![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > oege2 | Structured version Visualization version GIF version |
Description: Any power of an ordinal at least as large as two is greater-than-or-equal to the term on the right. Lemma 3.20 of [Schloeder] p. 10. See oeworde 8607. (Contributed by RP, 29-Jan-2025.) |
Ref | Expression |
---|---|
oege2 | ⊢ (((𝐴 ∈ On ∧ 1o ∈ 𝐴) ∧ 𝐵 ∈ On) → 𝐵 ⊆ (𝐴 ↑o 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2on 8494 | . . . . 5 ⊢ 2o ∈ On | |
2 | 1oex 8490 | . . . . . . 7 ⊢ 1o ∈ V | |
3 | 2 | prid2 4763 | . . . . . 6 ⊢ 1o ∈ {∅, 1o} |
4 | df2o3 8488 | . . . . . 6 ⊢ 2o = {∅, 1o} | |
5 | 3, 4 | eleqtrri 2827 | . . . . 5 ⊢ 1o ∈ 2o |
6 | ondif2 8516 | . . . . 5 ⊢ (2o ∈ (On ∖ 2o) ↔ (2o ∈ On ∧ 1o ∈ 2o)) | |
7 | 1, 5, 6 | mpbir2an 710 | . . . 4 ⊢ 2o ∈ (On ∖ 2o) |
8 | oeworde 8607 | . . . 4 ⊢ ((2o ∈ (On ∖ 2o) ∧ 𝐵 ∈ On) → 𝐵 ⊆ (2o ↑o 𝐵)) | |
9 | 7, 8 | mpan 689 | . . 3 ⊢ (𝐵 ∈ On → 𝐵 ⊆ (2o ↑o 𝐵)) |
10 | 9 | adantl 481 | . 2 ⊢ (((𝐴 ∈ On ∧ 1o ∈ 𝐴) ∧ 𝐵 ∈ On) → 𝐵 ⊆ (2o ↑o 𝐵)) |
11 | df-2o 8481 | . . . 4 ⊢ 2o = suc 1o | |
12 | onsucss 42618 | . . . . . 6 ⊢ (𝐴 ∈ On → (1o ∈ 𝐴 → suc 1o ⊆ 𝐴)) | |
13 | 12 | imp 406 | . . . . 5 ⊢ ((𝐴 ∈ On ∧ 1o ∈ 𝐴) → suc 1o ⊆ 𝐴) |
14 | 13 | adantr 480 | . . . 4 ⊢ (((𝐴 ∈ On ∧ 1o ∈ 𝐴) ∧ 𝐵 ∈ On) → suc 1o ⊆ 𝐴) |
15 | 11, 14 | eqsstrid 4026 | . . 3 ⊢ (((𝐴 ∈ On ∧ 1o ∈ 𝐴) ∧ 𝐵 ∈ On) → 2o ⊆ 𝐴) |
16 | simpll 766 | . . . . 5 ⊢ (((𝐴 ∈ On ∧ 1o ∈ 𝐴) ∧ 𝐵 ∈ On) → 𝐴 ∈ On) | |
17 | onsseleq 6404 | . . . . 5 ⊢ ((2o ∈ On ∧ 𝐴 ∈ On) → (2o ⊆ 𝐴 ↔ (2o ∈ 𝐴 ∨ 2o = 𝐴))) | |
18 | 1, 16, 17 | sylancr 586 | . . . 4 ⊢ (((𝐴 ∈ On ∧ 1o ∈ 𝐴) ∧ 𝐵 ∈ On) → (2o ⊆ 𝐴 ↔ (2o ∈ 𝐴 ∨ 2o = 𝐴))) |
19 | oewordri 8606 | . . . . . 6 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (2o ∈ 𝐴 → (2o ↑o 𝐵) ⊆ (𝐴 ↑o 𝐵))) | |
20 | 19 | adantlr 714 | . . . . 5 ⊢ (((𝐴 ∈ On ∧ 1o ∈ 𝐴) ∧ 𝐵 ∈ On) → (2o ∈ 𝐴 → (2o ↑o 𝐵) ⊆ (𝐴 ↑o 𝐵))) |
21 | oveq1 7421 | . . . . . . 7 ⊢ (2o = 𝐴 → (2o ↑o 𝐵) = (𝐴 ↑o 𝐵)) | |
22 | ssid 4000 | . . . . . . 7 ⊢ (𝐴 ↑o 𝐵) ⊆ (𝐴 ↑o 𝐵) | |
23 | 21, 22 | eqsstrdi 4032 | . . . . . 6 ⊢ (2o = 𝐴 → (2o ↑o 𝐵) ⊆ (𝐴 ↑o 𝐵)) |
24 | 23 | a1i 11 | . . . . 5 ⊢ (((𝐴 ∈ On ∧ 1o ∈ 𝐴) ∧ 𝐵 ∈ On) → (2o = 𝐴 → (2o ↑o 𝐵) ⊆ (𝐴 ↑o 𝐵))) |
25 | 20, 24 | jaod 858 | . . . 4 ⊢ (((𝐴 ∈ On ∧ 1o ∈ 𝐴) ∧ 𝐵 ∈ On) → ((2o ∈ 𝐴 ∨ 2o = 𝐴) → (2o ↑o 𝐵) ⊆ (𝐴 ↑o 𝐵))) |
26 | 18, 25 | sylbid 239 | . . 3 ⊢ (((𝐴 ∈ On ∧ 1o ∈ 𝐴) ∧ 𝐵 ∈ On) → (2o ⊆ 𝐴 → (2o ↑o 𝐵) ⊆ (𝐴 ↑o 𝐵))) |
27 | 15, 26 | mpd 15 | . 2 ⊢ (((𝐴 ∈ On ∧ 1o ∈ 𝐴) ∧ 𝐵 ∈ On) → (2o ↑o 𝐵) ⊆ (𝐴 ↑o 𝐵)) |
28 | 10, 27 | sstrd 3988 | 1 ⊢ (((𝐴 ∈ On ∧ 1o ∈ 𝐴) ∧ 𝐵 ∈ On) → 𝐵 ⊆ (𝐴 ↑o 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∨ wo 846 = wceq 1534 ∈ wcel 2099 ∖ cdif 3941 ⊆ wss 3944 ∅c0 4318 {cpr 4626 Oncon0 6363 suc csuc 6365 (class class class)co 7414 1oc1o 8473 2oc2o 8474 ↑o coe 8479 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-rep 5279 ax-sep 5293 ax-nul 5300 ax-pr 5423 ax-un 7734 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-ral 3057 df-rex 3066 df-reu 3372 df-rab 3428 df-v 3471 df-sbc 3775 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3963 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-iun 4993 df-br 5143 df-opab 5205 df-mpt 5226 df-tr 5260 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-ov 7417 df-oprab 7418 df-mpo 7419 df-om 7865 df-2nd 7988 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-2o 8481 df-oadd 8484 df-omul 8485 df-oexp 8486 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |