| Mathbox for Emmett Weisz |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > 0setrec | Structured version Visualization version GIF version | ||
| Description: If a function sends the empty set to itself, the function will not recursively generate any sets, regardless of its other values. (Contributed by Emmett Weisz, 23-Jun-2021.) |
| Ref | Expression |
|---|---|
| 0setrec.1 | ⊢ (𝜑 → (𝐹‘∅) = ∅) |
| Ref | Expression |
|---|---|
| 0setrec | ⊢ (𝜑 → setrecs(𝐹) = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . . 3 ⊢ setrecs(𝐹) = setrecs(𝐹) | |
| 2 | ss0 4365 | . . . . 5 ⊢ (𝑥 ⊆ ∅ → 𝑥 = ∅) | |
| 3 | fveq2 6858 | . . . . . . 7 ⊢ (𝑥 = ∅ → (𝐹‘𝑥) = (𝐹‘∅)) | |
| 4 | 0setrec.1 | . . . . . . 7 ⊢ (𝜑 → (𝐹‘∅) = ∅) | |
| 5 | 3, 4 | sylan9eqr 2786 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 = ∅) → (𝐹‘𝑥) = ∅) |
| 6 | 5 | ex 412 | . . . . 5 ⊢ (𝜑 → (𝑥 = ∅ → (𝐹‘𝑥) = ∅)) |
| 7 | eqimss 4005 | . . . . 5 ⊢ ((𝐹‘𝑥) = ∅ → (𝐹‘𝑥) ⊆ ∅) | |
| 8 | 2, 6, 7 | syl56 36 | . . . 4 ⊢ (𝜑 → (𝑥 ⊆ ∅ → (𝐹‘𝑥) ⊆ ∅)) |
| 9 | 8 | alrimiv 1927 | . . 3 ⊢ (𝜑 → ∀𝑥(𝑥 ⊆ ∅ → (𝐹‘𝑥) ⊆ ∅)) |
| 10 | 1, 9 | setrec2v 49682 | . 2 ⊢ (𝜑 → setrecs(𝐹) ⊆ ∅) |
| 11 | ss0 4365 | . 2 ⊢ (setrecs(𝐹) ⊆ ∅ → setrecs(𝐹) = ∅) | |
| 12 | 10, 11 | syl 17 | 1 ⊢ (𝜑 → setrecs(𝐹) = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ⊆ wss 3914 ∅c0 4296 ‘cfv 6511 setrecscsetrecs 49669 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fv 6519 df-setrecs 49670 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |