MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elxp6 Structured version   Visualization version   GIF version

Theorem elxp6 7773
Description: Membership in a Cartesian product. This version requires no quantifiers or dummy variables. See also elxp4 7678. (Contributed by NM, 9-Oct-2004.)
Assertion
Ref Expression
elxp6 (𝐴 ∈ (𝐵 × 𝐶) ↔ (𝐴 = ⟨(1st𝐴), (2nd𝐴)⟩ ∧ ((1st𝐴) ∈ 𝐵 ∧ (2nd𝐴) ∈ 𝐶)))

Proof of Theorem elxp6
StepHypRef Expression
1 elxp4 7678 . 2 (𝐴 ∈ (𝐵 × 𝐶) ↔ (𝐴 = ⟨ dom {𝐴}, ran {𝐴}⟩ ∧ ( dom {𝐴} ∈ 𝐵 ran {𝐴} ∈ 𝐶)))
2 1stval 7741 . . . . 5 (1st𝐴) = dom {𝐴}
3 2ndval 7742 . . . . 5 (2nd𝐴) = ran {𝐴}
42, 3opeq12i 4775 . . . 4 ⟨(1st𝐴), (2nd𝐴)⟩ = ⟨ dom {𝐴}, ran {𝐴}⟩
54eqeq2i 2749 . . 3 (𝐴 = ⟨(1st𝐴), (2nd𝐴)⟩ ↔ 𝐴 = ⟨ dom {𝐴}, ran {𝐴}⟩)
62eleq1i 2821 . . . 4 ((1st𝐴) ∈ 𝐵 dom {𝐴} ∈ 𝐵)
73eleq1i 2821 . . . 4 ((2nd𝐴) ∈ 𝐶 ran {𝐴} ∈ 𝐶)
86, 7anbi12i 630 . . 3 (((1st𝐴) ∈ 𝐵 ∧ (2nd𝐴) ∈ 𝐶) ↔ ( dom {𝐴} ∈ 𝐵 ran {𝐴} ∈ 𝐶))
95, 8anbi12i 630 . 2 ((𝐴 = ⟨(1st𝐴), (2nd𝐴)⟩ ∧ ((1st𝐴) ∈ 𝐵 ∧ (2nd𝐴) ∈ 𝐶)) ↔ (𝐴 = ⟨ dom {𝐴}, ran {𝐴}⟩ ∧ ( dom {𝐴} ∈ 𝐵 ran {𝐴} ∈ 𝐶)))
101, 9bitr4i 281 1 (𝐴 ∈ (𝐵 × 𝐶) ↔ (𝐴 = ⟨(1st𝐴), (2nd𝐴)⟩ ∧ ((1st𝐴) ∈ 𝐵 ∧ (2nd𝐴) ∈ 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wb 209  wa 399   = wceq 1543  wcel 2112  {csn 4527  cop 4533   cuni 4805   × cxp 5534  dom cdm 5536  ran crn 5537  cfv 6358  1st c1st 7737  2nd c2nd 7738
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2708  ax-sep 5177  ax-nul 5184  ax-pr 5307  ax-un 7501
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2728  df-clel 2809  df-nfc 2879  df-ne 2933  df-ral 3056  df-rex 3057  df-rab 3060  df-v 3400  df-sbc 3684  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-nul 4224  df-if 4426  df-sn 4528  df-pr 4530  df-op 4534  df-uni 4806  df-br 5040  df-opab 5102  df-mpt 5121  df-id 5440  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-iota 6316  df-fun 6360  df-fv 6366  df-1st 7739  df-2nd 7740
This theorem is referenced by:  elxp7  7774  eqopi  7775  1st2nd2  7778  eldju2ndl  9505  eldju2ndr  9506  r0weon  9591  qredeu  16178  qnumdencl  16258  setsstruct2  16703  tx1cn  22460  tx2cn  22461  txhaus  22498  psmetxrge0  23165  xppreima  30656  ofpreima2  30677  smatrcl  31414  1stmbfm  31893  2ndmbfm  31894  oddpwdcv  31988  prproropf1olem0  44570
  Copyright terms: Public domain W3C validator