![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 1lt2nq | Structured version Visualization version GIF version |
Description: One is less than two (one plus one). (Contributed by NM, 13-Mar-1996.) (Revised by Mario Carneiro, 10-May-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
1lt2nq | ⊢ 1Q <Q (1Q +Q 1Q) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1lt2pi 10943 | . . . . . 6 ⊢ 1o <N (1o +N 1o) | |
2 | 1pi 10921 | . . . . . . 7 ⊢ 1o ∈ N | |
3 | mulidpi 10924 | . . . . . . 7 ⊢ (1o ∈ N → (1o ·N 1o) = 1o) | |
4 | 2, 3 | ax-mp 5 | . . . . . 6 ⊢ (1o ·N 1o) = 1o |
5 | addclpi 10930 | . . . . . . . 8 ⊢ ((1o ∈ N ∧ 1o ∈ N) → (1o +N 1o) ∈ N) | |
6 | 2, 2, 5 | mp2an 692 | . . . . . . 7 ⊢ (1o +N 1o) ∈ N |
7 | mulidpi 10924 | . . . . . . 7 ⊢ ((1o +N 1o) ∈ N → ((1o +N 1o) ·N 1o) = (1o +N 1o)) | |
8 | 6, 7 | ax-mp 5 | . . . . . 6 ⊢ ((1o +N 1o) ·N 1o) = (1o +N 1o) |
9 | 1, 4, 8 | 3brtr4i 5178 | . . . . 5 ⊢ (1o ·N 1o) <N ((1o +N 1o) ·N 1o) |
10 | ordpipq 10980 | . . . . 5 ⊢ (〈1o, 1o〉 <pQ 〈(1o +N 1o), 1o〉 ↔ (1o ·N 1o) <N ((1o +N 1o) ·N 1o)) | |
11 | 9, 10 | mpbir 231 | . . . 4 ⊢ 〈1o, 1o〉 <pQ 〈(1o +N 1o), 1o〉 |
12 | df-1nq 10954 | . . . 4 ⊢ 1Q = 〈1o, 1o〉 | |
13 | 12, 12 | oveq12i 7443 | . . . . 5 ⊢ (1Q +pQ 1Q) = (〈1o, 1o〉 +pQ 〈1o, 1o〉) |
14 | addpipq 10975 | . . . . . 6 ⊢ (((1o ∈ N ∧ 1o ∈ N) ∧ (1o ∈ N ∧ 1o ∈ N)) → (〈1o, 1o〉 +pQ 〈1o, 1o〉) = 〈((1o ·N 1o) +N (1o ·N 1o)), (1o ·N 1o)〉) | |
15 | 2, 2, 2, 2, 14 | mp4an 693 | . . . . 5 ⊢ (〈1o, 1o〉 +pQ 〈1o, 1o〉) = 〈((1o ·N 1o) +N (1o ·N 1o)), (1o ·N 1o)〉 |
16 | 4, 4 | oveq12i 7443 | . . . . . 6 ⊢ ((1o ·N 1o) +N (1o ·N 1o)) = (1o +N 1o) |
17 | 16, 4 | opeq12i 4883 | . . . . 5 ⊢ 〈((1o ·N 1o) +N (1o ·N 1o)), (1o ·N 1o)〉 = 〈(1o +N 1o), 1o〉 |
18 | 13, 15, 17 | 3eqtri 2767 | . . . 4 ⊢ (1Q +pQ 1Q) = 〈(1o +N 1o), 1o〉 |
19 | 11, 12, 18 | 3brtr4i 5178 | . . 3 ⊢ 1Q <pQ (1Q +pQ 1Q) |
20 | lterpq 11008 | . . 3 ⊢ (1Q <pQ (1Q +pQ 1Q) ↔ ([Q]‘1Q) <Q ([Q]‘(1Q +pQ 1Q))) | |
21 | 19, 20 | mpbi 230 | . 2 ⊢ ([Q]‘1Q) <Q ([Q]‘(1Q +pQ 1Q)) |
22 | 1nq 10966 | . . . 4 ⊢ 1Q ∈ Q | |
23 | nqerid 10971 | . . . 4 ⊢ (1Q ∈ Q → ([Q]‘1Q) = 1Q) | |
24 | 22, 23 | ax-mp 5 | . . 3 ⊢ ([Q]‘1Q) = 1Q |
25 | 24 | eqcomi 2744 | . 2 ⊢ 1Q = ([Q]‘1Q) |
26 | addpqnq 10976 | . . 3 ⊢ ((1Q ∈ Q ∧ 1Q ∈ Q) → (1Q +Q 1Q) = ([Q]‘(1Q +pQ 1Q))) | |
27 | 22, 22, 26 | mp2an 692 | . 2 ⊢ (1Q +Q 1Q) = ([Q]‘(1Q +pQ 1Q)) |
28 | 21, 25, 27 | 3brtr4i 5178 | 1 ⊢ 1Q <Q (1Q +Q 1Q) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ∈ wcel 2106 〈cop 4637 class class class wbr 5148 ‘cfv 6563 (class class class)co 7431 1oc1o 8498 Ncnpi 10882 +N cpli 10883 ·N cmi 10884 <N clti 10885 +pQ cplpq 10886 <pQ cltpq 10888 Qcnq 10890 1Qc1q 10891 [Q]cerq 10892 +Q cplq 10893 <Q cltq 10896 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 ax-un 7754 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8013 df-2nd 8014 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-1o 8505 df-oadd 8509 df-omul 8510 df-er 8744 df-ni 10910 df-pli 10911 df-mi 10912 df-lti 10913 df-plpq 10946 df-ltpq 10948 df-enq 10949 df-nq 10950 df-erq 10951 df-plq 10952 df-1nq 10954 df-ltnq 10956 |
This theorem is referenced by: ltaddnq 11012 |
Copyright terms: Public domain | W3C validator |