3 (𝑎 ∈ On → (𝑎 ⊆ setrecs(𝐹) → 𝑎 ∈ setrecs(𝐹)))
1615rgen 3046 . 2 𝑎 ∈ On (𝑎 ⊆ setrecs(𝐹) → 𝑎 ∈ setrecs(𝐹))
17 tfi 7786 . 2 ((setrecs(𝐹) ⊆ On ∧ ∀𝑎 ∈ On (𝑎 ⊆ setrecs(𝐹) → 𝑎 ∈ setrecs(𝐹))) → setrecs(𝐹) = On)
187, 16, 17mp2an 692 1 setrecs(𝐹) = On
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1538   = wceq 1540  wtru 1541  wcel 2109  wral 3044  Vcvv 3436  wss 3903  {cpr 4579   cuni 4858  cmpt 5173  Oncon0 6307  suc csuc 6309  cfv 6482  setrecscsetrecs 49672
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-reg 9484  ax-inf2 9537
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-iin 4944  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-ov 7352  df-om 7800  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-r1 9660  df-rank 9661  df-setrecs 49673
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator