Users' Mathboxes Mathbox for Emmett Weisz < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  0setrec Structured version   Visualization version   GIF version

Theorem 0setrec 48213
Description: If a function sends the empty set to itself, the function will not recursively generate any sets, regardless of its other values. (Contributed by Emmett Weisz, 23-Jun-2021.)
Hypothesis
Ref Expression
0setrec.1 (𝜑 → (𝐹‘∅) = ∅)
Assertion
Ref Expression
0setrec (𝜑 → setrecs(𝐹) = ∅)

Proof of Theorem 0setrec
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eqid 2728 . . 3 setrecs(𝐹) = setrecs(𝐹)
2 ss0 4402 . . . . 5 (𝑥 ⊆ ∅ → 𝑥 = ∅)
3 fveq2 6902 . . . . . . 7 (𝑥 = ∅ → (𝐹𝑥) = (𝐹‘∅))
4 0setrec.1 . . . . . . 7 (𝜑 → (𝐹‘∅) = ∅)
53, 4sylan9eqr 2790 . . . . . 6 ((𝜑𝑥 = ∅) → (𝐹𝑥) = ∅)
65ex 411 . . . . 5 (𝜑 → (𝑥 = ∅ → (𝐹𝑥) = ∅))
7 eqimss 4040 . . . . 5 ((𝐹𝑥) = ∅ → (𝐹𝑥) ⊆ ∅)
82, 6, 7syl56 36 . . . 4 (𝜑 → (𝑥 ⊆ ∅ → (𝐹𝑥) ⊆ ∅))
98alrimiv 1922 . . 3 (𝜑 → ∀𝑥(𝑥 ⊆ ∅ → (𝐹𝑥) ⊆ ∅))
101, 9setrec2v 48205 . 2 (𝜑 → setrecs(𝐹) ⊆ ∅)
11 ss0 4402 . 2 (setrecs(𝐹) ⊆ ∅ → setrecs(𝐹) = ∅)
1210, 11syl 17 1 (𝜑 → setrecs(𝐹) = ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1533  wss 3949  c0 4326  cfv 6553  setrecscsetrecs 48192
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2699  ax-rep 5289  ax-sep 5303  ax-nul 5310  ax-pow 5369  ax-pr 5433  ax-un 7746
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-ral 3059  df-rex 3068  df-rab 3431  df-v 3475  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4327  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4913  df-br 5153  df-opab 5215  df-id 5580  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-iota 6505  df-fun 6555  df-fv 6561  df-setrecs 48193
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator