| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > oege2 | Structured version Visualization version GIF version | ||
| Description: Any power of an ordinal at least as large as two is greater-than-or-equal to the term on the right. Lemma 3.20 of [Schloeder] p. 10. See oeworde 8560. (Contributed by RP, 29-Jan-2025.) |
| Ref | Expression |
|---|---|
| oege2 | ⊢ (((𝐴 ∈ On ∧ 1o ∈ 𝐴) ∧ 𝐵 ∈ On) → 𝐵 ⊆ (𝐴 ↑o 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2on 8450 | . . . . 5 ⊢ 2o ∈ On | |
| 2 | 1oex 8447 | . . . . . . 7 ⊢ 1o ∈ V | |
| 3 | 2 | prid2 4730 | . . . . . 6 ⊢ 1o ∈ {∅, 1o} |
| 4 | df2o3 8445 | . . . . . 6 ⊢ 2o = {∅, 1o} | |
| 5 | 3, 4 | eleqtrri 2828 | . . . . 5 ⊢ 1o ∈ 2o |
| 6 | ondif2 8469 | . . . . 5 ⊢ (2o ∈ (On ∖ 2o) ↔ (2o ∈ On ∧ 1o ∈ 2o)) | |
| 7 | 1, 5, 6 | mpbir2an 711 | . . . 4 ⊢ 2o ∈ (On ∖ 2o) |
| 8 | oeworde 8560 | . . . 4 ⊢ ((2o ∈ (On ∖ 2o) ∧ 𝐵 ∈ On) → 𝐵 ⊆ (2o ↑o 𝐵)) | |
| 9 | 7, 8 | mpan 690 | . . 3 ⊢ (𝐵 ∈ On → 𝐵 ⊆ (2o ↑o 𝐵)) |
| 10 | 9 | adantl 481 | . 2 ⊢ (((𝐴 ∈ On ∧ 1o ∈ 𝐴) ∧ 𝐵 ∈ On) → 𝐵 ⊆ (2o ↑o 𝐵)) |
| 11 | df-2o 8438 | . . . 4 ⊢ 2o = suc 1o | |
| 12 | onsucss 43262 | . . . . . 6 ⊢ (𝐴 ∈ On → (1o ∈ 𝐴 → suc 1o ⊆ 𝐴)) | |
| 13 | 12 | imp 406 | . . . . 5 ⊢ ((𝐴 ∈ On ∧ 1o ∈ 𝐴) → suc 1o ⊆ 𝐴) |
| 14 | 13 | adantr 480 | . . . 4 ⊢ (((𝐴 ∈ On ∧ 1o ∈ 𝐴) ∧ 𝐵 ∈ On) → suc 1o ⊆ 𝐴) |
| 15 | 11, 14 | eqsstrid 3988 | . . 3 ⊢ (((𝐴 ∈ On ∧ 1o ∈ 𝐴) ∧ 𝐵 ∈ On) → 2o ⊆ 𝐴) |
| 16 | simpll 766 | . . . . 5 ⊢ (((𝐴 ∈ On ∧ 1o ∈ 𝐴) ∧ 𝐵 ∈ On) → 𝐴 ∈ On) | |
| 17 | onsseleq 6376 | . . . . 5 ⊢ ((2o ∈ On ∧ 𝐴 ∈ On) → (2o ⊆ 𝐴 ↔ (2o ∈ 𝐴 ∨ 2o = 𝐴))) | |
| 18 | 1, 16, 17 | sylancr 587 | . . . 4 ⊢ (((𝐴 ∈ On ∧ 1o ∈ 𝐴) ∧ 𝐵 ∈ On) → (2o ⊆ 𝐴 ↔ (2o ∈ 𝐴 ∨ 2o = 𝐴))) |
| 19 | oewordri 8559 | . . . . . 6 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (2o ∈ 𝐴 → (2o ↑o 𝐵) ⊆ (𝐴 ↑o 𝐵))) | |
| 20 | 19 | adantlr 715 | . . . . 5 ⊢ (((𝐴 ∈ On ∧ 1o ∈ 𝐴) ∧ 𝐵 ∈ On) → (2o ∈ 𝐴 → (2o ↑o 𝐵) ⊆ (𝐴 ↑o 𝐵))) |
| 21 | oveq1 7397 | . . . . . . 7 ⊢ (2o = 𝐴 → (2o ↑o 𝐵) = (𝐴 ↑o 𝐵)) | |
| 22 | ssid 3972 | . . . . . . 7 ⊢ (𝐴 ↑o 𝐵) ⊆ (𝐴 ↑o 𝐵) | |
| 23 | 21, 22 | eqsstrdi 3994 | . . . . . 6 ⊢ (2o = 𝐴 → (2o ↑o 𝐵) ⊆ (𝐴 ↑o 𝐵)) |
| 24 | 23 | a1i 11 | . . . . 5 ⊢ (((𝐴 ∈ On ∧ 1o ∈ 𝐴) ∧ 𝐵 ∈ On) → (2o = 𝐴 → (2o ↑o 𝐵) ⊆ (𝐴 ↑o 𝐵))) |
| 25 | 20, 24 | jaod 859 | . . . 4 ⊢ (((𝐴 ∈ On ∧ 1o ∈ 𝐴) ∧ 𝐵 ∈ On) → ((2o ∈ 𝐴 ∨ 2o = 𝐴) → (2o ↑o 𝐵) ⊆ (𝐴 ↑o 𝐵))) |
| 26 | 18, 25 | sylbid 240 | . . 3 ⊢ (((𝐴 ∈ On ∧ 1o ∈ 𝐴) ∧ 𝐵 ∈ On) → (2o ⊆ 𝐴 → (2o ↑o 𝐵) ⊆ (𝐴 ↑o 𝐵))) |
| 27 | 15, 26 | mpd 15 | . 2 ⊢ (((𝐴 ∈ On ∧ 1o ∈ 𝐴) ∧ 𝐵 ∈ On) → (2o ↑o 𝐵) ⊆ (𝐴 ↑o 𝐵)) |
| 28 | 10, 27 | sstrd 3960 | 1 ⊢ (((𝐴 ∈ On ∧ 1o ∈ 𝐴) ∧ 𝐵 ∈ On) → 𝐵 ⊆ (𝐴 ↑o 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 = wceq 1540 ∈ wcel 2109 ∖ cdif 3914 ⊆ wss 3917 ∅c0 4299 {cpr 4594 Oncon0 6335 suc csuc 6337 (class class class)co 7390 1oc1o 8430 2oc2o 8431 ↑o coe 8436 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-2o 8438 df-oadd 8441 df-omul 8442 df-oexp 8443 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |