MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  orduninsuc Structured version   Visualization version   GIF version

Theorem orduninsuc 7374
Description: An ordinal equal to its union is not a successor. (Contributed by NM, 18-Feb-2004.)
Assertion
Ref Expression
orduninsuc (Ord 𝐴 → (𝐴 = 𝐴 ↔ ¬ ∃𝑥 ∈ On 𝐴 = suc 𝑥))
Distinct variable group:   𝑥,𝐴

Proof of Theorem orduninsuc
StepHypRef Expression
1 ordeleqon 7319 . 2 (Ord 𝐴 ↔ (𝐴 ∈ On ∨ 𝐴 = On))
2 id 22 . . . . . 6 (𝐴 = if(𝐴 ∈ On, 𝐴, ∅) → 𝐴 = if(𝐴 ∈ On, 𝐴, ∅))
3 unieq 4720 . . . . . 6 (𝐴 = if(𝐴 ∈ On, 𝐴, ∅) → 𝐴 = if(𝐴 ∈ On, 𝐴, ∅))
42, 3eqeq12d 2793 . . . . 5 (𝐴 = if(𝐴 ∈ On, 𝐴, ∅) → (𝐴 = 𝐴 ↔ if(𝐴 ∈ On, 𝐴, ∅) = if(𝐴 ∈ On, 𝐴, ∅)))
5 eqeq1 2782 . . . . . . 7 (𝐴 = if(𝐴 ∈ On, 𝐴, ∅) → (𝐴 = suc 𝑥 ↔ if(𝐴 ∈ On, 𝐴, ∅) = suc 𝑥))
65rexbidv 3242 . . . . . 6 (𝐴 = if(𝐴 ∈ On, 𝐴, ∅) → (∃𝑥 ∈ On 𝐴 = suc 𝑥 ↔ ∃𝑥 ∈ On if(𝐴 ∈ On, 𝐴, ∅) = suc 𝑥))
76notbid 310 . . . . 5 (𝐴 = if(𝐴 ∈ On, 𝐴, ∅) → (¬ ∃𝑥 ∈ On 𝐴 = suc 𝑥 ↔ ¬ ∃𝑥 ∈ On if(𝐴 ∈ On, 𝐴, ∅) = suc 𝑥))
84, 7bibi12d 338 . . . 4 (𝐴 = if(𝐴 ∈ On, 𝐴, ∅) → ((𝐴 = 𝐴 ↔ ¬ ∃𝑥 ∈ On 𝐴 = suc 𝑥) ↔ (if(𝐴 ∈ On, 𝐴, ∅) = if(𝐴 ∈ On, 𝐴, ∅) ↔ ¬ ∃𝑥 ∈ On if(𝐴 ∈ On, 𝐴, ∅) = suc 𝑥)))
9 0elon 6082 . . . . . 6 ∅ ∈ On
109elimel 4417 . . . . 5 if(𝐴 ∈ On, 𝐴, ∅) ∈ On
1110onuninsuci 7371 . . . 4 (if(𝐴 ∈ On, 𝐴, ∅) = if(𝐴 ∈ On, 𝐴, ∅) ↔ ¬ ∃𝑥 ∈ On if(𝐴 ∈ On, 𝐴, ∅) = suc 𝑥)
128, 11dedth 4406 . . 3 (𝐴 ∈ On → (𝐴 = 𝐴 ↔ ¬ ∃𝑥 ∈ On 𝐴 = suc 𝑥))
13 unon 7362 . . . . . 6 On = On
1413eqcomi 2787 . . . . 5 On = On
15 onprc 7315 . . . . . . . 8 ¬ On ∈ V
16 vex 3418 . . . . . . . . . 10 𝑥 ∈ V
1716sucex 7342 . . . . . . . . 9 suc 𝑥 ∈ V
18 eleq1 2853 . . . . . . . . 9 (On = suc 𝑥 → (On ∈ V ↔ suc 𝑥 ∈ V))
1917, 18mpbiri 250 . . . . . . . 8 (On = suc 𝑥 → On ∈ V)
2015, 19mto 189 . . . . . . 7 ¬ On = suc 𝑥
2120a1i 11 . . . . . 6 (𝑥 ∈ On → ¬ On = suc 𝑥)
2221nrex 3214 . . . . 5 ¬ ∃𝑥 ∈ On On = suc 𝑥
2314, 222th 256 . . . 4 (On = On ↔ ¬ ∃𝑥 ∈ On On = suc 𝑥)
24 id 22 . . . . . 6 (𝐴 = On → 𝐴 = On)
25 unieq 4720 . . . . . 6 (𝐴 = On → 𝐴 = On)
2624, 25eqeq12d 2793 . . . . 5 (𝐴 = On → (𝐴 = 𝐴 ↔ On = On))
27 eqeq1 2782 . . . . . . 7 (𝐴 = On → (𝐴 = suc 𝑥 ↔ On = suc 𝑥))
2827rexbidv 3242 . . . . . 6 (𝐴 = On → (∃𝑥 ∈ On 𝐴 = suc 𝑥 ↔ ∃𝑥 ∈ On On = suc 𝑥))
2928notbid 310 . . . . 5 (𝐴 = On → (¬ ∃𝑥 ∈ On 𝐴 = suc 𝑥 ↔ ¬ ∃𝑥 ∈ On On = suc 𝑥))
3026, 29bibi12d 338 . . . 4 (𝐴 = On → ((𝐴 = 𝐴 ↔ ¬ ∃𝑥 ∈ On 𝐴 = suc 𝑥) ↔ (On = On ↔ ¬ ∃𝑥 ∈ On On = suc 𝑥)))
3123, 30mpbiri 250 . . 3 (𝐴 = On → (𝐴 = 𝐴 ↔ ¬ ∃𝑥 ∈ On 𝐴 = suc 𝑥))
3212, 31jaoi 843 . 2 ((𝐴 ∈ On ∨ 𝐴 = On) → (𝐴 = 𝐴 ↔ ¬ ∃𝑥 ∈ On 𝐴 = suc 𝑥))
331, 32sylbi 209 1 (Ord 𝐴 → (𝐴 = 𝐴 ↔ ¬ ∃𝑥 ∈ On 𝐴 = suc 𝑥))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 198  wo 833   = wceq 1507  wcel 2050  wrex 3089  Vcvv 3415  c0 4178  ifcif 4350   cuni 4712  Ord word 6028  Oncon0 6029  suc csuc 6031
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1965  ax-8 2052  ax-9 2059  ax-10 2079  ax-11 2093  ax-12 2106  ax-13 2301  ax-ext 2750  ax-sep 5060  ax-nul 5067  ax-pr 5186  ax-un 7279
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3or 1069  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2016  df-mo 2547  df-eu 2584  df-clab 2759  df-cleq 2771  df-clel 2846  df-nfc 2918  df-ne 2968  df-ral 3093  df-rex 3094  df-rab 3097  df-v 3417  df-sbc 3682  df-dif 3832  df-un 3834  df-in 3836  df-ss 3843  df-pss 3845  df-nul 4179  df-if 4351  df-pw 4424  df-sn 4442  df-pr 4444  df-tp 4446  df-op 4448  df-uni 4713  df-br 4930  df-opab 4992  df-tr 5031  df-eprel 5317  df-po 5326  df-so 5327  df-fr 5366  df-we 5368  df-ord 6032  df-on 6033  df-suc 6035
This theorem is referenced by:  ordunisuc2  7375  ordzsl  7376  dflim3  7378  nnsuc  7413
  Copyright terms: Public domain W3C validator