Users' Mathboxes Mathbox for Emmett Weisz < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  onsetrec Structured version   Visualization version   GIF version

Theorem onsetrec 48800
Description: Construct On using set recursion. When 𝑥 ∈ On, the function 𝐹 constructs the least ordinal greater than any of the elements of 𝑥, which is 𝑥 for a limit ordinal and suc 𝑥 for a successor ordinal.

For example, (𝐹‘{1o, 2o}) = { {1o, 2o}, suc {1o, 2o}} = {2o, 3o} which contains 3o, and (𝐹‘ω) = { ω, suc ω} = {ω, ω +o 1o}, which contains ω. If we start with the empty set and keep applying 𝐹 transfinitely many times, all ordinal numbers will be generated.

Any function 𝐹 fulfilling lemmas onsetreclem2 48798 and onsetreclem3 48799 will recursively generate On; for example, 𝐹 = (𝑥 ∈ V ↦ suc suc 𝑥}) also works. Whether this function or the function in the theorem is used, taking this theorem as a definition of On is unsatisfying because it relies on the different properties of limit and successor ordinals. A different approach could be to let 𝐹 = (𝑥 ∈ V ↦ {𝑦 ∈ 𝒫 𝑥 ∣ Tr 𝑦}), based on dfon2 35756.

The proof of this theorem uses the dummy variable 𝑎 rather than 𝑥 to avoid a distinct variable condition between 𝐹 and 𝑥. (Contributed by Emmett Weisz, 22-Jun-2021.)

Hypothesis
Ref Expression
onsetrec.1 𝐹 = (𝑥 ∈ V ↦ { 𝑥, suc 𝑥})
Assertion
Ref Expression
onsetrec setrecs(𝐹) = On

Proof of Theorem onsetrec
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 eqid 2740 . . . 4 setrecs(𝐹) = setrecs(𝐹)
2 onsetrec.1 . . . . . . 7 𝐹 = (𝑥 ∈ V ↦ { 𝑥, suc 𝑥})
32onsetreclem2 48798 . . . . . 6 (𝑎 ⊆ On → (𝐹𝑎) ⊆ On)
43ax-gen 1793 . . . . 5 𝑎(𝑎 ⊆ On → (𝐹𝑎) ⊆ On)
54a1i 11 . . . 4 (⊤ → ∀𝑎(𝑎 ⊆ On → (𝐹𝑎) ⊆ On))
61, 5setrec2v 48788 . . 3 (⊤ → setrecs(𝐹) ⊆ On)
76mptru 1544 . 2 setrecs(𝐹) ⊆ On
8 vex 3492 . . . . . . 7 𝑎 ∈ V
98a1i 11 . . . . . 6 (𝑎 ⊆ setrecs(𝐹) → 𝑎 ∈ V)
10 id 22 . . . . . 6 (𝑎 ⊆ setrecs(𝐹) → 𝑎 ⊆ setrecs(𝐹))
111, 9, 10setrec1 48783 . . . . 5 (𝑎 ⊆ setrecs(𝐹) → (𝐹𝑎) ⊆ setrecs(𝐹))
122onsetreclem3 48799 . . . . 5 (𝑎 ∈ On → 𝑎 ∈ (𝐹𝑎))
13 ssel 4002 . . . . 5 ((𝐹𝑎) ⊆ setrecs(𝐹) → (𝑎 ∈ (𝐹𝑎) → 𝑎 ∈ setrecs(𝐹)))
1411, 12, 13syl2im 40 . . . 4 (𝑎 ⊆ setrecs(𝐹) → (𝑎 ∈ On → 𝑎 ∈ setrecs(𝐹)))
1514com12 32 . . 3 (𝑎 ∈ On → (𝑎 ⊆ setrecs(𝐹) → 𝑎 ∈ setrecs(𝐹)))
1615rgen 3069 . 2 𝑎 ∈ On (𝑎 ⊆ setrecs(𝐹) → 𝑎 ∈ setrecs(𝐹))
17 tfi 7890 . 2 ((setrecs(𝐹) ⊆ On ∧ ∀𝑎 ∈ On (𝑎 ⊆ setrecs(𝐹) → 𝑎 ∈ setrecs(𝐹))) → setrecs(𝐹) = On)
187, 16, 17mp2an 691 1 setrecs(𝐹) = On
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1535   = wceq 1537  wtru 1538  wcel 2108  wral 3067  Vcvv 3488  wss 3976  {cpr 4650   cuni 4931  cmpt 5249  Oncon0 6395  suc csuc 6397  cfv 6573  setrecscsetrecs 48775
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-reg 9661  ax-inf2 9710
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-om 7904  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-r1 9833  df-rank 9834  df-setrecs 48776
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator