| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 1lt2nq | Structured version Visualization version GIF version | ||
| Description: One is less than two (one plus one). (Contributed by NM, 13-Mar-1996.) (Revised by Mario Carneiro, 10-May-2013.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| 1lt2nq | ⊢ 1Q <Q (1Q +Q 1Q) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1lt2pi 10919 | . . . . . 6 ⊢ 1o <N (1o +N 1o) | |
| 2 | 1pi 10897 | . . . . . . 7 ⊢ 1o ∈ N | |
| 3 | mulidpi 10900 | . . . . . . 7 ⊢ (1o ∈ N → (1o ·N 1o) = 1o) | |
| 4 | 2, 3 | ax-mp 5 | . . . . . 6 ⊢ (1o ·N 1o) = 1o |
| 5 | addclpi 10906 | . . . . . . . 8 ⊢ ((1o ∈ N ∧ 1o ∈ N) → (1o +N 1o) ∈ N) | |
| 6 | 2, 2, 5 | mp2an 692 | . . . . . . 7 ⊢ (1o +N 1o) ∈ N |
| 7 | mulidpi 10900 | . . . . . . 7 ⊢ ((1o +N 1o) ∈ N → ((1o +N 1o) ·N 1o) = (1o +N 1o)) | |
| 8 | 6, 7 | ax-mp 5 | . . . . . 6 ⊢ ((1o +N 1o) ·N 1o) = (1o +N 1o) |
| 9 | 1, 4, 8 | 3brtr4i 5149 | . . . . 5 ⊢ (1o ·N 1o) <N ((1o +N 1o) ·N 1o) |
| 10 | ordpipq 10956 | . . . . 5 ⊢ (〈1o, 1o〉 <pQ 〈(1o +N 1o), 1o〉 ↔ (1o ·N 1o) <N ((1o +N 1o) ·N 1o)) | |
| 11 | 9, 10 | mpbir 231 | . . . 4 ⊢ 〈1o, 1o〉 <pQ 〈(1o +N 1o), 1o〉 |
| 12 | df-1nq 10930 | . . . 4 ⊢ 1Q = 〈1o, 1o〉 | |
| 13 | 12, 12 | oveq12i 7417 | . . . . 5 ⊢ (1Q +pQ 1Q) = (〈1o, 1o〉 +pQ 〈1o, 1o〉) |
| 14 | addpipq 10951 | . . . . . 6 ⊢ (((1o ∈ N ∧ 1o ∈ N) ∧ (1o ∈ N ∧ 1o ∈ N)) → (〈1o, 1o〉 +pQ 〈1o, 1o〉) = 〈((1o ·N 1o) +N (1o ·N 1o)), (1o ·N 1o)〉) | |
| 15 | 2, 2, 2, 2, 14 | mp4an 693 | . . . . 5 ⊢ (〈1o, 1o〉 +pQ 〈1o, 1o〉) = 〈((1o ·N 1o) +N (1o ·N 1o)), (1o ·N 1o)〉 |
| 16 | 4, 4 | oveq12i 7417 | . . . . . 6 ⊢ ((1o ·N 1o) +N (1o ·N 1o)) = (1o +N 1o) |
| 17 | 16, 4 | opeq12i 4854 | . . . . 5 ⊢ 〈((1o ·N 1o) +N (1o ·N 1o)), (1o ·N 1o)〉 = 〈(1o +N 1o), 1o〉 |
| 18 | 13, 15, 17 | 3eqtri 2762 | . . . 4 ⊢ (1Q +pQ 1Q) = 〈(1o +N 1o), 1o〉 |
| 19 | 11, 12, 18 | 3brtr4i 5149 | . . 3 ⊢ 1Q <pQ (1Q +pQ 1Q) |
| 20 | lterpq 10984 | . . 3 ⊢ (1Q <pQ (1Q +pQ 1Q) ↔ ([Q]‘1Q) <Q ([Q]‘(1Q +pQ 1Q))) | |
| 21 | 19, 20 | mpbi 230 | . 2 ⊢ ([Q]‘1Q) <Q ([Q]‘(1Q +pQ 1Q)) |
| 22 | 1nq 10942 | . . . 4 ⊢ 1Q ∈ Q | |
| 23 | nqerid 10947 | . . . 4 ⊢ (1Q ∈ Q → ([Q]‘1Q) = 1Q) | |
| 24 | 22, 23 | ax-mp 5 | . . 3 ⊢ ([Q]‘1Q) = 1Q |
| 25 | 24 | eqcomi 2744 | . 2 ⊢ 1Q = ([Q]‘1Q) |
| 26 | addpqnq 10952 | . . 3 ⊢ ((1Q ∈ Q ∧ 1Q ∈ Q) → (1Q +Q 1Q) = ([Q]‘(1Q +pQ 1Q))) | |
| 27 | 22, 22, 26 | mp2an 692 | . 2 ⊢ (1Q +Q 1Q) = ([Q]‘(1Q +pQ 1Q)) |
| 28 | 21, 25, 27 | 3brtr4i 5149 | 1 ⊢ 1Q <Q (1Q +Q 1Q) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2108 〈cop 4607 class class class wbr 5119 ‘cfv 6531 (class class class)co 7405 1oc1o 8473 Ncnpi 10858 +N cpli 10859 ·N cmi 10860 <N clti 10861 +pQ cplpq 10862 <pQ cltpq 10864 Qcnq 10866 1Qc1q 10867 [Q]cerq 10868 +Q cplq 10869 <Q cltq 10872 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-1st 7988 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-oadd 8484 df-omul 8485 df-er 8719 df-ni 10886 df-pli 10887 df-mi 10888 df-lti 10889 df-plpq 10922 df-ltpq 10924 df-enq 10925 df-nq 10926 df-erq 10927 df-plq 10928 df-1nq 10930 df-ltnq 10932 |
| This theorem is referenced by: ltaddnq 10988 |
| Copyright terms: Public domain | W3C validator |