![]() |
Mathbox for Emmett Weisz |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > 0setrec | Structured version Visualization version GIF version |
Description: If a function sends the empty set to itself, the function will not recursively generate any sets, regardless of its other values. (Contributed by Emmett Weisz, 23-Jun-2021.) |
Ref | Expression |
---|---|
0setrec.1 | ⊢ (𝜑 → (𝐹‘∅) = ∅) |
Ref | Expression |
---|---|
0setrec | ⊢ (𝜑 → setrecs(𝐹) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2825 | . . 3 ⊢ setrecs(𝐹) = setrecs(𝐹) | |
2 | ss0 4199 | . . . . 5 ⊢ (𝑥 ⊆ ∅ → 𝑥 = ∅) | |
3 | fveq2 6433 | . . . . . . 7 ⊢ (𝑥 = ∅ → (𝐹‘𝑥) = (𝐹‘∅)) | |
4 | 0setrec.1 | . . . . . . 7 ⊢ (𝜑 → (𝐹‘∅) = ∅) | |
5 | 3, 4 | sylan9eqr 2883 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 = ∅) → (𝐹‘𝑥) = ∅) |
6 | 5 | ex 403 | . . . . 5 ⊢ (𝜑 → (𝑥 = ∅ → (𝐹‘𝑥) = ∅)) |
7 | eqimss 3882 | . . . . 5 ⊢ ((𝐹‘𝑥) = ∅ → (𝐹‘𝑥) ⊆ ∅) | |
8 | 2, 6, 7 | syl56 36 | . . . 4 ⊢ (𝜑 → (𝑥 ⊆ ∅ → (𝐹‘𝑥) ⊆ ∅)) |
9 | 8 | alrimiv 2028 | . . 3 ⊢ (𝜑 → ∀𝑥(𝑥 ⊆ ∅ → (𝐹‘𝑥) ⊆ ∅)) |
10 | 1, 9 | setrec2v 43338 | . 2 ⊢ (𝜑 → setrecs(𝐹) ⊆ ∅) |
11 | ss0 4199 | . 2 ⊢ (setrecs(𝐹) ⊆ ∅ → setrecs(𝐹) = ∅) | |
12 | 10, 11 | syl 17 | 1 ⊢ (𝜑 → setrecs(𝐹) = ∅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1658 ⊆ wss 3798 ∅c0 4144 ‘cfv 6123 setrecscsetrecs 43325 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1896 ax-4 1910 ax-5 2011 ax-6 2077 ax-7 2114 ax-8 2168 ax-9 2175 ax-10 2194 ax-11 2209 ax-12 2222 ax-13 2391 ax-ext 2803 ax-rep 4994 ax-sep 5005 ax-nul 5013 ax-pow 5065 ax-pr 5127 ax-un 7209 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 881 df-3an 1115 df-tru 1662 df-ex 1881 df-nf 1885 df-sb 2070 df-mo 2605 df-eu 2640 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ne 3000 df-ral 3122 df-rex 3123 df-rab 3126 df-v 3416 df-sbc 3663 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-nul 4145 df-if 4307 df-pw 4380 df-sn 4398 df-pr 4400 df-op 4404 df-uni 4659 df-br 4874 df-opab 4936 df-id 5250 df-xp 5348 df-rel 5349 df-cnv 5350 df-co 5351 df-dm 5352 df-rn 5353 df-res 5354 df-ima 5355 df-iota 6086 df-fun 6125 df-fv 6131 df-setrecs 43326 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |