Mathbox for Emmett Weisz |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > onsetrec | Structured version Visualization version GIF version |
Description: Construct On using set recursion. When 𝑥 ∈ On, the function
𝐹 constructs the least ordinal greater
than any of the elements of
𝑥, which is ∪ 𝑥 for a limit ordinal and suc ∪ 𝑥 for a
successor ordinal.
For example, (𝐹‘{1o, 2o}) = {∪ {1o, 2o}, suc ∪ {1o, 2o}} = {2o, 3o} which contains 3o, and (𝐹‘ω) = {∪ ω, suc ∪ ω} = {ω, ω +o 1o}, which contains ω. If we start with the empty set and keep applying 𝐹 transfinitely many times, all ordinal numbers will be generated. Any function 𝐹 fulfilling lemmas onsetreclem2 46389 and onsetreclem3 46390 will recursively generate On; for example, 𝐹 = (𝑥 ∈ V ↦ suc suc ∪ 𝑥}) also works. Whether this function or the function in the theorem is used, taking this theorem as a definition of On is unsatisfying because it relies on the different properties of limit and successor ordinals. A different approach could be to let 𝐹 = (𝑥 ∈ V ↦ {𝑦 ∈ 𝒫 𝑥 ∣ Tr 𝑦}), based on dfon2 33776. The proof of this theorem uses the dummy variable 𝑎 rather than 𝑥 to avoid a distinct variable condition between 𝐹 and 𝑥. (Contributed by Emmett Weisz, 22-Jun-2021.) |
Ref | Expression |
---|---|
onsetrec.1 | ⊢ 𝐹 = (𝑥 ∈ V ↦ {∪ 𝑥, suc ∪ 𝑥}) |
Ref | Expression |
---|---|
onsetrec | ⊢ setrecs(𝐹) = On |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2738 | . . . 4 ⊢ setrecs(𝐹) = setrecs(𝐹) | |
2 | onsetrec.1 | . . . . . . 7 ⊢ 𝐹 = (𝑥 ∈ V ↦ {∪ 𝑥, suc ∪ 𝑥}) | |
3 | 2 | onsetreclem2 46389 | . . . . . 6 ⊢ (𝑎 ⊆ On → (𝐹‘𝑎) ⊆ On) |
4 | 3 | ax-gen 1798 | . . . . 5 ⊢ ∀𝑎(𝑎 ⊆ On → (𝐹‘𝑎) ⊆ On) |
5 | 4 | a1i 11 | . . . 4 ⊢ (⊤ → ∀𝑎(𝑎 ⊆ On → (𝐹‘𝑎) ⊆ On)) |
6 | 1, 5 | setrec2v 46380 | . . 3 ⊢ (⊤ → setrecs(𝐹) ⊆ On) |
7 | 6 | mptru 1546 | . 2 ⊢ setrecs(𝐹) ⊆ On |
8 | vex 3433 | . . . . . . 7 ⊢ 𝑎 ∈ V | |
9 | 8 | a1i 11 | . . . . . 6 ⊢ (𝑎 ⊆ setrecs(𝐹) → 𝑎 ∈ V) |
10 | id 22 | . . . . . 6 ⊢ (𝑎 ⊆ setrecs(𝐹) → 𝑎 ⊆ setrecs(𝐹)) | |
11 | 1, 9, 10 | setrec1 46375 | . . . . 5 ⊢ (𝑎 ⊆ setrecs(𝐹) → (𝐹‘𝑎) ⊆ setrecs(𝐹)) |
12 | 2 | onsetreclem3 46390 | . . . . 5 ⊢ (𝑎 ∈ On → 𝑎 ∈ (𝐹‘𝑎)) |
13 | ssel 3913 | . . . . 5 ⊢ ((𝐹‘𝑎) ⊆ setrecs(𝐹) → (𝑎 ∈ (𝐹‘𝑎) → 𝑎 ∈ setrecs(𝐹))) | |
14 | 11, 12, 13 | syl2im 40 | . . . 4 ⊢ (𝑎 ⊆ setrecs(𝐹) → (𝑎 ∈ On → 𝑎 ∈ setrecs(𝐹))) |
15 | 14 | com12 32 | . . 3 ⊢ (𝑎 ∈ On → (𝑎 ⊆ setrecs(𝐹) → 𝑎 ∈ setrecs(𝐹))) |
16 | 15 | rgen 3074 | . 2 ⊢ ∀𝑎 ∈ On (𝑎 ⊆ setrecs(𝐹) → 𝑎 ∈ setrecs(𝐹)) |
17 | tfi 7690 | . 2 ⊢ ((setrecs(𝐹) ⊆ On ∧ ∀𝑎 ∈ On (𝑎 ⊆ setrecs(𝐹) → 𝑎 ∈ setrecs(𝐹))) → setrecs(𝐹) = On) | |
18 | 7, 16, 17 | mp2an 689 | 1 ⊢ setrecs(𝐹) = On |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1537 = wceq 1539 ⊤wtru 1540 ∈ wcel 2106 ∀wral 3064 Vcvv 3429 ⊆ wss 3886 {cpr 4563 ∪ cuni 4839 ↦ cmpt 5156 Oncon0 6259 suc csuc 6261 ‘cfv 6426 setrecscsetrecs 46367 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5208 ax-sep 5221 ax-nul 5228 ax-pow 5286 ax-pr 5350 ax-un 7578 ax-reg 9338 ax-inf2 9386 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3071 df-rab 3073 df-v 3431 df-sbc 3716 df-csb 3832 df-dif 3889 df-un 3891 df-in 3893 df-ss 3903 df-pss 3905 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-iin 4927 df-br 5074 df-opab 5136 df-mpt 5157 df-tr 5191 df-id 5484 df-eprel 5490 df-po 5498 df-so 5499 df-fr 5539 df-we 5541 df-xp 5590 df-rel 5591 df-cnv 5592 df-co 5593 df-dm 5594 df-rn 5595 df-res 5596 df-ima 5597 df-pred 6195 df-ord 6262 df-on 6263 df-lim 6264 df-suc 6265 df-iota 6384 df-fun 6428 df-fn 6429 df-f 6430 df-f1 6431 df-fo 6432 df-f1o 6433 df-fv 6434 df-ov 7270 df-om 7703 df-2nd 7821 df-frecs 8084 df-wrecs 8115 df-recs 8189 df-rdg 8228 df-r1 9532 df-rank 9533 df-setrecs 46368 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |