![]() |
Mathbox for Emmett Weisz |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > 0setrec | Structured version Visualization version GIF version |
Description: If a function sends the empty set to itself, the function will not recursively generate any sets, regardless of its other values. (Contributed by Emmett Weisz, 23-Jun-2021.) |
Ref | Expression |
---|---|
0setrec.1 | ⊢ (𝜑 → (𝐹‘∅) = ∅) |
Ref | Expression |
---|---|
0setrec | ⊢ (𝜑 → setrecs(𝐹) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2732 | . . 3 ⊢ setrecs(𝐹) = setrecs(𝐹) | |
2 | ss0 4397 | . . . . 5 ⊢ (𝑥 ⊆ ∅ → 𝑥 = ∅) | |
3 | fveq2 6888 | . . . . . . 7 ⊢ (𝑥 = ∅ → (𝐹‘𝑥) = (𝐹‘∅)) | |
4 | 0setrec.1 | . . . . . . 7 ⊢ (𝜑 → (𝐹‘∅) = ∅) | |
5 | 3, 4 | sylan9eqr 2794 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 = ∅) → (𝐹‘𝑥) = ∅) |
6 | 5 | ex 413 | . . . . 5 ⊢ (𝜑 → (𝑥 = ∅ → (𝐹‘𝑥) = ∅)) |
7 | eqimss 4039 | . . . . 5 ⊢ ((𝐹‘𝑥) = ∅ → (𝐹‘𝑥) ⊆ ∅) | |
8 | 2, 6, 7 | syl56 36 | . . . 4 ⊢ (𝜑 → (𝑥 ⊆ ∅ → (𝐹‘𝑥) ⊆ ∅)) |
9 | 8 | alrimiv 1930 | . . 3 ⊢ (𝜑 → ∀𝑥(𝑥 ⊆ ∅ → (𝐹‘𝑥) ⊆ ∅)) |
10 | 1, 9 | setrec2v 47694 | . 2 ⊢ (𝜑 → setrecs(𝐹) ⊆ ∅) |
11 | ss0 4397 | . 2 ⊢ (setrecs(𝐹) ⊆ ∅ → setrecs(𝐹) = ∅) | |
12 | 10, 11 | syl 17 | 1 ⊢ (𝜑 → setrecs(𝐹) = ∅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1541 ⊆ wss 3947 ∅c0 4321 ‘cfv 6540 setrecscsetrecs 47681 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-br 5148 df-opab 5210 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-iota 6492 df-fun 6542 df-fv 6548 df-setrecs 47682 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |