Users' Mathboxes Mathbox for Emmett Weisz < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  0setrec Structured version   Visualization version   GIF version

Theorem 0setrec 48935
Description: If a function sends the empty set to itself, the function will not recursively generate any sets, regardless of its other values. (Contributed by Emmett Weisz, 23-Jun-2021.)
Hypothesis
Ref Expression
0setrec.1 (𝜑 → (𝐹‘∅) = ∅)
Assertion
Ref Expression
0setrec (𝜑 → setrecs(𝐹) = ∅)

Proof of Theorem 0setrec
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eqid 2735 . . 3 setrecs(𝐹) = setrecs(𝐹)
2 ss0 4408 . . . . 5 (𝑥 ⊆ ∅ → 𝑥 = ∅)
3 fveq2 6907 . . . . . . 7 (𝑥 = ∅ → (𝐹𝑥) = (𝐹‘∅))
4 0setrec.1 . . . . . . 7 (𝜑 → (𝐹‘∅) = ∅)
53, 4sylan9eqr 2797 . . . . . 6 ((𝜑𝑥 = ∅) → (𝐹𝑥) = ∅)
65ex 412 . . . . 5 (𝜑 → (𝑥 = ∅ → (𝐹𝑥) = ∅))
7 eqimss 4054 . . . . 5 ((𝐹𝑥) = ∅ → (𝐹𝑥) ⊆ ∅)
82, 6, 7syl56 36 . . . 4 (𝜑 → (𝑥 ⊆ ∅ → (𝐹𝑥) ⊆ ∅))
98alrimiv 1925 . . 3 (𝜑 → ∀𝑥(𝑥 ⊆ ∅ → (𝐹𝑥) ⊆ ∅))
101, 9setrec2v 48927 . 2 (𝜑 → setrecs(𝐹) ⊆ ∅)
11 ss0 4408 . 2 (setrecs(𝐹) ⊆ ∅ → setrecs(𝐹) = ∅)
1210, 11syl 17 1 (𝜑 → setrecs(𝐹) = ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wss 3963  c0 4339  cfv 6563  setrecscsetrecs 48914
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fv 6571  df-setrecs 48915
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator