MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  1lt2nq Structured version   Visualization version   GIF version

Theorem 1lt2nq 10926
Description: One is less than two (one plus one). (Contributed by NM, 13-Mar-1996.) (Revised by Mario Carneiro, 10-May-2013.) (New usage is discouraged.)
Assertion
Ref Expression
1lt2nq 1Q <Q (1Q +Q 1Q)

Proof of Theorem 1lt2nq
StepHypRef Expression
1 1lt2pi 10858 . . . . . 6 1o <N (1o +N 1o)
2 1pi 10836 . . . . . . 7 1oN
3 mulidpi 10839 . . . . . . 7 (1oN → (1o ·N 1o) = 1o)
42, 3ax-mp 5 . . . . . 6 (1o ·N 1o) = 1o
5 addclpi 10845 . . . . . . . 8 ((1oN ∧ 1oN) → (1o +N 1o) ∈ N)
62, 2, 5mp2an 692 . . . . . . 7 (1o +N 1o) ∈ N
7 mulidpi 10839 . . . . . . 7 ((1o +N 1o) ∈ N → ((1o +N 1o) ·N 1o) = (1o +N 1o))
86, 7ax-mp 5 . . . . . 6 ((1o +N 1o) ·N 1o) = (1o +N 1o)
91, 4, 83brtr4i 5137 . . . . 5 (1o ·N 1o) <N ((1o +N 1o) ·N 1o)
10 ordpipq 10895 . . . . 5 (⟨1o, 1o⟩ <pQ ⟨(1o +N 1o), 1o⟩ ↔ (1o ·N 1o) <N ((1o +N 1o) ·N 1o))
119, 10mpbir 231 . . . 4 ⟨1o, 1o⟩ <pQ ⟨(1o +N 1o), 1o
12 df-1nq 10869 . . . 4 1Q = ⟨1o, 1o
1312, 12oveq12i 7399 . . . . 5 (1Q +pQ 1Q) = (⟨1o, 1o⟩ +pQ ⟨1o, 1o⟩)
14 addpipq 10890 . . . . . 6 (((1oN ∧ 1oN) ∧ (1oN ∧ 1oN)) → (⟨1o, 1o⟩ +pQ ⟨1o, 1o⟩) = ⟨((1o ·N 1o) +N (1o ·N 1o)), (1o ·N 1o)⟩)
152, 2, 2, 2, 14mp4an 693 . . . . 5 (⟨1o, 1o⟩ +pQ ⟨1o, 1o⟩) = ⟨((1o ·N 1o) +N (1o ·N 1o)), (1o ·N 1o)⟩
164, 4oveq12i 7399 . . . . . 6 ((1o ·N 1o) +N (1o ·N 1o)) = (1o +N 1o)
1716, 4opeq12i 4842 . . . . 5 ⟨((1o ·N 1o) +N (1o ·N 1o)), (1o ·N 1o)⟩ = ⟨(1o +N 1o), 1o
1813, 15, 173eqtri 2756 . . . 4 (1Q +pQ 1Q) = ⟨(1o +N 1o), 1o
1911, 12, 183brtr4i 5137 . . 3 1Q <pQ (1Q +pQ 1Q)
20 lterpq 10923 . . 3 (1Q <pQ (1Q +pQ 1Q) ↔ ([Q]‘1Q) <Q ([Q]‘(1Q +pQ 1Q)))
2119, 20mpbi 230 . 2 ([Q]‘1Q) <Q ([Q]‘(1Q +pQ 1Q))
22 1nq 10881 . . . 4 1QQ
23 nqerid 10886 . . . 4 (1QQ → ([Q]‘1Q) = 1Q)
2422, 23ax-mp 5 . . 3 ([Q]‘1Q) = 1Q
2524eqcomi 2738 . 2 1Q = ([Q]‘1Q)
26 addpqnq 10891 . . 3 ((1QQ ∧ 1QQ) → (1Q +Q 1Q) = ([Q]‘(1Q +pQ 1Q)))
2722, 22, 26mp2an 692 . 2 (1Q +Q 1Q) = ([Q]‘(1Q +pQ 1Q))
2821, 25, 273brtr4i 5137 1 1Q <Q (1Q +Q 1Q)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wcel 2109  cop 4595   class class class wbr 5107  cfv 6511  (class class class)co 7387  1oc1o 8427  Ncnpi 10797   +N cpli 10798   ·N cmi 10799   <N clti 10800   +pQ cplpq 10801   <pQ cltpq 10803  Qcnq 10805  1Qc1q 10806  [Q]cerq 10807   +Q cplq 10808   <Q cltq 10811
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-oadd 8438  df-omul 8439  df-er 8671  df-ni 10825  df-pli 10826  df-mi 10827  df-lti 10828  df-plpq 10861  df-ltpq 10863  df-enq 10864  df-nq 10865  df-erq 10866  df-plq 10867  df-1nq 10869  df-ltnq 10871
This theorem is referenced by:  ltaddnq  10927
  Copyright terms: Public domain W3C validator