MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  orduninsuc Structured version   Visualization version   GIF version

Theorem orduninsuc 7547
Description: An ordinal equal to its union is not a successor. (Contributed by NM, 18-Feb-2004.)
Assertion
Ref Expression
orduninsuc (Ord 𝐴 → (𝐴 = 𝐴 ↔ ¬ ∃𝑥 ∈ On 𝐴 = suc 𝑥))
Distinct variable group:   𝑥,𝐴

Proof of Theorem orduninsuc
StepHypRef Expression
1 ordeleqon 7492 . 2 (Ord 𝐴 ↔ (𝐴 ∈ On ∨ 𝐴 = On))
2 id 22 . . . . . 6 (𝐴 = if(𝐴 ∈ On, 𝐴, ∅) → 𝐴 = if(𝐴 ∈ On, 𝐴, ∅))
3 unieq 4838 . . . . . 6 (𝐴 = if(𝐴 ∈ On, 𝐴, ∅) → 𝐴 = if(𝐴 ∈ On, 𝐴, ∅))
42, 3eqeq12d 2834 . . . . 5 (𝐴 = if(𝐴 ∈ On, 𝐴, ∅) → (𝐴 = 𝐴 ↔ if(𝐴 ∈ On, 𝐴, ∅) = if(𝐴 ∈ On, 𝐴, ∅)))
5 eqeq1 2822 . . . . . . 7 (𝐴 = if(𝐴 ∈ On, 𝐴, ∅) → (𝐴 = suc 𝑥 ↔ if(𝐴 ∈ On, 𝐴, ∅) = suc 𝑥))
65rexbidv 3294 . . . . . 6 (𝐴 = if(𝐴 ∈ On, 𝐴, ∅) → (∃𝑥 ∈ On 𝐴 = suc 𝑥 ↔ ∃𝑥 ∈ On if(𝐴 ∈ On, 𝐴, ∅) = suc 𝑥))
76notbid 319 . . . . 5 (𝐴 = if(𝐴 ∈ On, 𝐴, ∅) → (¬ ∃𝑥 ∈ On 𝐴 = suc 𝑥 ↔ ¬ ∃𝑥 ∈ On if(𝐴 ∈ On, 𝐴, ∅) = suc 𝑥))
84, 7bibi12d 347 . . . 4 (𝐴 = if(𝐴 ∈ On, 𝐴, ∅) → ((𝐴 = 𝐴 ↔ ¬ ∃𝑥 ∈ On 𝐴 = suc 𝑥) ↔ (if(𝐴 ∈ On, 𝐴, ∅) = if(𝐴 ∈ On, 𝐴, ∅) ↔ ¬ ∃𝑥 ∈ On if(𝐴 ∈ On, 𝐴, ∅) = suc 𝑥)))
9 0elon 6237 . . . . . 6 ∅ ∈ On
109elimel 4530 . . . . 5 if(𝐴 ∈ On, 𝐴, ∅) ∈ On
1110onuninsuci 7544 . . . 4 (if(𝐴 ∈ On, 𝐴, ∅) = if(𝐴 ∈ On, 𝐴, ∅) ↔ ¬ ∃𝑥 ∈ On if(𝐴 ∈ On, 𝐴, ∅) = suc 𝑥)
128, 11dedth 4519 . . 3 (𝐴 ∈ On → (𝐴 = 𝐴 ↔ ¬ ∃𝑥 ∈ On 𝐴 = suc 𝑥))
13 unon 7535 . . . . . 6 On = On
1413eqcomi 2827 . . . . 5 On = On
15 onprc 7488 . . . . . . . 8 ¬ On ∈ V
16 vex 3495 . . . . . . . . . 10 𝑥 ∈ V
1716sucex 7515 . . . . . . . . 9 suc 𝑥 ∈ V
18 eleq1 2897 . . . . . . . . 9 (On = suc 𝑥 → (On ∈ V ↔ suc 𝑥 ∈ V))
1917, 18mpbiri 259 . . . . . . . 8 (On = suc 𝑥 → On ∈ V)
2015, 19mto 198 . . . . . . 7 ¬ On = suc 𝑥
2120a1i 11 . . . . . 6 (𝑥 ∈ On → ¬ On = suc 𝑥)
2221nrex 3266 . . . . 5 ¬ ∃𝑥 ∈ On On = suc 𝑥
2314, 222th 265 . . . 4 (On = On ↔ ¬ ∃𝑥 ∈ On On = suc 𝑥)
24 id 22 . . . . . 6 (𝐴 = On → 𝐴 = On)
25 unieq 4838 . . . . . 6 (𝐴 = On → 𝐴 = On)
2624, 25eqeq12d 2834 . . . . 5 (𝐴 = On → (𝐴 = 𝐴 ↔ On = On))
27 eqeq1 2822 . . . . . . 7 (𝐴 = On → (𝐴 = suc 𝑥 ↔ On = suc 𝑥))
2827rexbidv 3294 . . . . . 6 (𝐴 = On → (∃𝑥 ∈ On 𝐴 = suc 𝑥 ↔ ∃𝑥 ∈ On On = suc 𝑥))
2928notbid 319 . . . . 5 (𝐴 = On → (¬ ∃𝑥 ∈ On 𝐴 = suc 𝑥 ↔ ¬ ∃𝑥 ∈ On On = suc 𝑥))
3026, 29bibi12d 347 . . . 4 (𝐴 = On → ((𝐴 = 𝐴 ↔ ¬ ∃𝑥 ∈ On 𝐴 = suc 𝑥) ↔ (On = On ↔ ¬ ∃𝑥 ∈ On On = suc 𝑥)))
3123, 30mpbiri 259 . . 3 (𝐴 = On → (𝐴 = 𝐴 ↔ ¬ ∃𝑥 ∈ On 𝐴 = suc 𝑥))
3212, 31jaoi 851 . 2 ((𝐴 ∈ On ∨ 𝐴 = On) → (𝐴 = 𝐴 ↔ ¬ ∃𝑥 ∈ On 𝐴 = suc 𝑥))
331, 32sylbi 218 1 (Ord 𝐴 → (𝐴 = 𝐴 ↔ ¬ ∃𝑥 ∈ On 𝐴 = suc 𝑥))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 207  wo 841   = wceq 1528  wcel 2105  wrex 3136  Vcvv 3492  c0 4288  ifcif 4463   cuni 4830  Ord word 6183  Oncon0 6184  suc csuc 6186
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-sep 5194  ax-nul 5201  ax-pr 5320  ax-un 7450
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-ral 3140  df-rex 3141  df-rab 3144  df-v 3494  df-sbc 3770  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4831  df-br 5058  df-opab 5120  df-tr 5164  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-ord 6187  df-on 6188  df-suc 6190
This theorem is referenced by:  ordunisuc2  7548  ordzsl  7549  dflim3  7551  nnsuc  7586
  Copyright terms: Public domain W3C validator