![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > oege2 | Structured version Visualization version GIF version |
Description: Any power of an ordinal at least as large as two is greater-than-or-equal to the term on the right. Lemma 3.20 of [Schloeder] p. 10. See oeworde 8599. (Contributed by RP, 29-Jan-2025.) |
Ref | Expression |
---|---|
oege2 | ⊢ (((𝐴 ∈ On ∧ 1o ∈ 𝐴) ∧ 𝐵 ∈ On) → 𝐵 ⊆ (𝐴 ↑o 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2on 8486 | . . . . 5 ⊢ 2o ∈ On | |
2 | 1oex 8482 | . . . . . . 7 ⊢ 1o ∈ V | |
3 | 2 | prid2 4767 | . . . . . 6 ⊢ 1o ∈ {∅, 1o} |
4 | df2o3 8480 | . . . . . 6 ⊢ 2o = {∅, 1o} | |
5 | 3, 4 | eleqtrri 2831 | . . . . 5 ⊢ 1o ∈ 2o |
6 | ondif2 8508 | . . . . 5 ⊢ (2o ∈ (On ∖ 2o) ↔ (2o ∈ On ∧ 1o ∈ 2o)) | |
7 | 1, 5, 6 | mpbir2an 708 | . . . 4 ⊢ 2o ∈ (On ∖ 2o) |
8 | oeworde 8599 | . . . 4 ⊢ ((2o ∈ (On ∖ 2o) ∧ 𝐵 ∈ On) → 𝐵 ⊆ (2o ↑o 𝐵)) | |
9 | 7, 8 | mpan 687 | . . 3 ⊢ (𝐵 ∈ On → 𝐵 ⊆ (2o ↑o 𝐵)) |
10 | 9 | adantl 481 | . 2 ⊢ (((𝐴 ∈ On ∧ 1o ∈ 𝐴) ∧ 𝐵 ∈ On) → 𝐵 ⊆ (2o ↑o 𝐵)) |
11 | df-2o 8473 | . . . 4 ⊢ 2o = suc 1o | |
12 | onsucss 42479 | . . . . . 6 ⊢ (𝐴 ∈ On → (1o ∈ 𝐴 → suc 1o ⊆ 𝐴)) | |
13 | 12 | imp 406 | . . . . 5 ⊢ ((𝐴 ∈ On ∧ 1o ∈ 𝐴) → suc 1o ⊆ 𝐴) |
14 | 13 | adantr 480 | . . . 4 ⊢ (((𝐴 ∈ On ∧ 1o ∈ 𝐴) ∧ 𝐵 ∈ On) → suc 1o ⊆ 𝐴) |
15 | 11, 14 | eqsstrid 4030 | . . 3 ⊢ (((𝐴 ∈ On ∧ 1o ∈ 𝐴) ∧ 𝐵 ∈ On) → 2o ⊆ 𝐴) |
16 | simpll 764 | . . . . 5 ⊢ (((𝐴 ∈ On ∧ 1o ∈ 𝐴) ∧ 𝐵 ∈ On) → 𝐴 ∈ On) | |
17 | onsseleq 6405 | . . . . 5 ⊢ ((2o ∈ On ∧ 𝐴 ∈ On) → (2o ⊆ 𝐴 ↔ (2o ∈ 𝐴 ∨ 2o = 𝐴))) | |
18 | 1, 16, 17 | sylancr 586 | . . . 4 ⊢ (((𝐴 ∈ On ∧ 1o ∈ 𝐴) ∧ 𝐵 ∈ On) → (2o ⊆ 𝐴 ↔ (2o ∈ 𝐴 ∨ 2o = 𝐴))) |
19 | oewordri 8598 | . . . . . 6 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (2o ∈ 𝐴 → (2o ↑o 𝐵) ⊆ (𝐴 ↑o 𝐵))) | |
20 | 19 | adantlr 712 | . . . . 5 ⊢ (((𝐴 ∈ On ∧ 1o ∈ 𝐴) ∧ 𝐵 ∈ On) → (2o ∈ 𝐴 → (2o ↑o 𝐵) ⊆ (𝐴 ↑o 𝐵))) |
21 | oveq1 7419 | . . . . . . 7 ⊢ (2o = 𝐴 → (2o ↑o 𝐵) = (𝐴 ↑o 𝐵)) | |
22 | ssid 4004 | . . . . . . 7 ⊢ (𝐴 ↑o 𝐵) ⊆ (𝐴 ↑o 𝐵) | |
23 | 21, 22 | eqsstrdi 4036 | . . . . . 6 ⊢ (2o = 𝐴 → (2o ↑o 𝐵) ⊆ (𝐴 ↑o 𝐵)) |
24 | 23 | a1i 11 | . . . . 5 ⊢ (((𝐴 ∈ On ∧ 1o ∈ 𝐴) ∧ 𝐵 ∈ On) → (2o = 𝐴 → (2o ↑o 𝐵) ⊆ (𝐴 ↑o 𝐵))) |
25 | 20, 24 | jaod 856 | . . . 4 ⊢ (((𝐴 ∈ On ∧ 1o ∈ 𝐴) ∧ 𝐵 ∈ On) → ((2o ∈ 𝐴 ∨ 2o = 𝐴) → (2o ↑o 𝐵) ⊆ (𝐴 ↑o 𝐵))) |
26 | 18, 25 | sylbid 239 | . . 3 ⊢ (((𝐴 ∈ On ∧ 1o ∈ 𝐴) ∧ 𝐵 ∈ On) → (2o ⊆ 𝐴 → (2o ↑o 𝐵) ⊆ (𝐴 ↑o 𝐵))) |
27 | 15, 26 | mpd 15 | . 2 ⊢ (((𝐴 ∈ On ∧ 1o ∈ 𝐴) ∧ 𝐵 ∈ On) → (2o ↑o 𝐵) ⊆ (𝐴 ↑o 𝐵)) |
28 | 10, 27 | sstrd 3992 | 1 ⊢ (((𝐴 ∈ On ∧ 1o ∈ 𝐴) ∧ 𝐵 ∈ On) → 𝐵 ⊆ (𝐴 ↑o 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∨ wo 844 = wceq 1540 ∈ wcel 2105 ∖ cdif 3945 ⊆ wss 3948 ∅c0 4322 {cpr 4630 Oncon0 6364 suc csuc 6366 (class class class)co 7412 1oc1o 8465 2oc2o 8466 ↑o coe 8471 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pr 5427 ax-un 7729 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7860 df-2nd 7980 df-frecs 8272 df-wrecs 8303 df-recs 8377 df-rdg 8416 df-1o 8472 df-2o 8473 df-oadd 8476 df-omul 8477 df-oexp 8478 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |