| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 1lt2nq | Structured version Visualization version GIF version | ||
| Description: One is less than two (one plus one). (Contributed by NM, 13-Mar-1996.) (Revised by Mario Carneiro, 10-May-2013.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| 1lt2nq | ⊢ 1Q <Q (1Q +Q 1Q) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1lt2pi 10818 | . . . . . 6 ⊢ 1o <N (1o +N 1o) | |
| 2 | 1pi 10796 | . . . . . . 7 ⊢ 1o ∈ N | |
| 3 | mulidpi 10799 | . . . . . . 7 ⊢ (1o ∈ N → (1o ·N 1o) = 1o) | |
| 4 | 2, 3 | ax-mp 5 | . . . . . 6 ⊢ (1o ·N 1o) = 1o |
| 5 | addclpi 10805 | . . . . . . . 8 ⊢ ((1o ∈ N ∧ 1o ∈ N) → (1o +N 1o) ∈ N) | |
| 6 | 2, 2, 5 | mp2an 692 | . . . . . . 7 ⊢ (1o +N 1o) ∈ N |
| 7 | mulidpi 10799 | . . . . . . 7 ⊢ ((1o +N 1o) ∈ N → ((1o +N 1o) ·N 1o) = (1o +N 1o)) | |
| 8 | 6, 7 | ax-mp 5 | . . . . . 6 ⊢ ((1o +N 1o) ·N 1o) = (1o +N 1o) |
| 9 | 1, 4, 8 | 3brtr4i 5125 | . . . . 5 ⊢ (1o ·N 1o) <N ((1o +N 1o) ·N 1o) |
| 10 | ordpipq 10855 | . . . . 5 ⊢ (〈1o, 1o〉 <pQ 〈(1o +N 1o), 1o〉 ↔ (1o ·N 1o) <N ((1o +N 1o) ·N 1o)) | |
| 11 | 9, 10 | mpbir 231 | . . . 4 ⊢ 〈1o, 1o〉 <pQ 〈(1o +N 1o), 1o〉 |
| 12 | df-1nq 10829 | . . . 4 ⊢ 1Q = 〈1o, 1o〉 | |
| 13 | 12, 12 | oveq12i 7365 | . . . . 5 ⊢ (1Q +pQ 1Q) = (〈1o, 1o〉 +pQ 〈1o, 1o〉) |
| 14 | addpipq 10850 | . . . . . 6 ⊢ (((1o ∈ N ∧ 1o ∈ N) ∧ (1o ∈ N ∧ 1o ∈ N)) → (〈1o, 1o〉 +pQ 〈1o, 1o〉) = 〈((1o ·N 1o) +N (1o ·N 1o)), (1o ·N 1o)〉) | |
| 15 | 2, 2, 2, 2, 14 | mp4an 693 | . . . . 5 ⊢ (〈1o, 1o〉 +pQ 〈1o, 1o〉) = 〈((1o ·N 1o) +N (1o ·N 1o)), (1o ·N 1o)〉 |
| 16 | 4, 4 | oveq12i 7365 | . . . . . 6 ⊢ ((1o ·N 1o) +N (1o ·N 1o)) = (1o +N 1o) |
| 17 | 16, 4 | opeq12i 4832 | . . . . 5 ⊢ 〈((1o ·N 1o) +N (1o ·N 1o)), (1o ·N 1o)〉 = 〈(1o +N 1o), 1o〉 |
| 18 | 13, 15, 17 | 3eqtri 2756 | . . . 4 ⊢ (1Q +pQ 1Q) = 〈(1o +N 1o), 1o〉 |
| 19 | 11, 12, 18 | 3brtr4i 5125 | . . 3 ⊢ 1Q <pQ (1Q +pQ 1Q) |
| 20 | lterpq 10883 | . . 3 ⊢ (1Q <pQ (1Q +pQ 1Q) ↔ ([Q]‘1Q) <Q ([Q]‘(1Q +pQ 1Q))) | |
| 21 | 19, 20 | mpbi 230 | . 2 ⊢ ([Q]‘1Q) <Q ([Q]‘(1Q +pQ 1Q)) |
| 22 | 1nq 10841 | . . . 4 ⊢ 1Q ∈ Q | |
| 23 | nqerid 10846 | . . . 4 ⊢ (1Q ∈ Q → ([Q]‘1Q) = 1Q) | |
| 24 | 22, 23 | ax-mp 5 | . . 3 ⊢ ([Q]‘1Q) = 1Q |
| 25 | 24 | eqcomi 2738 | . 2 ⊢ 1Q = ([Q]‘1Q) |
| 26 | addpqnq 10851 | . . 3 ⊢ ((1Q ∈ Q ∧ 1Q ∈ Q) → (1Q +Q 1Q) = ([Q]‘(1Q +pQ 1Q))) | |
| 27 | 22, 22, 26 | mp2an 692 | . 2 ⊢ (1Q +Q 1Q) = ([Q]‘(1Q +pQ 1Q)) |
| 28 | 21, 25, 27 | 3brtr4i 5125 | 1 ⊢ 1Q <Q (1Q +Q 1Q) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 〈cop 4585 class class class wbr 5095 ‘cfv 6486 (class class class)co 7353 1oc1o 8388 Ncnpi 10757 +N cpli 10758 ·N cmi 10759 <N clti 10760 +pQ cplpq 10761 <pQ cltpq 10763 Qcnq 10765 1Qc1q 10766 [Q]cerq 10767 +Q cplq 10768 <Q cltq 10771 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 ax-un 7675 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-1st 7931 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-1o 8395 df-oadd 8399 df-omul 8400 df-er 8632 df-ni 10785 df-pli 10786 df-mi 10787 df-lti 10788 df-plpq 10821 df-ltpq 10823 df-enq 10824 df-nq 10825 df-erq 10826 df-plq 10827 df-1nq 10829 df-ltnq 10831 |
| This theorem is referenced by: ltaddnq 10887 |
| Copyright terms: Public domain | W3C validator |