Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  oege2 Structured version   Visualization version   GIF version

Theorem oege2 43280
Description: Any power of an ordinal at least as large as two is greater-than-or-equal to the term on the right. Lemma 3.20 of [Schloeder] p. 10. See oeworde 8511. (Contributed by RP, 29-Jan-2025.)
Assertion
Ref Expression
oege2 (((𝐴 ∈ On ∧ 1o𝐴) ∧ 𝐵 ∈ On) → 𝐵 ⊆ (𝐴o 𝐵))

Proof of Theorem oege2
StepHypRef Expression
1 2on 8401 . . . . 5 2o ∈ On
2 1oex 8398 . . . . . . 7 1o ∈ V
32prid2 4715 . . . . . 6 1o ∈ {∅, 1o}
4 df2o3 8396 . . . . . 6 2o = {∅, 1o}
53, 4eleqtrri 2827 . . . . 5 1o ∈ 2o
6 ondif2 8420 . . . . 5 (2o ∈ (On ∖ 2o) ↔ (2o ∈ On ∧ 1o ∈ 2o))
71, 5, 6mpbir2an 711 . . . 4 2o ∈ (On ∖ 2o)
8 oeworde 8511 . . . 4 ((2o ∈ (On ∖ 2o) ∧ 𝐵 ∈ On) → 𝐵 ⊆ (2oo 𝐵))
97, 8mpan 690 . . 3 (𝐵 ∈ On → 𝐵 ⊆ (2oo 𝐵))
109adantl 481 . 2 (((𝐴 ∈ On ∧ 1o𝐴) ∧ 𝐵 ∈ On) → 𝐵 ⊆ (2oo 𝐵))
11 df-2o 8389 . . . 4 2o = suc 1o
12 onsucss 43239 . . . . . 6 (𝐴 ∈ On → (1o𝐴 → suc 1o𝐴))
1312imp 406 . . . . 5 ((𝐴 ∈ On ∧ 1o𝐴) → suc 1o𝐴)
1413adantr 480 . . . 4 (((𝐴 ∈ On ∧ 1o𝐴) ∧ 𝐵 ∈ On) → suc 1o𝐴)
1511, 14eqsstrid 3974 . . 3 (((𝐴 ∈ On ∧ 1o𝐴) ∧ 𝐵 ∈ On) → 2o𝐴)
16 simpll 766 . . . . 5 (((𝐴 ∈ On ∧ 1o𝐴) ∧ 𝐵 ∈ On) → 𝐴 ∈ On)
17 onsseleq 6348 . . . . 5 ((2o ∈ On ∧ 𝐴 ∈ On) → (2o𝐴 ↔ (2o𝐴 ∨ 2o = 𝐴)))
181, 16, 17sylancr 587 . . . 4 (((𝐴 ∈ On ∧ 1o𝐴) ∧ 𝐵 ∈ On) → (2o𝐴 ↔ (2o𝐴 ∨ 2o = 𝐴)))
19 oewordri 8510 . . . . . 6 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (2o𝐴 → (2oo 𝐵) ⊆ (𝐴o 𝐵)))
2019adantlr 715 . . . . 5 (((𝐴 ∈ On ∧ 1o𝐴) ∧ 𝐵 ∈ On) → (2o𝐴 → (2oo 𝐵) ⊆ (𝐴o 𝐵)))
21 oveq1 7356 . . . . . . 7 (2o = 𝐴 → (2oo 𝐵) = (𝐴o 𝐵))
22 ssid 3958 . . . . . . 7 (𝐴o 𝐵) ⊆ (𝐴o 𝐵)
2321, 22eqsstrdi 3980 . . . . . 6 (2o = 𝐴 → (2oo 𝐵) ⊆ (𝐴o 𝐵))
2423a1i 11 . . . . 5 (((𝐴 ∈ On ∧ 1o𝐴) ∧ 𝐵 ∈ On) → (2o = 𝐴 → (2oo 𝐵) ⊆ (𝐴o 𝐵)))
2520, 24jaod 859 . . . 4 (((𝐴 ∈ On ∧ 1o𝐴) ∧ 𝐵 ∈ On) → ((2o𝐴 ∨ 2o = 𝐴) → (2oo 𝐵) ⊆ (𝐴o 𝐵)))
2618, 25sylbid 240 . . 3 (((𝐴 ∈ On ∧ 1o𝐴) ∧ 𝐵 ∈ On) → (2o𝐴 → (2oo 𝐵) ⊆ (𝐴o 𝐵)))
2715, 26mpd 15 . 2 (((𝐴 ∈ On ∧ 1o𝐴) ∧ 𝐵 ∈ On) → (2oo 𝐵) ⊆ (𝐴o 𝐵))
2810, 27sstrd 3946 1 (((𝐴 ∈ On ∧ 1o𝐴) ∧ 𝐵 ∈ On) → 𝐵 ⊆ (𝐴o 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wcel 2109  cdif 3900  wss 3903  c0 4284  {cpr 4579  Oncon0 6307  suc csuc 6309  (class class class)co 7349  1oc1o 8381  2oc2o 8382  o coe 8387
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-2o 8389  df-oadd 8392  df-omul 8393  df-oexp 8394
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator