| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > oege2 | Structured version Visualization version GIF version | ||
| Description: Any power of an ordinal at least as large as two is greater-than-or-equal to the term on the right. Lemma 3.20 of [Schloeder] p. 10. See oeworde 8508. (Contributed by RP, 29-Jan-2025.) |
| Ref | Expression |
|---|---|
| oege2 | ⊢ (((𝐴 ∈ On ∧ 1o ∈ 𝐴) ∧ 𝐵 ∈ On) → 𝐵 ⊆ (𝐴 ↑o 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2on 8398 | . . . . 5 ⊢ 2o ∈ On | |
| 2 | 1oex 8395 | . . . . . . 7 ⊢ 1o ∈ V | |
| 3 | 2 | prid2 4713 | . . . . . 6 ⊢ 1o ∈ {∅, 1o} |
| 4 | df2o3 8393 | . . . . . 6 ⊢ 2o = {∅, 1o} | |
| 5 | 3, 4 | eleqtrri 2830 | . . . . 5 ⊢ 1o ∈ 2o |
| 6 | ondif2 8417 | . . . . 5 ⊢ (2o ∈ (On ∖ 2o) ↔ (2o ∈ On ∧ 1o ∈ 2o)) | |
| 7 | 1, 5, 6 | mpbir2an 711 | . . . 4 ⊢ 2o ∈ (On ∖ 2o) |
| 8 | oeworde 8508 | . . . 4 ⊢ ((2o ∈ (On ∖ 2o) ∧ 𝐵 ∈ On) → 𝐵 ⊆ (2o ↑o 𝐵)) | |
| 9 | 7, 8 | mpan 690 | . . 3 ⊢ (𝐵 ∈ On → 𝐵 ⊆ (2o ↑o 𝐵)) |
| 10 | 9 | adantl 481 | . 2 ⊢ (((𝐴 ∈ On ∧ 1o ∈ 𝐴) ∧ 𝐵 ∈ On) → 𝐵 ⊆ (2o ↑o 𝐵)) |
| 11 | df-2o 8386 | . . . 4 ⊢ 2o = suc 1o | |
| 12 | onsucss 43307 | . . . . . 6 ⊢ (𝐴 ∈ On → (1o ∈ 𝐴 → suc 1o ⊆ 𝐴)) | |
| 13 | 12 | imp 406 | . . . . 5 ⊢ ((𝐴 ∈ On ∧ 1o ∈ 𝐴) → suc 1o ⊆ 𝐴) |
| 14 | 13 | adantr 480 | . . . 4 ⊢ (((𝐴 ∈ On ∧ 1o ∈ 𝐴) ∧ 𝐵 ∈ On) → suc 1o ⊆ 𝐴) |
| 15 | 11, 14 | eqsstrid 3968 | . . 3 ⊢ (((𝐴 ∈ On ∧ 1o ∈ 𝐴) ∧ 𝐵 ∈ On) → 2o ⊆ 𝐴) |
| 16 | simpll 766 | . . . . 5 ⊢ (((𝐴 ∈ On ∧ 1o ∈ 𝐴) ∧ 𝐵 ∈ On) → 𝐴 ∈ On) | |
| 17 | onsseleq 6347 | . . . . 5 ⊢ ((2o ∈ On ∧ 𝐴 ∈ On) → (2o ⊆ 𝐴 ↔ (2o ∈ 𝐴 ∨ 2o = 𝐴))) | |
| 18 | 1, 16, 17 | sylancr 587 | . . . 4 ⊢ (((𝐴 ∈ On ∧ 1o ∈ 𝐴) ∧ 𝐵 ∈ On) → (2o ⊆ 𝐴 ↔ (2o ∈ 𝐴 ∨ 2o = 𝐴))) |
| 19 | oewordri 8507 | . . . . . 6 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (2o ∈ 𝐴 → (2o ↑o 𝐵) ⊆ (𝐴 ↑o 𝐵))) | |
| 20 | 19 | adantlr 715 | . . . . 5 ⊢ (((𝐴 ∈ On ∧ 1o ∈ 𝐴) ∧ 𝐵 ∈ On) → (2o ∈ 𝐴 → (2o ↑o 𝐵) ⊆ (𝐴 ↑o 𝐵))) |
| 21 | oveq1 7353 | . . . . . . 7 ⊢ (2o = 𝐴 → (2o ↑o 𝐵) = (𝐴 ↑o 𝐵)) | |
| 22 | ssid 3952 | . . . . . . 7 ⊢ (𝐴 ↑o 𝐵) ⊆ (𝐴 ↑o 𝐵) | |
| 23 | 21, 22 | eqsstrdi 3974 | . . . . . 6 ⊢ (2o = 𝐴 → (2o ↑o 𝐵) ⊆ (𝐴 ↑o 𝐵)) |
| 24 | 23 | a1i 11 | . . . . 5 ⊢ (((𝐴 ∈ On ∧ 1o ∈ 𝐴) ∧ 𝐵 ∈ On) → (2o = 𝐴 → (2o ↑o 𝐵) ⊆ (𝐴 ↑o 𝐵))) |
| 25 | 20, 24 | jaod 859 | . . . 4 ⊢ (((𝐴 ∈ On ∧ 1o ∈ 𝐴) ∧ 𝐵 ∈ On) → ((2o ∈ 𝐴 ∨ 2o = 𝐴) → (2o ↑o 𝐵) ⊆ (𝐴 ↑o 𝐵))) |
| 26 | 18, 25 | sylbid 240 | . . 3 ⊢ (((𝐴 ∈ On ∧ 1o ∈ 𝐴) ∧ 𝐵 ∈ On) → (2o ⊆ 𝐴 → (2o ↑o 𝐵) ⊆ (𝐴 ↑o 𝐵))) |
| 27 | 15, 26 | mpd 15 | . 2 ⊢ (((𝐴 ∈ On ∧ 1o ∈ 𝐴) ∧ 𝐵 ∈ On) → (2o ↑o 𝐵) ⊆ (𝐴 ↑o 𝐵)) |
| 28 | 10, 27 | sstrd 3940 | 1 ⊢ (((𝐴 ∈ On ∧ 1o ∈ 𝐴) ∧ 𝐵 ∈ On) → 𝐵 ⊆ (𝐴 ↑o 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 = wceq 1541 ∈ wcel 2111 ∖ cdif 3894 ⊆ wss 3897 ∅c0 4280 {cpr 4575 Oncon0 6306 suc csuc 6308 (class class class)co 7346 1oc1o 8378 2oc2o 8379 ↑o coe 8384 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-2o 8386 df-oadd 8389 df-omul 8390 df-oexp 8391 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |