Users' Mathboxes Mathbox for Emmett Weisz < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  0setrec Structured version   Visualization version   GIF version

Theorem 0setrec 49690
Description: If a function sends the empty set to itself, the function will not recursively generate any sets, regardless of its other values. (Contributed by Emmett Weisz, 23-Jun-2021.)
Hypothesis
Ref Expression
0setrec.1 (𝜑 → (𝐹‘∅) = ∅)
Assertion
Ref Expression
0setrec (𝜑 → setrecs(𝐹) = ∅)

Proof of Theorem 0setrec
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eqid 2729 . . 3 setrecs(𝐹) = setrecs(𝐹)
2 ss0 4365 . . . . 5 (𝑥 ⊆ ∅ → 𝑥 = ∅)
3 fveq2 6858 . . . . . . 7 (𝑥 = ∅ → (𝐹𝑥) = (𝐹‘∅))
4 0setrec.1 . . . . . . 7 (𝜑 → (𝐹‘∅) = ∅)
53, 4sylan9eqr 2786 . . . . . 6 ((𝜑𝑥 = ∅) → (𝐹𝑥) = ∅)
65ex 412 . . . . 5 (𝜑 → (𝑥 = ∅ → (𝐹𝑥) = ∅))
7 eqimss 4005 . . . . 5 ((𝐹𝑥) = ∅ → (𝐹𝑥) ⊆ ∅)
82, 6, 7syl56 36 . . . 4 (𝜑 → (𝑥 ⊆ ∅ → (𝐹𝑥) ⊆ ∅))
98alrimiv 1927 . . 3 (𝜑 → ∀𝑥(𝑥 ⊆ ∅ → (𝐹𝑥) ⊆ ∅))
101, 9setrec2v 49682 . 2 (𝜑 → setrecs(𝐹) ⊆ ∅)
11 ss0 4365 . 2 (setrecs(𝐹) ⊆ ∅ → setrecs(𝐹) = ∅)
1210, 11syl 17 1 (𝜑 → setrecs(𝐹) = ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wss 3914  c0 4296  cfv 6511  setrecscsetrecs 49669
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fv 6519  df-setrecs 49670
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator