MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elxp6 Structured version   Visualization version   GIF version

Theorem elxp6 7432
Description: Membership in a Cartesian product. This version requires no quantifiers or dummy variables. See also elxp4 7340. (Contributed by NM, 9-Oct-2004.)
Assertion
Ref Expression
elxp6 (𝐴 ∈ (𝐵 × 𝐶) ↔ (𝐴 = ⟨(1st𝐴), (2nd𝐴)⟩ ∧ ((1st𝐴) ∈ 𝐵 ∧ (2nd𝐴) ∈ 𝐶)))

Proof of Theorem elxp6
StepHypRef Expression
1 elxp4 7340 . 2 (𝐴 ∈ (𝐵 × 𝐶) ↔ (𝐴 = ⟨ dom {𝐴}, ran {𝐴}⟩ ∧ ( dom {𝐴} ∈ 𝐵 ran {𝐴} ∈ 𝐶)))
2 1stval 7400 . . . . 5 (1st𝐴) = dom {𝐴}
3 2ndval 7401 . . . . 5 (2nd𝐴) = ran {𝐴}
42, 3opeq12i 4600 . . . 4 ⟨(1st𝐴), (2nd𝐴)⟩ = ⟨ dom {𝐴}, ran {𝐴}⟩
54eqeq2i 2818 . . 3 (𝐴 = ⟨(1st𝐴), (2nd𝐴)⟩ ↔ 𝐴 = ⟨ dom {𝐴}, ran {𝐴}⟩)
62eleq1i 2876 . . . 4 ((1st𝐴) ∈ 𝐵 dom {𝐴} ∈ 𝐵)
73eleq1i 2876 . . . 4 ((2nd𝐴) ∈ 𝐶 ran {𝐴} ∈ 𝐶)
86, 7anbi12i 614 . . 3 (((1st𝐴) ∈ 𝐵 ∧ (2nd𝐴) ∈ 𝐶) ↔ ( dom {𝐴} ∈ 𝐵 ran {𝐴} ∈ 𝐶))
95, 8anbi12i 614 . 2 ((𝐴 = ⟨(1st𝐴), (2nd𝐴)⟩ ∧ ((1st𝐴) ∈ 𝐵 ∧ (2nd𝐴) ∈ 𝐶)) ↔ (𝐴 = ⟨ dom {𝐴}, ran {𝐴}⟩ ∧ ( dom {𝐴} ∈ 𝐵 ran {𝐴} ∈ 𝐶)))
101, 9bitr4i 269 1 (𝐴 ∈ (𝐵 × 𝐶) ↔ (𝐴 = ⟨(1st𝐴), (2nd𝐴)⟩ ∧ ((1st𝐴) ∈ 𝐵 ∧ (2nd𝐴) ∈ 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wb 197  wa 384   = wceq 1637  wcel 2156  {csn 4370  cop 4376   cuni 4630   × cxp 5309  dom cdm 5311  ran crn 5312  cfv 6101  1st c1st 7396  2nd c2nd 7397
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1877  ax-4 1894  ax-5 2001  ax-6 2068  ax-7 2104  ax-8 2158  ax-9 2165  ax-10 2185  ax-11 2201  ax-12 2214  ax-13 2420  ax-ext 2784  ax-sep 4975  ax-nul 4983  ax-pow 5035  ax-pr 5096  ax-un 7179
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 866  df-3an 1102  df-tru 1641  df-ex 1860  df-nf 1864  df-sb 2061  df-eu 2634  df-mo 2635  df-clab 2793  df-cleq 2799  df-clel 2802  df-nfc 2937  df-ral 3101  df-rex 3102  df-rab 3105  df-v 3393  df-sbc 3634  df-dif 3772  df-un 3774  df-in 3776  df-ss 3783  df-nul 4117  df-if 4280  df-sn 4371  df-pr 4373  df-op 4377  df-uni 4631  df-br 4845  df-opab 4907  df-mpt 4924  df-id 5219  df-xp 5317  df-rel 5318  df-cnv 5319  df-co 5320  df-dm 5321  df-rn 5322  df-iota 6064  df-fun 6103  df-fv 6109  df-1st 7398  df-2nd 7399
This theorem is referenced by:  elxp7  7433  eqopi  7434  1st2nd2  7437  eldju2ndl  9033  eldju2ndr  9034  r0weon  9118  qredeu  15590  qnumdencl  15664  setsstruct2  16107  tx1cn  21626  tx2cn  21627  txhaus  21664  psmetxrge0  22331  xppreima  29776  ofpreima2  29793  smatrcl  30187  1stmbfm  30647  2ndmbfm  30648  oddpwdcv  30742
  Copyright terms: Public domain W3C validator