Users' Mathboxes Mathbox for Emmett Weisz < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  0setrec Structured version   Visualization version   GIF version

Theorem 0setrec 49535
Description: If a function sends the empty set to itself, the function will not recursively generate any sets, regardless of its other values. (Contributed by Emmett Weisz, 23-Jun-2021.)
Hypothesis
Ref Expression
0setrec.1 (𝜑 → (𝐹‘∅) = ∅)
Assertion
Ref Expression
0setrec (𝜑 → setrecs(𝐹) = ∅)

Proof of Theorem 0setrec
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eqid 2736 . . 3 setrecs(𝐹) = setrecs(𝐹)
2 ss0 4382 . . . . 5 (𝑥 ⊆ ∅ → 𝑥 = ∅)
3 fveq2 6881 . . . . . . 7 (𝑥 = ∅ → (𝐹𝑥) = (𝐹‘∅))
4 0setrec.1 . . . . . . 7 (𝜑 → (𝐹‘∅) = ∅)
53, 4sylan9eqr 2793 . . . . . 6 ((𝜑𝑥 = ∅) → (𝐹𝑥) = ∅)
65ex 412 . . . . 5 (𝜑 → (𝑥 = ∅ → (𝐹𝑥) = ∅))
7 eqimss 4022 . . . . 5 ((𝐹𝑥) = ∅ → (𝐹𝑥) ⊆ ∅)
82, 6, 7syl56 36 . . . 4 (𝜑 → (𝑥 ⊆ ∅ → (𝐹𝑥) ⊆ ∅))
98alrimiv 1927 . . 3 (𝜑 → ∀𝑥(𝑥 ⊆ ∅ → (𝐹𝑥) ⊆ ∅))
101, 9setrec2v 49527 . 2 (𝜑 → setrecs(𝐹) ⊆ ∅)
11 ss0 4382 . 2 (setrecs(𝐹) ⊆ ∅ → setrecs(𝐹) = ∅)
1210, 11syl 17 1 (𝜑 → setrecs(𝐹) = ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wss 3931  c0 4313  cfv 6536  setrecscsetrecs 49514
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-br 5125  df-opab 5187  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-iota 6489  df-fun 6538  df-fv 6544  df-setrecs 49515
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator