| Mathbox for Emmett Weisz |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > onsetrec | Structured version Visualization version GIF version | ||
| Description: Construct On using set recursion. When 𝑥 ∈ On, the function
𝐹 constructs the least ordinal greater
than any of the elements of
𝑥, which is ∪ 𝑥 for a limit ordinal and suc ∪ 𝑥 for a
successor ordinal.
For example, (𝐹‘{1o, 2o}) = {∪ {1o, 2o}, suc ∪ {1o, 2o}} = {2o, 3o} which contains 3o, and (𝐹‘ω) = {∪ ω, suc ∪ ω} = {ω, ω +o 1o}, which contains ω. If we start with the empty set and keep applying 𝐹 transfinitely many times, all ordinal numbers will be generated. Any function 𝐹 fulfilling lemmas onsetreclem2 49225 and onsetreclem3 49226 will recursively generate On; for example, 𝐹 = (𝑥 ∈ V ↦ suc suc ∪ 𝑥}) also works. Whether this function or the function in the theorem is used, taking this theorem as a definition of On is unsatisfying because it relies on the different properties of limit and successor ordinals. A different approach could be to let 𝐹 = (𝑥 ∈ V ↦ {𝑦 ∈ 𝒫 𝑥 ∣ Tr 𝑦}), based on dfon2 35793. The proof of this theorem uses the dummy variable 𝑎 rather than 𝑥 to avoid a distinct variable condition between 𝐹 and 𝑥. (Contributed by Emmett Weisz, 22-Jun-2021.) |
| Ref | Expression |
|---|---|
| onsetrec.1 | ⊢ 𝐹 = (𝑥 ∈ V ↦ {∪ 𝑥, suc ∪ 𝑥}) |
| Ref | Expression |
|---|---|
| onsetrec | ⊢ setrecs(𝐹) = On |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2737 | . . . 4 ⊢ setrecs(𝐹) = setrecs(𝐹) | |
| 2 | onsetrec.1 | . . . . . . 7 ⊢ 𝐹 = (𝑥 ∈ V ↦ {∪ 𝑥, suc ∪ 𝑥}) | |
| 3 | 2 | onsetreclem2 49225 | . . . . . 6 ⊢ (𝑎 ⊆ On → (𝐹‘𝑎) ⊆ On) |
| 4 | 3 | ax-gen 1795 | . . . . 5 ⊢ ∀𝑎(𝑎 ⊆ On → (𝐹‘𝑎) ⊆ On) |
| 5 | 4 | a1i 11 | . . . 4 ⊢ (⊤ → ∀𝑎(𝑎 ⊆ On → (𝐹‘𝑎) ⊆ On)) |
| 6 | 1, 5 | setrec2v 49215 | . . 3 ⊢ (⊤ → setrecs(𝐹) ⊆ On) |
| 7 | 6 | mptru 1547 | . 2 ⊢ setrecs(𝐹) ⊆ On |
| 8 | vex 3484 | . . . . . . 7 ⊢ 𝑎 ∈ V | |
| 9 | 8 | a1i 11 | . . . . . 6 ⊢ (𝑎 ⊆ setrecs(𝐹) → 𝑎 ∈ V) |
| 10 | id 22 | . . . . . 6 ⊢ (𝑎 ⊆ setrecs(𝐹) → 𝑎 ⊆ setrecs(𝐹)) | |
| 11 | 1, 9, 10 | setrec1 49210 | . . . . 5 ⊢ (𝑎 ⊆ setrecs(𝐹) → (𝐹‘𝑎) ⊆ setrecs(𝐹)) |
| 12 | 2 | onsetreclem3 49226 | . . . . 5 ⊢ (𝑎 ∈ On → 𝑎 ∈ (𝐹‘𝑎)) |
| 13 | ssel 3977 | . . . . 5 ⊢ ((𝐹‘𝑎) ⊆ setrecs(𝐹) → (𝑎 ∈ (𝐹‘𝑎) → 𝑎 ∈ setrecs(𝐹))) | |
| 14 | 11, 12, 13 | syl2im 40 | . . . 4 ⊢ (𝑎 ⊆ setrecs(𝐹) → (𝑎 ∈ On → 𝑎 ∈ setrecs(𝐹))) |
| 15 | 14 | com12 32 | . . 3 ⊢ (𝑎 ∈ On → (𝑎 ⊆ setrecs(𝐹) → 𝑎 ∈ setrecs(𝐹))) |
| 16 | 15 | rgen 3063 | . 2 ⊢ ∀𝑎 ∈ On (𝑎 ⊆ setrecs(𝐹) → 𝑎 ∈ setrecs(𝐹)) |
| 17 | tfi 7874 | . 2 ⊢ ((setrecs(𝐹) ⊆ On ∧ ∀𝑎 ∈ On (𝑎 ⊆ setrecs(𝐹) → 𝑎 ∈ setrecs(𝐹))) → setrecs(𝐹) = On) | |
| 18 | 7, 16, 17 | mp2an 692 | 1 ⊢ setrecs(𝐹) = On |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1538 = wceq 1540 ⊤wtru 1541 ∈ wcel 2108 ∀wral 3061 Vcvv 3480 ⊆ wss 3951 {cpr 4628 ∪ cuni 4907 ↦ cmpt 5225 Oncon0 6384 suc csuc 6386 ‘cfv 6561 setrecscsetrecs 49202 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5279 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-reg 9632 ax-inf2 9681 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-int 4947 df-iun 4993 df-iin 4994 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-ov 7434 df-om 7888 df-2nd 8015 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-r1 9804 df-rank 9805 df-setrecs 49203 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |