| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elxp6 | Structured version Visualization version GIF version | ||
| Description: Membership in a Cartesian product. This version requires no quantifiers or dummy variables. See also elxp4 7855. (Contributed by NM, 9-Oct-2004.) |
| Ref | Expression |
|---|---|
| elxp6 | ⊢ (𝐴 ∈ (𝐵 × 𝐶) ↔ (𝐴 = 〈(1st ‘𝐴), (2nd ‘𝐴)〉 ∧ ((1st ‘𝐴) ∈ 𝐵 ∧ (2nd ‘𝐴) ∈ 𝐶))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elxp4 7855 | . 2 ⊢ (𝐴 ∈ (𝐵 × 𝐶) ↔ (𝐴 = 〈∪ dom {𝐴}, ∪ ran {𝐴}〉 ∧ (∪ dom {𝐴} ∈ 𝐵 ∧ ∪ ran {𝐴} ∈ 𝐶))) | |
| 2 | 1stval 7926 | . . . . 5 ⊢ (1st ‘𝐴) = ∪ dom {𝐴} | |
| 3 | 2ndval 7927 | . . . . 5 ⊢ (2nd ‘𝐴) = ∪ ran {𝐴} | |
| 4 | 2, 3 | opeq12i 4829 | . . . 4 ⊢ 〈(1st ‘𝐴), (2nd ‘𝐴)〉 = 〈∪ dom {𝐴}, ∪ ran {𝐴}〉 |
| 5 | 4 | eqeq2i 2742 | . . 3 ⊢ (𝐴 = 〈(1st ‘𝐴), (2nd ‘𝐴)〉 ↔ 𝐴 = 〈∪ dom {𝐴}, ∪ ran {𝐴}〉) |
| 6 | 2 | eleq1i 2819 | . . . 4 ⊢ ((1st ‘𝐴) ∈ 𝐵 ↔ ∪ dom {𝐴} ∈ 𝐵) |
| 7 | 3 | eleq1i 2819 | . . . 4 ⊢ ((2nd ‘𝐴) ∈ 𝐶 ↔ ∪ ran {𝐴} ∈ 𝐶) |
| 8 | 6, 7 | anbi12i 628 | . . 3 ⊢ (((1st ‘𝐴) ∈ 𝐵 ∧ (2nd ‘𝐴) ∈ 𝐶) ↔ (∪ dom {𝐴} ∈ 𝐵 ∧ ∪ ran {𝐴} ∈ 𝐶)) |
| 9 | 5, 8 | anbi12i 628 | . 2 ⊢ ((𝐴 = 〈(1st ‘𝐴), (2nd ‘𝐴)〉 ∧ ((1st ‘𝐴) ∈ 𝐵 ∧ (2nd ‘𝐴) ∈ 𝐶)) ↔ (𝐴 = 〈∪ dom {𝐴}, ∪ ran {𝐴}〉 ∧ (∪ dom {𝐴} ∈ 𝐵 ∧ ∪ ran {𝐴} ∈ 𝐶))) |
| 10 | 1, 9 | bitr4i 278 | 1 ⊢ (𝐴 ∈ (𝐵 × 𝐶) ↔ (𝐴 = 〈(1st ‘𝐴), (2nd ‘𝐴)〉 ∧ ((1st ‘𝐴) ∈ 𝐵 ∧ (2nd ‘𝐴) ∈ 𝐶))) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {csn 4577 〈cop 4583 ∪ cuni 4858 × cxp 5617 dom cdm 5619 ran crn 5620 ‘cfv 6482 1st c1st 7922 2nd c2nd 7923 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pr 5371 ax-un 7671 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-opab 5155 df-mpt 5174 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-iota 6438 df-fun 6484 df-fv 6490 df-1st 7924 df-2nd 7925 |
| This theorem is referenced by: elxp7 7959 eqopi 7960 1st2nd2 7963 eldju2ndl 9820 eldju2ndr 9821 r0weon 9906 qredeu 16569 qnumdencl 16650 setsstruct2 17085 tx1cn 23494 tx2cn 23495 txhaus 23532 psmetxrge0 24199 xppreima 32588 ofpreima2 32609 smatrcl 33763 1stmbfm 34228 2ndmbfm 34229 oddpwdcv 34323 prproropf1olem0 47486 |
| Copyright terms: Public domain | W3C validator |