Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  oege2 Structured version   Visualization version   GIF version

Theorem oege2 43296
Description: Any power of an ordinal at least as large as two is greater-than-or-equal to the term on the right. Lemma 3.20 of [Schloeder] p. 10. See oeworde 8557. (Contributed by RP, 29-Jan-2025.)
Assertion
Ref Expression
oege2 (((𝐴 ∈ On ∧ 1o𝐴) ∧ 𝐵 ∈ On) → 𝐵 ⊆ (𝐴o 𝐵))

Proof of Theorem oege2
StepHypRef Expression
1 2on 8447 . . . . 5 2o ∈ On
2 1oex 8444 . . . . . . 7 1o ∈ V
32prid2 4727 . . . . . 6 1o ∈ {∅, 1o}
4 df2o3 8442 . . . . . 6 2o = {∅, 1o}
53, 4eleqtrri 2827 . . . . 5 1o ∈ 2o
6 ondif2 8466 . . . . 5 (2o ∈ (On ∖ 2o) ↔ (2o ∈ On ∧ 1o ∈ 2o))
71, 5, 6mpbir2an 711 . . . 4 2o ∈ (On ∖ 2o)
8 oeworde 8557 . . . 4 ((2o ∈ (On ∖ 2o) ∧ 𝐵 ∈ On) → 𝐵 ⊆ (2oo 𝐵))
97, 8mpan 690 . . 3 (𝐵 ∈ On → 𝐵 ⊆ (2oo 𝐵))
109adantl 481 . 2 (((𝐴 ∈ On ∧ 1o𝐴) ∧ 𝐵 ∈ On) → 𝐵 ⊆ (2oo 𝐵))
11 df-2o 8435 . . . 4 2o = suc 1o
12 onsucss 43255 . . . . . 6 (𝐴 ∈ On → (1o𝐴 → suc 1o𝐴))
1312imp 406 . . . . 5 ((𝐴 ∈ On ∧ 1o𝐴) → suc 1o𝐴)
1413adantr 480 . . . 4 (((𝐴 ∈ On ∧ 1o𝐴) ∧ 𝐵 ∈ On) → suc 1o𝐴)
1511, 14eqsstrid 3985 . . 3 (((𝐴 ∈ On ∧ 1o𝐴) ∧ 𝐵 ∈ On) → 2o𝐴)
16 simpll 766 . . . . 5 (((𝐴 ∈ On ∧ 1o𝐴) ∧ 𝐵 ∈ On) → 𝐴 ∈ On)
17 onsseleq 6373 . . . . 5 ((2o ∈ On ∧ 𝐴 ∈ On) → (2o𝐴 ↔ (2o𝐴 ∨ 2o = 𝐴)))
181, 16, 17sylancr 587 . . . 4 (((𝐴 ∈ On ∧ 1o𝐴) ∧ 𝐵 ∈ On) → (2o𝐴 ↔ (2o𝐴 ∨ 2o = 𝐴)))
19 oewordri 8556 . . . . . 6 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (2o𝐴 → (2oo 𝐵) ⊆ (𝐴o 𝐵)))
2019adantlr 715 . . . . 5 (((𝐴 ∈ On ∧ 1o𝐴) ∧ 𝐵 ∈ On) → (2o𝐴 → (2oo 𝐵) ⊆ (𝐴o 𝐵)))
21 oveq1 7394 . . . . . . 7 (2o = 𝐴 → (2oo 𝐵) = (𝐴o 𝐵))
22 ssid 3969 . . . . . . 7 (𝐴o 𝐵) ⊆ (𝐴o 𝐵)
2321, 22eqsstrdi 3991 . . . . . 6 (2o = 𝐴 → (2oo 𝐵) ⊆ (𝐴o 𝐵))
2423a1i 11 . . . . 5 (((𝐴 ∈ On ∧ 1o𝐴) ∧ 𝐵 ∈ On) → (2o = 𝐴 → (2oo 𝐵) ⊆ (𝐴o 𝐵)))
2520, 24jaod 859 . . . 4 (((𝐴 ∈ On ∧ 1o𝐴) ∧ 𝐵 ∈ On) → ((2o𝐴 ∨ 2o = 𝐴) → (2oo 𝐵) ⊆ (𝐴o 𝐵)))
2618, 25sylbid 240 . . 3 (((𝐴 ∈ On ∧ 1o𝐴) ∧ 𝐵 ∈ On) → (2o𝐴 → (2oo 𝐵) ⊆ (𝐴o 𝐵)))
2715, 26mpd 15 . 2 (((𝐴 ∈ On ∧ 1o𝐴) ∧ 𝐵 ∈ On) → (2oo 𝐵) ⊆ (𝐴o 𝐵))
2810, 27sstrd 3957 1 (((𝐴 ∈ On ∧ 1o𝐴) ∧ 𝐵 ∈ On) → 𝐵 ⊆ (𝐴o 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wcel 2109  cdif 3911  wss 3914  c0 4296  {cpr 4591  Oncon0 6332  suc csuc 6334  (class class class)co 7387  1oc1o 8427  2oc2o 8428  o coe 8433
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-oadd 8438  df-omul 8439  df-oexp 8440
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator