Mathbox for Emmett Weisz |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > 0setrec | Structured version Visualization version GIF version |
Description: If a function sends the empty set to itself, the function will not recursively generate any sets, regardless of its other values. (Contributed by Emmett Weisz, 23-Jun-2021.) |
Ref | Expression |
---|---|
0setrec.1 | ⊢ (𝜑 → (𝐹‘∅) = ∅) |
Ref | Expression |
---|---|
0setrec | ⊢ (𝜑 → setrecs(𝐹) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2738 | . . 3 ⊢ setrecs(𝐹) = setrecs(𝐹) | |
2 | ss0 4329 | . . . . 5 ⊢ (𝑥 ⊆ ∅ → 𝑥 = ∅) | |
3 | fveq2 6756 | . . . . . . 7 ⊢ (𝑥 = ∅ → (𝐹‘𝑥) = (𝐹‘∅)) | |
4 | 0setrec.1 | . . . . . . 7 ⊢ (𝜑 → (𝐹‘∅) = ∅) | |
5 | 3, 4 | sylan9eqr 2801 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 = ∅) → (𝐹‘𝑥) = ∅) |
6 | 5 | ex 412 | . . . . 5 ⊢ (𝜑 → (𝑥 = ∅ → (𝐹‘𝑥) = ∅)) |
7 | eqimss 3973 | . . . . 5 ⊢ ((𝐹‘𝑥) = ∅ → (𝐹‘𝑥) ⊆ ∅) | |
8 | 2, 6, 7 | syl56 36 | . . . 4 ⊢ (𝜑 → (𝑥 ⊆ ∅ → (𝐹‘𝑥) ⊆ ∅)) |
9 | 8 | alrimiv 1931 | . . 3 ⊢ (𝜑 → ∀𝑥(𝑥 ⊆ ∅ → (𝐹‘𝑥) ⊆ ∅)) |
10 | 1, 9 | setrec2v 46288 | . 2 ⊢ (𝜑 → setrecs(𝐹) ⊆ ∅) |
11 | ss0 4329 | . 2 ⊢ (setrecs(𝐹) ⊆ ∅ → setrecs(𝐹) = ∅) | |
12 | 10, 11 | syl 17 | 1 ⊢ (𝜑 → setrecs(𝐹) = ∅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ⊆ wss 3883 ∅c0 4253 ‘cfv 6418 setrecscsetrecs 46275 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fv 6426 df-setrecs 46276 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |