Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  naddwordnexlem0 Structured version   Visualization version   GIF version

Theorem naddwordnexlem0 43402
Description: When 𝐴 is the sum of a limit ordinal (or zero) and a natural number and 𝐵 is the sum of a larger limit ordinal and a smaller natural number, (ω ·o suc 𝐶) lies between 𝐴 and 𝐵. (Contributed by RP, 14-Feb-2025.)
Hypotheses
Ref Expression
naddwordnex.a (𝜑𝐴 = ((ω ·o 𝐶) +o 𝑀))
naddwordnex.b (𝜑𝐵 = ((ω ·o 𝐷) +o 𝑁))
naddwordnex.c (𝜑𝐶𝐷)
naddwordnex.d (𝜑𝐷 ∈ On)
naddwordnex.m (𝜑𝑀 ∈ ω)
naddwordnex.n (𝜑𝑁𝑀)
Assertion
Ref Expression
naddwordnexlem0 (𝜑 → (𝐴 ∈ (ω ·o suc 𝐶) ∧ (ω ·o suc 𝐶) ⊆ 𝐵))

Proof of Theorem naddwordnexlem0
StepHypRef Expression
1 omelon 9693 . . . . . 6 ω ∈ On
21a1i 11 . . . . 5 (𝜑 → ω ∈ On)
3 naddwordnex.d . . . . . . 7 (𝜑𝐷 ∈ On)
4 naddwordnex.c . . . . . . 7 (𝜑𝐶𝐷)
5 onelon 6417 . . . . . . 7 ((𝐷 ∈ On ∧ 𝐶𝐷) → 𝐶 ∈ On)
63, 4, 5syl2anc 584 . . . . . 6 (𝜑𝐶 ∈ On)
7 omcl 8582 . . . . . 6 ((ω ∈ On ∧ 𝐶 ∈ On) → (ω ·o 𝐶) ∈ On)
82, 6, 7syl2anc 584 . . . . 5 (𝜑 → (ω ·o 𝐶) ∈ On)
92, 8jca 511 . . . 4 (𝜑 → (ω ∈ On ∧ (ω ·o 𝐶) ∈ On))
10 naddwordnex.m . . . 4 (𝜑𝑀 ∈ ω)
11 oaordi 8592 . . . 4 ((ω ∈ On ∧ (ω ·o 𝐶) ∈ On) → (𝑀 ∈ ω → ((ω ·o 𝐶) +o 𝑀) ∈ ((ω ·o 𝐶) +o ω)))
129, 10, 11sylc 65 . . 3 (𝜑 → ((ω ·o 𝐶) +o 𝑀) ∈ ((ω ·o 𝐶) +o ω))
13 naddwordnex.a . . 3 (𝜑𝐴 = ((ω ·o 𝐶) +o 𝑀))
14 omsuc 8572 . . . 4 ((ω ∈ On ∧ 𝐶 ∈ On) → (ω ·o suc 𝐶) = ((ω ·o 𝐶) +o ω))
152, 6, 14syl2anc 584 . . 3 (𝜑 → (ω ·o suc 𝐶) = ((ω ·o 𝐶) +o ω))
1612, 13, 153eltr4d 2856 . 2 (𝜑𝐴 ∈ (ω ·o suc 𝐶))
17 onsuc 7838 . . . . . . 7 (𝐶 ∈ On → suc 𝐶 ∈ On)
186, 17syl 17 . . . . . 6 (𝜑 → suc 𝐶 ∈ On)
1918, 3, 23jca 1129 . . . . 5 (𝜑 → (suc 𝐶 ∈ On ∧ 𝐷 ∈ On ∧ ω ∈ On))
20 onsucss 43272 . . . . . 6 (𝐷 ∈ On → (𝐶𝐷 → suc 𝐶𝐷))
213, 4, 20sylc 65 . . . . 5 (𝜑 → suc 𝐶𝐷)
22 omwordi 8617 . . . . 5 ((suc 𝐶 ∈ On ∧ 𝐷 ∈ On ∧ ω ∈ On) → (suc 𝐶𝐷 → (ω ·o suc 𝐶) ⊆ (ω ·o 𝐷)))
2319, 21, 22sylc 65 . . . 4 (𝜑 → (ω ·o suc 𝐶) ⊆ (ω ·o 𝐷))
24 omcl 8582 . . . . . 6 ((ω ∈ On ∧ 𝐷 ∈ On) → (ω ·o 𝐷) ∈ On)
252, 3, 24syl2anc 584 . . . . 5 (𝜑 → (ω ·o 𝐷) ∈ On)
26 naddwordnex.n . . . . . . . 8 (𝜑𝑁𝑀)
2726, 10jca 511 . . . . . . 7 (𝜑 → (𝑁𝑀𝑀 ∈ ω))
28 ontr1 6438 . . . . . . 7 (ω ∈ On → ((𝑁𝑀𝑀 ∈ ω) → 𝑁 ∈ ω))
292, 27, 28sylc 65 . . . . . 6 (𝜑𝑁 ∈ ω)
30 nnon 7900 . . . . . 6 (𝑁 ∈ ω → 𝑁 ∈ On)
3129, 30syl 17 . . . . 5 (𝜑𝑁 ∈ On)
32 oaword1 8598 . . . . 5 (((ω ·o 𝐷) ∈ On ∧ 𝑁 ∈ On) → (ω ·o 𝐷) ⊆ ((ω ·o 𝐷) +o 𝑁))
3325, 31, 32syl2anc 584 . . . 4 (𝜑 → (ω ·o 𝐷) ⊆ ((ω ·o 𝐷) +o 𝑁))
3423, 33sstrd 4009 . . 3 (𝜑 → (ω ·o suc 𝐶) ⊆ ((ω ·o 𝐷) +o 𝑁))
35 naddwordnex.b . . 3 (𝜑𝐵 = ((ω ·o 𝐷) +o 𝑁))
3634, 35sseqtrrd 4040 . 2 (𝜑 → (ω ·o suc 𝐶) ⊆ 𝐵)
3716, 36jca 511 1 (𝜑 → (𝐴 ∈ (ω ·o suc 𝐶) ∧ (ω ·o suc 𝐶) ⊆ 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1539  wcel 2108  wss 3966  Oncon0 6392  suc csuc 6394  (class class class)co 7438  ωcom 7894   +o coa 8511   ·o comu 8512
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5288  ax-sep 5305  ax-nul 5315  ax-pr 5441  ax-un 7761  ax-inf2 9688
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3483  df-sbc 3795  df-csb 3912  df-dif 3969  df-un 3971  df-in 3973  df-ss 3983  df-pss 3986  df-nul 4343  df-if 4535  df-pw 4610  df-sn 4635  df-pr 4637  df-op 4641  df-uni 4916  df-iun 5001  df-br 5152  df-opab 5214  df-mpt 5235  df-tr 5269  df-id 5587  df-eprel 5593  df-po 5601  df-so 5602  df-fr 5645  df-we 5647  df-xp 5699  df-rel 5700  df-cnv 5701  df-co 5702  df-dm 5703  df-rn 5704  df-res 5705  df-ima 5706  df-pred 6329  df-ord 6395  df-on 6396  df-lim 6397  df-suc 6398  df-iota 6522  df-fun 6571  df-fn 6572  df-f 6573  df-f1 6574  df-fo 6575  df-f1o 6576  df-fv 6577  df-ov 7441  df-oprab 7442  df-mpo 7443  df-om 7895  df-2nd 8023  df-frecs 8314  df-wrecs 8345  df-recs 8419  df-rdg 8458  df-oadd 8518  df-omul 8519
This theorem is referenced by:  naddwordnexlem1  43403  naddwordnexlem2  43404  naddwordnexlem3  43405
  Copyright terms: Public domain W3C validator