Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 1lt2nq | Structured version Visualization version GIF version |
Description: One is less than two (one plus one). (Contributed by NM, 13-Mar-1996.) (Revised by Mario Carneiro, 10-May-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
1lt2nq | ⊢ 1Q <Q (1Q +Q 1Q) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1lt2pi 10711 | . . . . . 6 ⊢ 1o <N (1o +N 1o) | |
2 | 1pi 10689 | . . . . . . 7 ⊢ 1o ∈ N | |
3 | mulidpi 10692 | . . . . . . 7 ⊢ (1o ∈ N → (1o ·N 1o) = 1o) | |
4 | 2, 3 | ax-mp 5 | . . . . . 6 ⊢ (1o ·N 1o) = 1o |
5 | addclpi 10698 | . . . . . . . 8 ⊢ ((1o ∈ N ∧ 1o ∈ N) → (1o +N 1o) ∈ N) | |
6 | 2, 2, 5 | mp2an 690 | . . . . . . 7 ⊢ (1o +N 1o) ∈ N |
7 | mulidpi 10692 | . . . . . . 7 ⊢ ((1o +N 1o) ∈ N → ((1o +N 1o) ·N 1o) = (1o +N 1o)) | |
8 | 6, 7 | ax-mp 5 | . . . . . 6 ⊢ ((1o +N 1o) ·N 1o) = (1o +N 1o) |
9 | 1, 4, 8 | 3brtr4i 5111 | . . . . 5 ⊢ (1o ·N 1o) <N ((1o +N 1o) ·N 1o) |
10 | ordpipq 10748 | . . . . 5 ⊢ (〈1o, 1o〉 <pQ 〈(1o +N 1o), 1o〉 ↔ (1o ·N 1o) <N ((1o +N 1o) ·N 1o)) | |
11 | 9, 10 | mpbir 230 | . . . 4 ⊢ 〈1o, 1o〉 <pQ 〈(1o +N 1o), 1o〉 |
12 | df-1nq 10722 | . . . 4 ⊢ 1Q = 〈1o, 1o〉 | |
13 | 12, 12 | oveq12i 7319 | . . . . 5 ⊢ (1Q +pQ 1Q) = (〈1o, 1o〉 +pQ 〈1o, 1o〉) |
14 | addpipq 10743 | . . . . . 6 ⊢ (((1o ∈ N ∧ 1o ∈ N) ∧ (1o ∈ N ∧ 1o ∈ N)) → (〈1o, 1o〉 +pQ 〈1o, 1o〉) = 〈((1o ·N 1o) +N (1o ·N 1o)), (1o ·N 1o)〉) | |
15 | 2, 2, 2, 2, 14 | mp4an 691 | . . . . 5 ⊢ (〈1o, 1o〉 +pQ 〈1o, 1o〉) = 〈((1o ·N 1o) +N (1o ·N 1o)), (1o ·N 1o)〉 |
16 | 4, 4 | oveq12i 7319 | . . . . . 6 ⊢ ((1o ·N 1o) +N (1o ·N 1o)) = (1o +N 1o) |
17 | 16, 4 | opeq12i 4814 | . . . . 5 ⊢ 〈((1o ·N 1o) +N (1o ·N 1o)), (1o ·N 1o)〉 = 〈(1o +N 1o), 1o〉 |
18 | 13, 15, 17 | 3eqtri 2768 | . . . 4 ⊢ (1Q +pQ 1Q) = 〈(1o +N 1o), 1o〉 |
19 | 11, 12, 18 | 3brtr4i 5111 | . . 3 ⊢ 1Q <pQ (1Q +pQ 1Q) |
20 | lterpq 10776 | . . 3 ⊢ (1Q <pQ (1Q +pQ 1Q) ↔ ([Q]‘1Q) <Q ([Q]‘(1Q +pQ 1Q))) | |
21 | 19, 20 | mpbi 229 | . 2 ⊢ ([Q]‘1Q) <Q ([Q]‘(1Q +pQ 1Q)) |
22 | 1nq 10734 | . . . 4 ⊢ 1Q ∈ Q | |
23 | nqerid 10739 | . . . 4 ⊢ (1Q ∈ Q → ([Q]‘1Q) = 1Q) | |
24 | 22, 23 | ax-mp 5 | . . 3 ⊢ ([Q]‘1Q) = 1Q |
25 | 24 | eqcomi 2745 | . 2 ⊢ 1Q = ([Q]‘1Q) |
26 | addpqnq 10744 | . . 3 ⊢ ((1Q ∈ Q ∧ 1Q ∈ Q) → (1Q +Q 1Q) = ([Q]‘(1Q +pQ 1Q))) | |
27 | 22, 22, 26 | mp2an 690 | . 2 ⊢ (1Q +Q 1Q) = ([Q]‘(1Q +pQ 1Q)) |
28 | 21, 25, 27 | 3brtr4i 5111 | 1 ⊢ 1Q <Q (1Q +Q 1Q) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∈ wcel 2104 〈cop 4571 class class class wbr 5081 ‘cfv 6458 (class class class)co 7307 1oc1o 8321 Ncnpi 10650 +N cpli 10651 ·N cmi 10652 <N clti 10653 +pQ cplpq 10654 <pQ cltpq 10656 Qcnq 10658 1Qc1q 10659 [Q]cerq 10660 +Q cplq 10661 <Q cltq 10664 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-sep 5232 ax-nul 5239 ax-pr 5361 ax-un 7620 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-ral 3063 df-rex 3072 df-rmo 3304 df-reu 3305 df-rab 3306 df-v 3439 df-sbc 3722 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-iun 4933 df-br 5082 df-opab 5144 df-mpt 5165 df-tr 5199 df-id 5500 df-eprel 5506 df-po 5514 df-so 5515 df-fr 5555 df-we 5557 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-pred 6217 df-ord 6284 df-on 6285 df-lim 6286 df-suc 6287 df-iota 6410 df-fun 6460 df-fn 6461 df-f 6462 df-f1 6463 df-fo 6464 df-f1o 6465 df-fv 6466 df-ov 7310 df-oprab 7311 df-mpo 7312 df-om 7745 df-1st 7863 df-2nd 7864 df-frecs 8128 df-wrecs 8159 df-recs 8233 df-rdg 8272 df-1o 8328 df-oadd 8332 df-omul 8333 df-er 8529 df-ni 10678 df-pli 10679 df-mi 10680 df-lti 10681 df-plpq 10714 df-ltpq 10716 df-enq 10717 df-nq 10718 df-erq 10719 df-plq 10720 df-1nq 10722 df-ltnq 10724 |
This theorem is referenced by: ltaddnq 10780 |
Copyright terms: Public domain | W3C validator |