Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  oege2 Structured version   Visualization version   GIF version

Theorem oege2 43331
Description: Any power of an ordinal at least as large as two is greater-than-or-equal to the term on the right. Lemma 3.20 of [Schloeder] p. 10. See oeworde 8605. (Contributed by RP, 29-Jan-2025.)
Assertion
Ref Expression
oege2 (((𝐴 ∈ On ∧ 1o𝐴) ∧ 𝐵 ∈ On) → 𝐵 ⊆ (𝐴o 𝐵))

Proof of Theorem oege2
StepHypRef Expression
1 2on 8494 . . . . 5 2o ∈ On
2 1oex 8490 . . . . . . 7 1o ∈ V
32prid2 4739 . . . . . 6 1o ∈ {∅, 1o}
4 df2o3 8488 . . . . . 6 2o = {∅, 1o}
53, 4eleqtrri 2833 . . . . 5 1o ∈ 2o
6 ondif2 8514 . . . . 5 (2o ∈ (On ∖ 2o) ↔ (2o ∈ On ∧ 1o ∈ 2o))
71, 5, 6mpbir2an 711 . . . 4 2o ∈ (On ∖ 2o)
8 oeworde 8605 . . . 4 ((2o ∈ (On ∖ 2o) ∧ 𝐵 ∈ On) → 𝐵 ⊆ (2oo 𝐵))
97, 8mpan 690 . . 3 (𝐵 ∈ On → 𝐵 ⊆ (2oo 𝐵))
109adantl 481 . 2 (((𝐴 ∈ On ∧ 1o𝐴) ∧ 𝐵 ∈ On) → 𝐵 ⊆ (2oo 𝐵))
11 df-2o 8481 . . . 4 2o = suc 1o
12 onsucss 43290 . . . . . 6 (𝐴 ∈ On → (1o𝐴 → suc 1o𝐴))
1312imp 406 . . . . 5 ((𝐴 ∈ On ∧ 1o𝐴) → suc 1o𝐴)
1413adantr 480 . . . 4 (((𝐴 ∈ On ∧ 1o𝐴) ∧ 𝐵 ∈ On) → suc 1o𝐴)
1511, 14eqsstrid 3997 . . 3 (((𝐴 ∈ On ∧ 1o𝐴) ∧ 𝐵 ∈ On) → 2o𝐴)
16 simpll 766 . . . . 5 (((𝐴 ∈ On ∧ 1o𝐴) ∧ 𝐵 ∈ On) → 𝐴 ∈ On)
17 onsseleq 6393 . . . . 5 ((2o ∈ On ∧ 𝐴 ∈ On) → (2o𝐴 ↔ (2o𝐴 ∨ 2o = 𝐴)))
181, 16, 17sylancr 587 . . . 4 (((𝐴 ∈ On ∧ 1o𝐴) ∧ 𝐵 ∈ On) → (2o𝐴 ↔ (2o𝐴 ∨ 2o = 𝐴)))
19 oewordri 8604 . . . . . 6 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (2o𝐴 → (2oo 𝐵) ⊆ (𝐴o 𝐵)))
2019adantlr 715 . . . . 5 (((𝐴 ∈ On ∧ 1o𝐴) ∧ 𝐵 ∈ On) → (2o𝐴 → (2oo 𝐵) ⊆ (𝐴o 𝐵)))
21 oveq1 7412 . . . . . . 7 (2o = 𝐴 → (2oo 𝐵) = (𝐴o 𝐵))
22 ssid 3981 . . . . . . 7 (𝐴o 𝐵) ⊆ (𝐴o 𝐵)
2321, 22eqsstrdi 4003 . . . . . 6 (2o = 𝐴 → (2oo 𝐵) ⊆ (𝐴o 𝐵))
2423a1i 11 . . . . 5 (((𝐴 ∈ On ∧ 1o𝐴) ∧ 𝐵 ∈ On) → (2o = 𝐴 → (2oo 𝐵) ⊆ (𝐴o 𝐵)))
2520, 24jaod 859 . . . 4 (((𝐴 ∈ On ∧ 1o𝐴) ∧ 𝐵 ∈ On) → ((2o𝐴 ∨ 2o = 𝐴) → (2oo 𝐵) ⊆ (𝐴o 𝐵)))
2618, 25sylbid 240 . . 3 (((𝐴 ∈ On ∧ 1o𝐴) ∧ 𝐵 ∈ On) → (2o𝐴 → (2oo 𝐵) ⊆ (𝐴o 𝐵)))
2715, 26mpd 15 . 2 (((𝐴 ∈ On ∧ 1o𝐴) ∧ 𝐵 ∈ On) → (2oo 𝐵) ⊆ (𝐴o 𝐵))
2810, 27sstrd 3969 1 (((𝐴 ∈ On ∧ 1o𝐴) ∧ 𝐵 ∈ On) → 𝐵 ⊆ (𝐴o 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wcel 2108  cdif 3923  wss 3926  c0 4308  {cpr 4603  Oncon0 6352  suc csuc 6354  (class class class)co 7405  1oc1o 8473  2oc2o 8474  o coe 8479
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-2o 8481  df-oadd 8484  df-omul 8485  df-oexp 8486
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator