| Mathbox for Emmett Weisz |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > onsetrec | Structured version Visualization version GIF version | ||
| Description: Construct On using set recursion. When 𝑥 ∈ On, the function
𝐹 constructs the least ordinal greater
than any of the elements of
𝑥, which is ∪ 𝑥 for a limit ordinal and suc ∪ 𝑥 for a
successor ordinal.
For example, (𝐹‘{1o, 2o}) = {∪ {1o, 2o}, suc ∪ {1o, 2o}} = {2o, 3o} which contains 3o, and (𝐹‘ω) = {∪ ω, suc ∪ ω} = {ω, ω +o 1o}, which contains ω. If we start with the empty set and keep applying 𝐹 transfinitely many times, all ordinal numbers will be generated. Any function 𝐹 fulfilling lemmas onsetreclem2 49695 and onsetreclem3 49696 will recursively generate On; for example, 𝐹 = (𝑥 ∈ V ↦ suc suc ∪ 𝑥}) also works. Whether this function or the function in the theorem is used, taking this theorem as a definition of On is unsatisfying because it relies on the different properties of limit and successor ordinals. A different approach could be to let 𝐹 = (𝑥 ∈ V ↦ {𝑦 ∈ 𝒫 𝑥 ∣ Tr 𝑦}), based on dfon2 35770. The proof of this theorem uses the dummy variable 𝑎 rather than 𝑥 to avoid a distinct variable condition between 𝐹 and 𝑥. (Contributed by Emmett Weisz, 22-Jun-2021.) |
| Ref | Expression |
|---|---|
| onsetrec.1 | ⊢ 𝐹 = (𝑥 ∈ V ↦ {∪ 𝑥, suc ∪ 𝑥}) |
| Ref | Expression |
|---|---|
| onsetrec | ⊢ setrecs(𝐹) = On |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . . . 4 ⊢ setrecs(𝐹) = setrecs(𝐹) | |
| 2 | onsetrec.1 | . . . . . . 7 ⊢ 𝐹 = (𝑥 ∈ V ↦ {∪ 𝑥, suc ∪ 𝑥}) | |
| 3 | 2 | onsetreclem2 49695 | . . . . . 6 ⊢ (𝑎 ⊆ On → (𝐹‘𝑎) ⊆ On) |
| 4 | 3 | ax-gen 1795 | . . . . 5 ⊢ ∀𝑎(𝑎 ⊆ On → (𝐹‘𝑎) ⊆ On) |
| 5 | 4 | a1i 11 | . . . 4 ⊢ (⊤ → ∀𝑎(𝑎 ⊆ On → (𝐹‘𝑎) ⊆ On)) |
| 6 | 1, 5 | setrec2v 49685 | . . 3 ⊢ (⊤ → setrecs(𝐹) ⊆ On) |
| 7 | 6 | mptru 1547 | . 2 ⊢ setrecs(𝐹) ⊆ On |
| 8 | vex 3440 | . . . . . . 7 ⊢ 𝑎 ∈ V | |
| 9 | 8 | a1i 11 | . . . . . 6 ⊢ (𝑎 ⊆ setrecs(𝐹) → 𝑎 ∈ V) |
| 10 | id 22 | . . . . . 6 ⊢ (𝑎 ⊆ setrecs(𝐹) → 𝑎 ⊆ setrecs(𝐹)) | |
| 11 | 1, 9, 10 | setrec1 49680 | . . . . 5 ⊢ (𝑎 ⊆ setrecs(𝐹) → (𝐹‘𝑎) ⊆ setrecs(𝐹)) |
| 12 | 2 | onsetreclem3 49696 | . . . . 5 ⊢ (𝑎 ∈ On → 𝑎 ∈ (𝐹‘𝑎)) |
| 13 | ssel 3929 | . . . . 5 ⊢ ((𝐹‘𝑎) ⊆ setrecs(𝐹) → (𝑎 ∈ (𝐹‘𝑎) → 𝑎 ∈ setrecs(𝐹))) | |
| 14 | 11, 12, 13 | syl2im 40 | . . . 4 ⊢ (𝑎 ⊆ setrecs(𝐹) → (𝑎 ∈ On → 𝑎 ∈ setrecs(𝐹))) |
| 15 | 14 | com12 32 | . . 3 ⊢ (𝑎 ∈ On → (𝑎 ⊆ setrecs(𝐹) → 𝑎 ∈ setrecs(𝐹))) |
| 16 | 15 | rgen 3046 | . 2 ⊢ ∀𝑎 ∈ On (𝑎 ⊆ setrecs(𝐹) → 𝑎 ∈ setrecs(𝐹)) |
| 17 | tfi 7786 | . 2 ⊢ ((setrecs(𝐹) ⊆ On ∧ ∀𝑎 ∈ On (𝑎 ⊆ setrecs(𝐹) → 𝑎 ∈ setrecs(𝐹))) → setrecs(𝐹) = On) | |
| 18 | 7, 16, 17 | mp2an 692 | 1 ⊢ setrecs(𝐹) = On |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1538 = wceq 1540 ⊤wtru 1541 ∈ wcel 2109 ∀wral 3044 Vcvv 3436 ⊆ wss 3903 {cpr 4579 ∪ cuni 4858 ↦ cmpt 5173 Oncon0 6307 suc csuc 6309 ‘cfv 6482 setrecscsetrecs 49672 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-reg 9484 ax-inf2 9537 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-int 4897 df-iun 4943 df-iin 4944 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-ov 7352 df-om 7800 df-2nd 7925 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-r1 9660 df-rank 9661 df-setrecs 49673 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |