![]() |
Mathbox for Emmett Weisz |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > onsetrec | Structured version Visualization version GIF version |
Description: Construct On using set recursion. When 𝑥 ∈ On, the function
𝐹 constructs the least ordinal greater
than any of the elements of
𝑥, which is ∪ 𝑥 for a limit ordinal and suc ∪ 𝑥 for a
successor ordinal.
For example, (𝐹‘{1o, 2o}) = {∪ {1o, 2o}, suc ∪ {1o, 2o}} = {2o, 3o} which contains 3o, and (𝐹‘ω) = {∪ ω, suc ∪ ω} = {ω, ω +o 1o}, which contains ω. If we start with the empty set and keep applying 𝐹 transfinitely many times, all ordinal numbers will be generated. Any function 𝐹 fulfilling lemmas onsetreclem2 47237 and onsetreclem3 47238 will recursively generate On; for example, 𝐹 = (𝑥 ∈ V ↦ suc suc ∪ 𝑥}) also works. Whether this function or the function in the theorem is used, taking this theorem as a definition of On is unsatisfying because it relies on the different properties of limit and successor ordinals. A different approach could be to let 𝐹 = (𝑥 ∈ V ↦ {𝑦 ∈ 𝒫 𝑥 ∣ Tr 𝑦}), based on dfon2 34423. The proof of this theorem uses the dummy variable 𝑎 rather than 𝑥 to avoid a distinct variable condition between 𝐹 and 𝑥. (Contributed by Emmett Weisz, 22-Jun-2021.) |
Ref | Expression |
---|---|
onsetrec.1 | ⊢ 𝐹 = (𝑥 ∈ V ↦ {∪ 𝑥, suc ∪ 𝑥}) |
Ref | Expression |
---|---|
onsetrec | ⊢ setrecs(𝐹) = On |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2733 | . . . 4 ⊢ setrecs(𝐹) = setrecs(𝐹) | |
2 | onsetrec.1 | . . . . . . 7 ⊢ 𝐹 = (𝑥 ∈ V ↦ {∪ 𝑥, suc ∪ 𝑥}) | |
3 | 2 | onsetreclem2 47237 | . . . . . 6 ⊢ (𝑎 ⊆ On → (𝐹‘𝑎) ⊆ On) |
4 | 3 | ax-gen 1798 | . . . . 5 ⊢ ∀𝑎(𝑎 ⊆ On → (𝐹‘𝑎) ⊆ On) |
5 | 4 | a1i 11 | . . . 4 ⊢ (⊤ → ∀𝑎(𝑎 ⊆ On → (𝐹‘𝑎) ⊆ On)) |
6 | 1, 5 | setrec2v 47227 | . . 3 ⊢ (⊤ → setrecs(𝐹) ⊆ On) |
7 | 6 | mptru 1549 | . 2 ⊢ setrecs(𝐹) ⊆ On |
8 | vex 3448 | . . . . . . 7 ⊢ 𝑎 ∈ V | |
9 | 8 | a1i 11 | . . . . . 6 ⊢ (𝑎 ⊆ setrecs(𝐹) → 𝑎 ∈ V) |
10 | id 22 | . . . . . 6 ⊢ (𝑎 ⊆ setrecs(𝐹) → 𝑎 ⊆ setrecs(𝐹)) | |
11 | 1, 9, 10 | setrec1 47222 | . . . . 5 ⊢ (𝑎 ⊆ setrecs(𝐹) → (𝐹‘𝑎) ⊆ setrecs(𝐹)) |
12 | 2 | onsetreclem3 47238 | . . . . 5 ⊢ (𝑎 ∈ On → 𝑎 ∈ (𝐹‘𝑎)) |
13 | ssel 3938 | . . . . 5 ⊢ ((𝐹‘𝑎) ⊆ setrecs(𝐹) → (𝑎 ∈ (𝐹‘𝑎) → 𝑎 ∈ setrecs(𝐹))) | |
14 | 11, 12, 13 | syl2im 40 | . . . 4 ⊢ (𝑎 ⊆ setrecs(𝐹) → (𝑎 ∈ On → 𝑎 ∈ setrecs(𝐹))) |
15 | 14 | com12 32 | . . 3 ⊢ (𝑎 ∈ On → (𝑎 ⊆ setrecs(𝐹) → 𝑎 ∈ setrecs(𝐹))) |
16 | 15 | rgen 3063 | . 2 ⊢ ∀𝑎 ∈ On (𝑎 ⊆ setrecs(𝐹) → 𝑎 ∈ setrecs(𝐹)) |
17 | tfi 7790 | . 2 ⊢ ((setrecs(𝐹) ⊆ On ∧ ∀𝑎 ∈ On (𝑎 ⊆ setrecs(𝐹) → 𝑎 ∈ setrecs(𝐹))) → setrecs(𝐹) = On) | |
18 | 7, 16, 17 | mp2an 691 | 1 ⊢ setrecs(𝐹) = On |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1540 = wceq 1542 ⊤wtru 1543 ∈ wcel 2107 ∀wral 3061 Vcvv 3444 ⊆ wss 3911 {cpr 4589 ∪ cuni 4866 ↦ cmpt 5189 Oncon0 6318 suc csuc 6320 ‘cfv 6497 setrecscsetrecs 47214 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5243 ax-sep 5257 ax-nul 5264 ax-pow 5321 ax-pr 5385 ax-un 7673 ax-reg 9533 ax-inf2 9582 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3353 df-rab 3407 df-v 3446 df-sbc 3741 df-csb 3857 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3930 df-nul 4284 df-if 4488 df-pw 4563 df-sn 4588 df-pr 4590 df-op 4594 df-uni 4867 df-int 4909 df-iun 4957 df-iin 4958 df-br 5107 df-opab 5169 df-mpt 5190 df-tr 5224 df-id 5532 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5589 df-we 5591 df-xp 5640 df-rel 5641 df-cnv 5642 df-co 5643 df-dm 5644 df-rn 5645 df-res 5646 df-ima 5647 df-pred 6254 df-ord 6321 df-on 6322 df-lim 6323 df-suc 6324 df-iota 6449 df-fun 6499 df-fn 6500 df-f 6501 df-f1 6502 df-fo 6503 df-f1o 6504 df-fv 6505 df-ov 7361 df-om 7804 df-2nd 7923 df-frecs 8213 df-wrecs 8244 df-recs 8318 df-rdg 8357 df-r1 9705 df-rank 9706 df-setrecs 47215 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |