![]() |
Mathbox for Emmett Weisz |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > onsetrec | Structured version Visualization version GIF version |
Description: Construct On using set recursion. When 𝑥 ∈ On, the function
𝐹 constructs the least ordinal greater
than any of the elements of
𝑥, which is ∪ 𝑥 for a limit ordinal and suc ∪ 𝑥 for a
successor ordinal.
For example, (𝐹‘{1o, 2o}) = {∪ {1o, 2o}, suc ∪ {1o, 2o}} = {2o, 3o} which contains 3o, and (𝐹‘ω) = {∪ ω, suc ∪ ω} = {ω, ω +o 1o}, which contains ω. If we start with the empty set and keep applying 𝐹 transfinitely many times, all ordinal numbers will be generated. Any function 𝐹 fulfilling lemmas onsetreclem2 48798 and onsetreclem3 48799 will recursively generate On; for example, 𝐹 = (𝑥 ∈ V ↦ suc suc ∪ 𝑥}) also works. Whether this function or the function in the theorem is used, taking this theorem as a definition of On is unsatisfying because it relies on the different properties of limit and successor ordinals. A different approach could be to let 𝐹 = (𝑥 ∈ V ↦ {𝑦 ∈ 𝒫 𝑥 ∣ Tr 𝑦}), based on dfon2 35756. The proof of this theorem uses the dummy variable 𝑎 rather than 𝑥 to avoid a distinct variable condition between 𝐹 and 𝑥. (Contributed by Emmett Weisz, 22-Jun-2021.) |
Ref | Expression |
---|---|
onsetrec.1 | ⊢ 𝐹 = (𝑥 ∈ V ↦ {∪ 𝑥, suc ∪ 𝑥}) |
Ref | Expression |
---|---|
onsetrec | ⊢ setrecs(𝐹) = On |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2740 | . . . 4 ⊢ setrecs(𝐹) = setrecs(𝐹) | |
2 | onsetrec.1 | . . . . . . 7 ⊢ 𝐹 = (𝑥 ∈ V ↦ {∪ 𝑥, suc ∪ 𝑥}) | |
3 | 2 | onsetreclem2 48798 | . . . . . 6 ⊢ (𝑎 ⊆ On → (𝐹‘𝑎) ⊆ On) |
4 | 3 | ax-gen 1793 | . . . . 5 ⊢ ∀𝑎(𝑎 ⊆ On → (𝐹‘𝑎) ⊆ On) |
5 | 4 | a1i 11 | . . . 4 ⊢ (⊤ → ∀𝑎(𝑎 ⊆ On → (𝐹‘𝑎) ⊆ On)) |
6 | 1, 5 | setrec2v 48788 | . . 3 ⊢ (⊤ → setrecs(𝐹) ⊆ On) |
7 | 6 | mptru 1544 | . 2 ⊢ setrecs(𝐹) ⊆ On |
8 | vex 3492 | . . . . . . 7 ⊢ 𝑎 ∈ V | |
9 | 8 | a1i 11 | . . . . . 6 ⊢ (𝑎 ⊆ setrecs(𝐹) → 𝑎 ∈ V) |
10 | id 22 | . . . . . 6 ⊢ (𝑎 ⊆ setrecs(𝐹) → 𝑎 ⊆ setrecs(𝐹)) | |
11 | 1, 9, 10 | setrec1 48783 | . . . . 5 ⊢ (𝑎 ⊆ setrecs(𝐹) → (𝐹‘𝑎) ⊆ setrecs(𝐹)) |
12 | 2 | onsetreclem3 48799 | . . . . 5 ⊢ (𝑎 ∈ On → 𝑎 ∈ (𝐹‘𝑎)) |
13 | ssel 4002 | . . . . 5 ⊢ ((𝐹‘𝑎) ⊆ setrecs(𝐹) → (𝑎 ∈ (𝐹‘𝑎) → 𝑎 ∈ setrecs(𝐹))) | |
14 | 11, 12, 13 | syl2im 40 | . . . 4 ⊢ (𝑎 ⊆ setrecs(𝐹) → (𝑎 ∈ On → 𝑎 ∈ setrecs(𝐹))) |
15 | 14 | com12 32 | . . 3 ⊢ (𝑎 ∈ On → (𝑎 ⊆ setrecs(𝐹) → 𝑎 ∈ setrecs(𝐹))) |
16 | 15 | rgen 3069 | . 2 ⊢ ∀𝑎 ∈ On (𝑎 ⊆ setrecs(𝐹) → 𝑎 ∈ setrecs(𝐹)) |
17 | tfi 7890 | . 2 ⊢ ((setrecs(𝐹) ⊆ On ∧ ∀𝑎 ∈ On (𝑎 ⊆ setrecs(𝐹) → 𝑎 ∈ setrecs(𝐹))) → setrecs(𝐹) = On) | |
18 | 7, 16, 17 | mp2an 691 | 1 ⊢ setrecs(𝐹) = On |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1535 = wceq 1537 ⊤wtru 1538 ∈ wcel 2108 ∀wral 3067 Vcvv 3488 ⊆ wss 3976 {cpr 4650 ∪ cuni 4931 ↦ cmpt 5249 Oncon0 6395 suc csuc 6397 ‘cfv 6573 setrecscsetrecs 48775 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-reg 9661 ax-inf2 9710 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-iin 5018 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-ov 7451 df-om 7904 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-r1 9833 df-rank 9834 df-setrecs 48776 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |