Proof of Theorem orduninsuc
| Step | Hyp | Ref
| Expression |
| 1 | | ordeleqon 7803 |
. 2
⊢ (Ord
𝐴 ↔ (𝐴 ∈ On ∨ 𝐴 = On)) |
| 2 | | id 22 |
. . . . . 6
⊢ (𝐴 = if(𝐴 ∈ On, 𝐴, ∅) → 𝐴 = if(𝐴 ∈ On, 𝐴, ∅)) |
| 3 | | unieq 4917 |
. . . . . 6
⊢ (𝐴 = if(𝐴 ∈ On, 𝐴, ∅) → ∪ 𝐴 =
∪ if(𝐴 ∈ On, 𝐴, ∅)) |
| 4 | 2, 3 | eqeq12d 2752 |
. . . . 5
⊢ (𝐴 = if(𝐴 ∈ On, 𝐴, ∅) → (𝐴 = ∪ 𝐴 ↔ if(𝐴 ∈ On, 𝐴, ∅) = ∪
if(𝐴 ∈ On, 𝐴, ∅))) |
| 5 | | eqeq1 2740 |
. . . . . . 7
⊢ (𝐴 = if(𝐴 ∈ On, 𝐴, ∅) → (𝐴 = suc 𝑥 ↔ if(𝐴 ∈ On, 𝐴, ∅) = suc 𝑥)) |
| 6 | 5 | rexbidv 3178 |
. . . . . 6
⊢ (𝐴 = if(𝐴 ∈ On, 𝐴, ∅) → (∃𝑥 ∈ On 𝐴 = suc 𝑥 ↔ ∃𝑥 ∈ On if(𝐴 ∈ On, 𝐴, ∅) = suc 𝑥)) |
| 7 | 6 | notbid 318 |
. . . . 5
⊢ (𝐴 = if(𝐴 ∈ On, 𝐴, ∅) → (¬ ∃𝑥 ∈ On 𝐴 = suc 𝑥 ↔ ¬ ∃𝑥 ∈ On if(𝐴 ∈ On, 𝐴, ∅) = suc 𝑥)) |
| 8 | 4, 7 | bibi12d 345 |
. . . 4
⊢ (𝐴 = if(𝐴 ∈ On, 𝐴, ∅) → ((𝐴 = ∪ 𝐴 ↔ ¬ ∃𝑥 ∈ On 𝐴 = suc 𝑥) ↔ (if(𝐴 ∈ On, 𝐴, ∅) = ∪
if(𝐴 ∈ On, 𝐴, ∅) ↔ ¬
∃𝑥 ∈ On if(𝐴 ∈ On, 𝐴, ∅) = suc 𝑥))) |
| 9 | | 0elon 6437 |
. . . . . 6
⊢ ∅
∈ On |
| 10 | 9 | elimel 4594 |
. . . . 5
⊢ if(𝐴 ∈ On, 𝐴, ∅) ∈ On |
| 11 | 10 | onuninsuci 7862 |
. . . 4
⊢ (if(𝐴 ∈ On, 𝐴, ∅) = ∪
if(𝐴 ∈ On, 𝐴, ∅) ↔ ¬
∃𝑥 ∈ On if(𝐴 ∈ On, 𝐴, ∅) = suc 𝑥) |
| 12 | 8, 11 | dedth 4583 |
. . 3
⊢ (𝐴 ∈ On → (𝐴 = ∪
𝐴 ↔ ¬ ∃𝑥 ∈ On 𝐴 = suc 𝑥)) |
| 13 | | unon 7852 |
. . . . . 6
⊢ ∪ On = On |
| 14 | 13 | eqcomi 2745 |
. . . . 5
⊢ On =
∪ On |
| 15 | | onprc 7799 |
. . . . . . . 8
⊢ ¬ On
∈ V |
| 16 | | vex 3483 |
. . . . . . . . . 10
⊢ 𝑥 ∈ V |
| 17 | 16 | sucex 7827 |
. . . . . . . . 9
⊢ suc 𝑥 ∈ V |
| 18 | | eleq1 2828 |
. . . . . . . . 9
⊢ (On = suc
𝑥 → (On ∈ V
↔ suc 𝑥 ∈
V)) |
| 19 | 17, 18 | mpbiri 258 |
. . . . . . . 8
⊢ (On = suc
𝑥 → On ∈
V) |
| 20 | 15, 19 | mto 197 |
. . . . . . 7
⊢ ¬ On
= suc 𝑥 |
| 21 | 20 | a1i 11 |
. . . . . 6
⊢ (𝑥 ∈ On → ¬ On = suc
𝑥) |
| 22 | 21 | nrex 3073 |
. . . . 5
⊢ ¬
∃𝑥 ∈ On On = suc
𝑥 |
| 23 | 14, 22 | 2th 264 |
. . . 4
⊢ (On =
∪ On ↔ ¬ ∃𝑥 ∈ On On = suc 𝑥) |
| 24 | | id 22 |
. . . . . 6
⊢ (𝐴 = On → 𝐴 = On) |
| 25 | | unieq 4917 |
. . . . . 6
⊢ (𝐴 = On → ∪ 𝐴 =
∪ On) |
| 26 | 24, 25 | eqeq12d 2752 |
. . . . 5
⊢ (𝐴 = On → (𝐴 = ∪ 𝐴 ↔ On = ∪ On)) |
| 27 | | eqeq1 2740 |
. . . . . . 7
⊢ (𝐴 = On → (𝐴 = suc 𝑥 ↔ On = suc 𝑥)) |
| 28 | 27 | rexbidv 3178 |
. . . . . 6
⊢ (𝐴 = On → (∃𝑥 ∈ On 𝐴 = suc 𝑥 ↔ ∃𝑥 ∈ On On = suc 𝑥)) |
| 29 | 28 | notbid 318 |
. . . . 5
⊢ (𝐴 = On → (¬ ∃𝑥 ∈ On 𝐴 = suc 𝑥 ↔ ¬ ∃𝑥 ∈ On On = suc 𝑥)) |
| 30 | 26, 29 | bibi12d 345 |
. . . 4
⊢ (𝐴 = On → ((𝐴 = ∪ 𝐴 ↔ ¬ ∃𝑥 ∈ On 𝐴 = suc 𝑥) ↔ (On = ∪
On ↔ ¬ ∃𝑥
∈ On On = suc 𝑥))) |
| 31 | 23, 30 | mpbiri 258 |
. . 3
⊢ (𝐴 = On → (𝐴 = ∪ 𝐴 ↔ ¬ ∃𝑥 ∈ On 𝐴 = suc 𝑥)) |
| 32 | 12, 31 | jaoi 857 |
. 2
⊢ ((𝐴 ∈ On ∨ 𝐴 = On) → (𝐴 = ∪ 𝐴 ↔ ¬ ∃𝑥 ∈ On 𝐴 = suc 𝑥)) |
| 33 | 1, 32 | sylbi 217 |
1
⊢ (Ord
𝐴 → (𝐴 = ∪ 𝐴 ↔ ¬ ∃𝑥 ∈ On 𝐴 = suc 𝑥)) |