Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  oege2 Structured version   Visualization version   GIF version

Theorem oege2 43348
Description: Any power of an ordinal at least as large as two is greater-than-or-equal to the term on the right. Lemma 3.20 of [Schloeder] p. 10. See oeworde 8508. (Contributed by RP, 29-Jan-2025.)
Assertion
Ref Expression
oege2 (((𝐴 ∈ On ∧ 1o𝐴) ∧ 𝐵 ∈ On) → 𝐵 ⊆ (𝐴o 𝐵))

Proof of Theorem oege2
StepHypRef Expression
1 2on 8398 . . . . 5 2o ∈ On
2 1oex 8395 . . . . . . 7 1o ∈ V
32prid2 4713 . . . . . 6 1o ∈ {∅, 1o}
4 df2o3 8393 . . . . . 6 2o = {∅, 1o}
53, 4eleqtrri 2830 . . . . 5 1o ∈ 2o
6 ondif2 8417 . . . . 5 (2o ∈ (On ∖ 2o) ↔ (2o ∈ On ∧ 1o ∈ 2o))
71, 5, 6mpbir2an 711 . . . 4 2o ∈ (On ∖ 2o)
8 oeworde 8508 . . . 4 ((2o ∈ (On ∖ 2o) ∧ 𝐵 ∈ On) → 𝐵 ⊆ (2oo 𝐵))
97, 8mpan 690 . . 3 (𝐵 ∈ On → 𝐵 ⊆ (2oo 𝐵))
109adantl 481 . 2 (((𝐴 ∈ On ∧ 1o𝐴) ∧ 𝐵 ∈ On) → 𝐵 ⊆ (2oo 𝐵))
11 df-2o 8386 . . . 4 2o = suc 1o
12 onsucss 43307 . . . . . 6 (𝐴 ∈ On → (1o𝐴 → suc 1o𝐴))
1312imp 406 . . . . 5 ((𝐴 ∈ On ∧ 1o𝐴) → suc 1o𝐴)
1413adantr 480 . . . 4 (((𝐴 ∈ On ∧ 1o𝐴) ∧ 𝐵 ∈ On) → suc 1o𝐴)
1511, 14eqsstrid 3968 . . 3 (((𝐴 ∈ On ∧ 1o𝐴) ∧ 𝐵 ∈ On) → 2o𝐴)
16 simpll 766 . . . . 5 (((𝐴 ∈ On ∧ 1o𝐴) ∧ 𝐵 ∈ On) → 𝐴 ∈ On)
17 onsseleq 6347 . . . . 5 ((2o ∈ On ∧ 𝐴 ∈ On) → (2o𝐴 ↔ (2o𝐴 ∨ 2o = 𝐴)))
181, 16, 17sylancr 587 . . . 4 (((𝐴 ∈ On ∧ 1o𝐴) ∧ 𝐵 ∈ On) → (2o𝐴 ↔ (2o𝐴 ∨ 2o = 𝐴)))
19 oewordri 8507 . . . . . 6 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (2o𝐴 → (2oo 𝐵) ⊆ (𝐴o 𝐵)))
2019adantlr 715 . . . . 5 (((𝐴 ∈ On ∧ 1o𝐴) ∧ 𝐵 ∈ On) → (2o𝐴 → (2oo 𝐵) ⊆ (𝐴o 𝐵)))
21 oveq1 7353 . . . . . . 7 (2o = 𝐴 → (2oo 𝐵) = (𝐴o 𝐵))
22 ssid 3952 . . . . . . 7 (𝐴o 𝐵) ⊆ (𝐴o 𝐵)
2321, 22eqsstrdi 3974 . . . . . 6 (2o = 𝐴 → (2oo 𝐵) ⊆ (𝐴o 𝐵))
2423a1i 11 . . . . 5 (((𝐴 ∈ On ∧ 1o𝐴) ∧ 𝐵 ∈ On) → (2o = 𝐴 → (2oo 𝐵) ⊆ (𝐴o 𝐵)))
2520, 24jaod 859 . . . 4 (((𝐴 ∈ On ∧ 1o𝐴) ∧ 𝐵 ∈ On) → ((2o𝐴 ∨ 2o = 𝐴) → (2oo 𝐵) ⊆ (𝐴o 𝐵)))
2618, 25sylbid 240 . . 3 (((𝐴 ∈ On ∧ 1o𝐴) ∧ 𝐵 ∈ On) → (2o𝐴 → (2oo 𝐵) ⊆ (𝐴o 𝐵)))
2715, 26mpd 15 . 2 (((𝐴 ∈ On ∧ 1o𝐴) ∧ 𝐵 ∈ On) → (2oo 𝐵) ⊆ (𝐴o 𝐵))
2810, 27sstrd 3940 1 (((𝐴 ∈ On ∧ 1o𝐴) ∧ 𝐵 ∈ On) → 𝐵 ⊆ (𝐴o 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847   = wceq 1541  wcel 2111  cdif 3894  wss 3897  c0 4280  {cpr 4575  Oncon0 6306  suc csuc 6308  (class class class)co 7346  1oc1o 8378  2oc2o 8379  o coe 8384
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-oadd 8389  df-omul 8390  df-oexp 8391
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator