Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  oege2 Structured version   Visualization version   GIF version

Theorem oege2 43269
Description: Any power of an ordinal at least as large as two is greater-than-or-equal to the term on the right. Lemma 3.20 of [Schloeder] p. 10. See oeworde 8649. (Contributed by RP, 29-Jan-2025.)
Assertion
Ref Expression
oege2 (((𝐴 ∈ On ∧ 1o𝐴) ∧ 𝐵 ∈ On) → 𝐵 ⊆ (𝐴o 𝐵))

Proof of Theorem oege2
StepHypRef Expression
1 2on 8536 . . . . 5 2o ∈ On
2 1oex 8532 . . . . . . 7 1o ∈ V
32prid2 4788 . . . . . 6 1o ∈ {∅, 1o}
4 df2o3 8530 . . . . . 6 2o = {∅, 1o}
53, 4eleqtrri 2843 . . . . 5 1o ∈ 2o
6 ondif2 8558 . . . . 5 (2o ∈ (On ∖ 2o) ↔ (2o ∈ On ∧ 1o ∈ 2o))
71, 5, 6mpbir2an 710 . . . 4 2o ∈ (On ∖ 2o)
8 oeworde 8649 . . . 4 ((2o ∈ (On ∖ 2o) ∧ 𝐵 ∈ On) → 𝐵 ⊆ (2oo 𝐵))
97, 8mpan 689 . . 3 (𝐵 ∈ On → 𝐵 ⊆ (2oo 𝐵))
109adantl 481 . 2 (((𝐴 ∈ On ∧ 1o𝐴) ∧ 𝐵 ∈ On) → 𝐵 ⊆ (2oo 𝐵))
11 df-2o 8523 . . . 4 2o = suc 1o
12 onsucss 43228 . . . . . 6 (𝐴 ∈ On → (1o𝐴 → suc 1o𝐴))
1312imp 406 . . . . 5 ((𝐴 ∈ On ∧ 1o𝐴) → suc 1o𝐴)
1413adantr 480 . . . 4 (((𝐴 ∈ On ∧ 1o𝐴) ∧ 𝐵 ∈ On) → suc 1o𝐴)
1511, 14eqsstrid 4057 . . 3 (((𝐴 ∈ On ∧ 1o𝐴) ∧ 𝐵 ∈ On) → 2o𝐴)
16 simpll 766 . . . . 5 (((𝐴 ∈ On ∧ 1o𝐴) ∧ 𝐵 ∈ On) → 𝐴 ∈ On)
17 onsseleq 6436 . . . . 5 ((2o ∈ On ∧ 𝐴 ∈ On) → (2o𝐴 ↔ (2o𝐴 ∨ 2o = 𝐴)))
181, 16, 17sylancr 586 . . . 4 (((𝐴 ∈ On ∧ 1o𝐴) ∧ 𝐵 ∈ On) → (2o𝐴 ↔ (2o𝐴 ∨ 2o = 𝐴)))
19 oewordri 8648 . . . . . 6 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (2o𝐴 → (2oo 𝐵) ⊆ (𝐴o 𝐵)))
2019adantlr 714 . . . . 5 (((𝐴 ∈ On ∧ 1o𝐴) ∧ 𝐵 ∈ On) → (2o𝐴 → (2oo 𝐵) ⊆ (𝐴o 𝐵)))
21 oveq1 7455 . . . . . . 7 (2o = 𝐴 → (2oo 𝐵) = (𝐴o 𝐵))
22 ssid 4031 . . . . . . 7 (𝐴o 𝐵) ⊆ (𝐴o 𝐵)
2321, 22eqsstrdi 4063 . . . . . 6 (2o = 𝐴 → (2oo 𝐵) ⊆ (𝐴o 𝐵))
2423a1i 11 . . . . 5 (((𝐴 ∈ On ∧ 1o𝐴) ∧ 𝐵 ∈ On) → (2o = 𝐴 → (2oo 𝐵) ⊆ (𝐴o 𝐵)))
2520, 24jaod 858 . . . 4 (((𝐴 ∈ On ∧ 1o𝐴) ∧ 𝐵 ∈ On) → ((2o𝐴 ∨ 2o = 𝐴) → (2oo 𝐵) ⊆ (𝐴o 𝐵)))
2618, 25sylbid 240 . . 3 (((𝐴 ∈ On ∧ 1o𝐴) ∧ 𝐵 ∈ On) → (2o𝐴 → (2oo 𝐵) ⊆ (𝐴o 𝐵)))
2715, 26mpd 15 . 2 (((𝐴 ∈ On ∧ 1o𝐴) ∧ 𝐵 ∈ On) → (2oo 𝐵) ⊆ (𝐴o 𝐵))
2810, 27sstrd 4019 1 (((𝐴 ∈ On ∧ 1o𝐴) ∧ 𝐵 ∈ On) → 𝐵 ⊆ (𝐴o 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 846   = wceq 1537  wcel 2108  cdif 3973  wss 3976  c0 4352  {cpr 4650  Oncon0 6395  suc csuc 6397  (class class class)co 7448  1oc1o 8515  2oc2o 8516  o coe 8521
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-oadd 8526  df-omul 8527  df-oexp 8528
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator