| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > naddwordnexlem0 | Structured version Visualization version GIF version | ||
| Description: When 𝐴 is the sum of a limit ordinal (or zero) and a natural number and 𝐵 is the sum of a larger limit ordinal and a smaller natural number, (ω ·o suc 𝐶) lies between 𝐴 and 𝐵. (Contributed by RP, 14-Feb-2025.) |
| Ref | Expression |
|---|---|
| naddwordnex.a | ⊢ (𝜑 → 𝐴 = ((ω ·o 𝐶) +o 𝑀)) |
| naddwordnex.b | ⊢ (𝜑 → 𝐵 = ((ω ·o 𝐷) +o 𝑁)) |
| naddwordnex.c | ⊢ (𝜑 → 𝐶 ∈ 𝐷) |
| naddwordnex.d | ⊢ (𝜑 → 𝐷 ∈ On) |
| naddwordnex.m | ⊢ (𝜑 → 𝑀 ∈ ω) |
| naddwordnex.n | ⊢ (𝜑 → 𝑁 ∈ 𝑀) |
| Ref | Expression |
|---|---|
| naddwordnexlem0 | ⊢ (𝜑 → (𝐴 ∈ (ω ·o suc 𝐶) ∧ (ω ·o suc 𝐶) ⊆ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | omelon 9617 | . . . . . 6 ⊢ ω ∈ On | |
| 2 | 1 | a1i 11 | . . . . 5 ⊢ (𝜑 → ω ∈ On) |
| 3 | naddwordnex.d | . . . . . . 7 ⊢ (𝜑 → 𝐷 ∈ On) | |
| 4 | naddwordnex.c | . . . . . . 7 ⊢ (𝜑 → 𝐶 ∈ 𝐷) | |
| 5 | onelon 6365 | . . . . . . 7 ⊢ ((𝐷 ∈ On ∧ 𝐶 ∈ 𝐷) → 𝐶 ∈ On) | |
| 6 | 3, 4, 5 | syl2anc 584 | . . . . . 6 ⊢ (𝜑 → 𝐶 ∈ On) |
| 7 | omcl 8511 | . . . . . 6 ⊢ ((ω ∈ On ∧ 𝐶 ∈ On) → (ω ·o 𝐶) ∈ On) | |
| 8 | 2, 6, 7 | syl2anc 584 | . . . . 5 ⊢ (𝜑 → (ω ·o 𝐶) ∈ On) |
| 9 | 2, 8 | jca 511 | . . . 4 ⊢ (𝜑 → (ω ∈ On ∧ (ω ·o 𝐶) ∈ On)) |
| 10 | naddwordnex.m | . . . 4 ⊢ (𝜑 → 𝑀 ∈ ω) | |
| 11 | oaordi 8521 | . . . 4 ⊢ ((ω ∈ On ∧ (ω ·o 𝐶) ∈ On) → (𝑀 ∈ ω → ((ω ·o 𝐶) +o 𝑀) ∈ ((ω ·o 𝐶) +o ω))) | |
| 12 | 9, 10, 11 | sylc 65 | . . 3 ⊢ (𝜑 → ((ω ·o 𝐶) +o 𝑀) ∈ ((ω ·o 𝐶) +o ω)) |
| 13 | naddwordnex.a | . . 3 ⊢ (𝜑 → 𝐴 = ((ω ·o 𝐶) +o 𝑀)) | |
| 14 | omsuc 8501 | . . . 4 ⊢ ((ω ∈ On ∧ 𝐶 ∈ On) → (ω ·o suc 𝐶) = ((ω ·o 𝐶) +o ω)) | |
| 15 | 2, 6, 14 | syl2anc 584 | . . 3 ⊢ (𝜑 → (ω ·o suc 𝐶) = ((ω ·o 𝐶) +o ω)) |
| 16 | 12, 13, 15 | 3eltr4d 2844 | . 2 ⊢ (𝜑 → 𝐴 ∈ (ω ·o suc 𝐶)) |
| 17 | onsuc 7794 | . . . . . . 7 ⊢ (𝐶 ∈ On → suc 𝐶 ∈ On) | |
| 18 | 6, 17 | syl 17 | . . . . . 6 ⊢ (𝜑 → suc 𝐶 ∈ On) |
| 19 | 18, 3, 2 | 3jca 1128 | . . . . 5 ⊢ (𝜑 → (suc 𝐶 ∈ On ∧ 𝐷 ∈ On ∧ ω ∈ On)) |
| 20 | onsucss 43227 | . . . . . 6 ⊢ (𝐷 ∈ On → (𝐶 ∈ 𝐷 → suc 𝐶 ⊆ 𝐷)) | |
| 21 | 3, 4, 20 | sylc 65 | . . . . 5 ⊢ (𝜑 → suc 𝐶 ⊆ 𝐷) |
| 22 | omwordi 8546 | . . . . 5 ⊢ ((suc 𝐶 ∈ On ∧ 𝐷 ∈ On ∧ ω ∈ On) → (suc 𝐶 ⊆ 𝐷 → (ω ·o suc 𝐶) ⊆ (ω ·o 𝐷))) | |
| 23 | 19, 21, 22 | sylc 65 | . . . 4 ⊢ (𝜑 → (ω ·o suc 𝐶) ⊆ (ω ·o 𝐷)) |
| 24 | omcl 8511 | . . . . . 6 ⊢ ((ω ∈ On ∧ 𝐷 ∈ On) → (ω ·o 𝐷) ∈ On) | |
| 25 | 2, 3, 24 | syl2anc 584 | . . . . 5 ⊢ (𝜑 → (ω ·o 𝐷) ∈ On) |
| 26 | naddwordnex.n | . . . . . . . 8 ⊢ (𝜑 → 𝑁 ∈ 𝑀) | |
| 27 | 26, 10 | jca 511 | . . . . . . 7 ⊢ (𝜑 → (𝑁 ∈ 𝑀 ∧ 𝑀 ∈ ω)) |
| 28 | ontr1 6387 | . . . . . . 7 ⊢ (ω ∈ On → ((𝑁 ∈ 𝑀 ∧ 𝑀 ∈ ω) → 𝑁 ∈ ω)) | |
| 29 | 2, 27, 28 | sylc 65 | . . . . . 6 ⊢ (𝜑 → 𝑁 ∈ ω) |
| 30 | nnon 7856 | . . . . . 6 ⊢ (𝑁 ∈ ω → 𝑁 ∈ On) | |
| 31 | 29, 30 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑁 ∈ On) |
| 32 | oaword1 8527 | . . . . 5 ⊢ (((ω ·o 𝐷) ∈ On ∧ 𝑁 ∈ On) → (ω ·o 𝐷) ⊆ ((ω ·o 𝐷) +o 𝑁)) | |
| 33 | 25, 31, 32 | syl2anc 584 | . . . 4 ⊢ (𝜑 → (ω ·o 𝐷) ⊆ ((ω ·o 𝐷) +o 𝑁)) |
| 34 | 23, 33 | sstrd 3965 | . . 3 ⊢ (𝜑 → (ω ·o suc 𝐶) ⊆ ((ω ·o 𝐷) +o 𝑁)) |
| 35 | naddwordnex.b | . . 3 ⊢ (𝜑 → 𝐵 = ((ω ·o 𝐷) +o 𝑁)) | |
| 36 | 34, 35 | sseqtrrd 3992 | . 2 ⊢ (𝜑 → (ω ·o suc 𝐶) ⊆ 𝐵) |
| 37 | 16, 36 | jca 511 | 1 ⊢ (𝜑 → (𝐴 ∈ (ω ·o suc 𝐶) ∧ (ω ·o suc 𝐶) ⊆ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ⊆ wss 3922 Oncon0 6340 suc csuc 6342 (class class class)co 7394 ωcom 7850 +o coa 8440 ·o comu 8441 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5242 ax-sep 5259 ax-nul 5269 ax-pr 5395 ax-un 7718 ax-inf2 9612 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2880 df-ne 2928 df-ral 3047 df-rex 3056 df-reu 3358 df-rab 3412 df-v 3457 df-sbc 3762 df-csb 3871 df-dif 3925 df-un 3927 df-in 3929 df-ss 3939 df-pss 3942 df-nul 4305 df-if 4497 df-pw 4573 df-sn 4598 df-pr 4600 df-op 4604 df-uni 4880 df-iun 4965 df-br 5116 df-opab 5178 df-mpt 5197 df-tr 5223 df-id 5541 df-eprel 5546 df-po 5554 df-so 5555 df-fr 5599 df-we 5601 df-xp 5652 df-rel 5653 df-cnv 5654 df-co 5655 df-dm 5656 df-rn 5657 df-res 5658 df-ima 5659 df-pred 6282 df-ord 6343 df-on 6344 df-lim 6345 df-suc 6346 df-iota 6472 df-fun 6521 df-fn 6522 df-f 6523 df-f1 6524 df-fo 6525 df-f1o 6526 df-fv 6527 df-ov 7397 df-oprab 7398 df-mpo 7399 df-om 7851 df-2nd 7978 df-frecs 8269 df-wrecs 8300 df-recs 8349 df-rdg 8387 df-oadd 8447 df-omul 8448 |
| This theorem is referenced by: naddwordnexlem1 43358 naddwordnexlem2 43359 naddwordnexlem3 43360 |
| Copyright terms: Public domain | W3C validator |