Users' Mathboxes Mathbox for Emmett Weisz < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  onsetrec Structured version   Visualization version   GIF version

Theorem onsetrec 49819
Description: Construct On using set recursion. When 𝑥 ∈ On, the function 𝐹 constructs the least ordinal greater than any of the elements of 𝑥, which is 𝑥 for a limit ordinal and suc 𝑥 for a successor ordinal.

For example, (𝐹‘{1o, 2o}) = { {1o, 2o}, suc {1o, 2o}} = {2o, 3o} which contains 3o, and (𝐹‘ω) = { ω, suc ω} = {ω, ω +o 1o}, which contains ω. If we start with the empty set and keep applying 𝐹 transfinitely many times, all ordinal numbers will be generated.

Any function 𝐹 fulfilling lemmas onsetreclem2 49817 and onsetreclem3 49818 will recursively generate On; for example, 𝐹 = (𝑥 ∈ V ↦ suc suc 𝑥}) also works. Whether this function or the function in the theorem is used, taking this theorem as a definition of On is unsatisfying because it relies on the different properties of limit and successor ordinals. A different approach could be to let 𝐹 = (𝑥 ∈ V ↦ {𝑦 ∈ 𝒫 𝑥 ∣ Tr 𝑦}), based on dfon2 35834.

The proof of this theorem uses the dummy variable 𝑎 rather than 𝑥 to avoid a distinct variable condition between 𝐹 and 𝑥. (Contributed by Emmett Weisz, 22-Jun-2021.)

Hypothesis
Ref Expression
onsetrec.1 𝐹 = (𝑥 ∈ V ↦ { 𝑥, suc 𝑥})
Assertion
Ref Expression
onsetrec setrecs(𝐹) = On

Proof of Theorem onsetrec
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 eqid 2731 . . . 4 setrecs(𝐹) = setrecs(𝐹)
2 onsetrec.1 . . . . . . 7 𝐹 = (𝑥 ∈ V ↦ { 𝑥, suc 𝑥})
32onsetreclem2 49817 . . . . . 6 (𝑎 ⊆ On → (𝐹𝑎) ⊆ On)
43ax-gen 1796 . . . . 5 𝑎(𝑎 ⊆ On → (𝐹𝑎) ⊆ On)
54a1i 11 . . . 4 (⊤ → ∀𝑎(𝑎 ⊆ On → (𝐹𝑎) ⊆ On))
61, 5setrec2v 49807 . . 3 (⊤ → setrecs(𝐹) ⊆ On)
76mptru 1548 . 2 setrecs(𝐹) ⊆ On
8 vex 3440 . . . . . . 7 𝑎 ∈ V
98a1i 11 . . . . . 6 (𝑎 ⊆ setrecs(𝐹) → 𝑎 ∈ V)
10 id 22 . . . . . 6 (𝑎 ⊆ setrecs(𝐹) → 𝑎 ⊆ setrecs(𝐹))
111, 9, 10setrec1 49802 . . . . 5 (𝑎 ⊆ setrecs(𝐹) → (𝐹𝑎) ⊆ setrecs(𝐹))
122onsetreclem3 49818 . . . . 5 (𝑎 ∈ On → 𝑎 ∈ (𝐹𝑎))
13 ssel 3923 . . . . 5 ((𝐹𝑎) ⊆ setrecs(𝐹) → (𝑎 ∈ (𝐹𝑎) → 𝑎 ∈ setrecs(𝐹)))
1411, 12, 13syl2im 40 . . . 4 (𝑎 ⊆ setrecs(𝐹) → (𝑎 ∈ On → 𝑎 ∈ setrecs(𝐹)))
1514com12 32 . . 3 (𝑎 ∈ On → (𝑎 ⊆ setrecs(𝐹) → 𝑎 ∈ setrecs(𝐹)))
1615rgen 3049 . 2 𝑎 ∈ On (𝑎 ⊆ setrecs(𝐹) → 𝑎 ∈ setrecs(𝐹))
17 tfi 7783 . 2 ((setrecs(𝐹) ⊆ On ∧ ∀𝑎 ∈ On (𝑎 ⊆ setrecs(𝐹) → 𝑎 ∈ setrecs(𝐹))) → setrecs(𝐹) = On)
187, 16, 17mp2an 692 1 setrecs(𝐹) = On
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1539   = wceq 1541  wtru 1542  wcel 2111  wral 3047  Vcvv 3436  wss 3897  {cpr 4575   cuni 4856  cmpt 5170  Oncon0 6306  suc csuc 6308  cfv 6481  setrecscsetrecs 49794
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-reg 9478  ax-inf2 9531
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-iin 4942  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-om 7797  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-r1 9657  df-rank 9658  df-setrecs 49795
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator