| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elxp6 | Structured version Visualization version GIF version | ||
| Description: Membership in a Cartesian product. This version requires no quantifiers or dummy variables. See also elxp4 7847. (Contributed by NM, 9-Oct-2004.) |
| Ref | Expression |
|---|---|
| elxp6 | ⊢ (𝐴 ∈ (𝐵 × 𝐶) ↔ (𝐴 = 〈(1st ‘𝐴), (2nd ‘𝐴)〉 ∧ ((1st ‘𝐴) ∈ 𝐵 ∧ (2nd ‘𝐴) ∈ 𝐶))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elxp4 7847 | . 2 ⊢ (𝐴 ∈ (𝐵 × 𝐶) ↔ (𝐴 = 〈∪ dom {𝐴}, ∪ ran {𝐴}〉 ∧ (∪ dom {𝐴} ∈ 𝐵 ∧ ∪ ran {𝐴} ∈ 𝐶))) | |
| 2 | 1stval 7918 | . . . . 5 ⊢ (1st ‘𝐴) = ∪ dom {𝐴} | |
| 3 | 2ndval 7919 | . . . . 5 ⊢ (2nd ‘𝐴) = ∪ ran {𝐴} | |
| 4 | 2, 3 | opeq12i 4825 | . . . 4 ⊢ 〈(1st ‘𝐴), (2nd ‘𝐴)〉 = 〈∪ dom {𝐴}, ∪ ran {𝐴}〉 |
| 5 | 4 | eqeq2i 2744 | . . 3 ⊢ (𝐴 = 〈(1st ‘𝐴), (2nd ‘𝐴)〉 ↔ 𝐴 = 〈∪ dom {𝐴}, ∪ ran {𝐴}〉) |
| 6 | 2 | eleq1i 2822 | . . . 4 ⊢ ((1st ‘𝐴) ∈ 𝐵 ↔ ∪ dom {𝐴} ∈ 𝐵) |
| 7 | 3 | eleq1i 2822 | . . . 4 ⊢ ((2nd ‘𝐴) ∈ 𝐶 ↔ ∪ ran {𝐴} ∈ 𝐶) |
| 8 | 6, 7 | anbi12i 628 | . . 3 ⊢ (((1st ‘𝐴) ∈ 𝐵 ∧ (2nd ‘𝐴) ∈ 𝐶) ↔ (∪ dom {𝐴} ∈ 𝐵 ∧ ∪ ran {𝐴} ∈ 𝐶)) |
| 9 | 5, 8 | anbi12i 628 | . 2 ⊢ ((𝐴 = 〈(1st ‘𝐴), (2nd ‘𝐴)〉 ∧ ((1st ‘𝐴) ∈ 𝐵 ∧ (2nd ‘𝐴) ∈ 𝐶)) ↔ (𝐴 = 〈∪ dom {𝐴}, ∪ ran {𝐴}〉 ∧ (∪ dom {𝐴} ∈ 𝐵 ∧ ∪ ran {𝐴} ∈ 𝐶))) |
| 10 | 1, 9 | bitr4i 278 | 1 ⊢ (𝐴 ∈ (𝐵 × 𝐶) ↔ (𝐴 = 〈(1st ‘𝐴), (2nd ‘𝐴)〉 ∧ ((1st ‘𝐴) ∈ 𝐵 ∧ (2nd ‘𝐴) ∈ 𝐶))) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 {csn 4571 〈cop 4577 ∪ cuni 4854 × cxp 5609 dom cdm 5611 ran crn 5612 ‘cfv 6476 1st c1st 7914 2nd c2nd 7915 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pr 5365 ax-un 7663 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4279 df-if 4471 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-br 5087 df-opab 5149 df-mpt 5168 df-id 5506 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-iota 6432 df-fun 6478 df-fv 6484 df-1st 7916 df-2nd 7917 |
| This theorem is referenced by: elxp7 7951 eqopi 7952 1st2nd2 7955 eldju2ndl 9812 eldju2ndr 9813 r0weon 9898 qredeu 16564 qnumdencl 16645 setsstruct2 17080 tx1cn 23519 tx2cn 23520 txhaus 23557 psmetxrge0 24223 xppreima 32619 ofpreima2 32640 smatrcl 33801 1stmbfm 34265 2ndmbfm 34266 oddpwdcv 34360 prproropf1olem0 47533 |
| Copyright terms: Public domain | W3C validator |