![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > oege2 | Structured version Visualization version GIF version |
Description: Any power of an ordinal at least as large as two is greater-than-or-equal to the term on the right. Lemma 3.20 of [Schloeder] p. 10. See oeworde 8629. (Contributed by RP, 29-Jan-2025.) |
Ref | Expression |
---|---|
oege2 | ⊢ (((𝐴 ∈ On ∧ 1o ∈ 𝐴) ∧ 𝐵 ∈ On) → 𝐵 ⊆ (𝐴 ↑o 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2on 8518 | . . . . 5 ⊢ 2o ∈ On | |
2 | 1oex 8514 | . . . . . . 7 ⊢ 1o ∈ V | |
3 | 2 | prid2 4767 | . . . . . 6 ⊢ 1o ∈ {∅, 1o} |
4 | df2o3 8512 | . . . . . 6 ⊢ 2o = {∅, 1o} | |
5 | 3, 4 | eleqtrri 2837 | . . . . 5 ⊢ 1o ∈ 2o |
6 | ondif2 8538 | . . . . 5 ⊢ (2o ∈ (On ∖ 2o) ↔ (2o ∈ On ∧ 1o ∈ 2o)) | |
7 | 1, 5, 6 | mpbir2an 711 | . . . 4 ⊢ 2o ∈ (On ∖ 2o) |
8 | oeworde 8629 | . . . 4 ⊢ ((2o ∈ (On ∖ 2o) ∧ 𝐵 ∈ On) → 𝐵 ⊆ (2o ↑o 𝐵)) | |
9 | 7, 8 | mpan 690 | . . 3 ⊢ (𝐵 ∈ On → 𝐵 ⊆ (2o ↑o 𝐵)) |
10 | 9 | adantl 481 | . 2 ⊢ (((𝐴 ∈ On ∧ 1o ∈ 𝐴) ∧ 𝐵 ∈ On) → 𝐵 ⊆ (2o ↑o 𝐵)) |
11 | df-2o 8505 | . . . 4 ⊢ 2o = suc 1o | |
12 | onsucss 43255 | . . . . . 6 ⊢ (𝐴 ∈ On → (1o ∈ 𝐴 → suc 1o ⊆ 𝐴)) | |
13 | 12 | imp 406 | . . . . 5 ⊢ ((𝐴 ∈ On ∧ 1o ∈ 𝐴) → suc 1o ⊆ 𝐴) |
14 | 13 | adantr 480 | . . . 4 ⊢ (((𝐴 ∈ On ∧ 1o ∈ 𝐴) ∧ 𝐵 ∈ On) → suc 1o ⊆ 𝐴) |
15 | 11, 14 | eqsstrid 4043 | . . 3 ⊢ (((𝐴 ∈ On ∧ 1o ∈ 𝐴) ∧ 𝐵 ∈ On) → 2o ⊆ 𝐴) |
16 | simpll 767 | . . . . 5 ⊢ (((𝐴 ∈ On ∧ 1o ∈ 𝐴) ∧ 𝐵 ∈ On) → 𝐴 ∈ On) | |
17 | onsseleq 6426 | . . . . 5 ⊢ ((2o ∈ On ∧ 𝐴 ∈ On) → (2o ⊆ 𝐴 ↔ (2o ∈ 𝐴 ∨ 2o = 𝐴))) | |
18 | 1, 16, 17 | sylancr 587 | . . . 4 ⊢ (((𝐴 ∈ On ∧ 1o ∈ 𝐴) ∧ 𝐵 ∈ On) → (2o ⊆ 𝐴 ↔ (2o ∈ 𝐴 ∨ 2o = 𝐴))) |
19 | oewordri 8628 | . . . . . 6 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (2o ∈ 𝐴 → (2o ↑o 𝐵) ⊆ (𝐴 ↑o 𝐵))) | |
20 | 19 | adantlr 715 | . . . . 5 ⊢ (((𝐴 ∈ On ∧ 1o ∈ 𝐴) ∧ 𝐵 ∈ On) → (2o ∈ 𝐴 → (2o ↑o 𝐵) ⊆ (𝐴 ↑o 𝐵))) |
21 | oveq1 7437 | . . . . . . 7 ⊢ (2o = 𝐴 → (2o ↑o 𝐵) = (𝐴 ↑o 𝐵)) | |
22 | ssid 4017 | . . . . . . 7 ⊢ (𝐴 ↑o 𝐵) ⊆ (𝐴 ↑o 𝐵) | |
23 | 21, 22 | eqsstrdi 4049 | . . . . . 6 ⊢ (2o = 𝐴 → (2o ↑o 𝐵) ⊆ (𝐴 ↑o 𝐵)) |
24 | 23 | a1i 11 | . . . . 5 ⊢ (((𝐴 ∈ On ∧ 1o ∈ 𝐴) ∧ 𝐵 ∈ On) → (2o = 𝐴 → (2o ↑o 𝐵) ⊆ (𝐴 ↑o 𝐵))) |
25 | 20, 24 | jaod 859 | . . . 4 ⊢ (((𝐴 ∈ On ∧ 1o ∈ 𝐴) ∧ 𝐵 ∈ On) → ((2o ∈ 𝐴 ∨ 2o = 𝐴) → (2o ↑o 𝐵) ⊆ (𝐴 ↑o 𝐵))) |
26 | 18, 25 | sylbid 240 | . . 3 ⊢ (((𝐴 ∈ On ∧ 1o ∈ 𝐴) ∧ 𝐵 ∈ On) → (2o ⊆ 𝐴 → (2o ↑o 𝐵) ⊆ (𝐴 ↑o 𝐵))) |
27 | 15, 26 | mpd 15 | . 2 ⊢ (((𝐴 ∈ On ∧ 1o ∈ 𝐴) ∧ 𝐵 ∈ On) → (2o ↑o 𝐵) ⊆ (𝐴 ↑o 𝐵)) |
28 | 10, 27 | sstrd 4005 | 1 ⊢ (((𝐴 ∈ On ∧ 1o ∈ 𝐴) ∧ 𝐵 ∈ On) → 𝐵 ⊆ (𝐴 ↑o 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 = wceq 1536 ∈ wcel 2105 ∖ cdif 3959 ⊆ wss 3962 ∅c0 4338 {cpr 4632 Oncon0 6385 suc csuc 6387 (class class class)co 7430 1oc1o 8497 2oc2o 8498 ↑o coe 8503 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-rep 5284 ax-sep 5301 ax-nul 5311 ax-pr 5437 ax-un 7753 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ne 2938 df-ral 3059 df-rex 3068 df-reu 3378 df-rab 3433 df-v 3479 df-sbc 3791 df-csb 3908 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-pss 3982 df-nul 4339 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-iun 4997 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5582 df-eprel 5588 df-po 5596 df-so 5597 df-fr 5640 df-we 5642 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-rn 5699 df-res 5700 df-ima 5701 df-pred 6322 df-ord 6388 df-on 6389 df-lim 6390 df-suc 6391 df-iota 6515 df-fun 6564 df-fn 6565 df-f 6566 df-f1 6567 df-fo 6568 df-f1o 6569 df-fv 6570 df-ov 7433 df-oprab 7434 df-mpo 7435 df-om 7887 df-2nd 8013 df-frecs 8304 df-wrecs 8335 df-recs 8409 df-rdg 8448 df-1o 8504 df-2o 8505 df-oadd 8508 df-omul 8509 df-oexp 8510 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |