| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 1lt2nq | Structured version Visualization version GIF version | ||
| Description: One is less than two (one plus one). (Contributed by NM, 13-Mar-1996.) (Revised by Mario Carneiro, 10-May-2013.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| 1lt2nq | ⊢ 1Q <Q (1Q +Q 1Q) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1lt2pi 10858 | . . . . . 6 ⊢ 1o <N (1o +N 1o) | |
| 2 | 1pi 10836 | . . . . . . 7 ⊢ 1o ∈ N | |
| 3 | mulidpi 10839 | . . . . . . 7 ⊢ (1o ∈ N → (1o ·N 1o) = 1o) | |
| 4 | 2, 3 | ax-mp 5 | . . . . . 6 ⊢ (1o ·N 1o) = 1o |
| 5 | addclpi 10845 | . . . . . . . 8 ⊢ ((1o ∈ N ∧ 1o ∈ N) → (1o +N 1o) ∈ N) | |
| 6 | 2, 2, 5 | mp2an 692 | . . . . . . 7 ⊢ (1o +N 1o) ∈ N |
| 7 | mulidpi 10839 | . . . . . . 7 ⊢ ((1o +N 1o) ∈ N → ((1o +N 1o) ·N 1o) = (1o +N 1o)) | |
| 8 | 6, 7 | ax-mp 5 | . . . . . 6 ⊢ ((1o +N 1o) ·N 1o) = (1o +N 1o) |
| 9 | 1, 4, 8 | 3brtr4i 5137 | . . . . 5 ⊢ (1o ·N 1o) <N ((1o +N 1o) ·N 1o) |
| 10 | ordpipq 10895 | . . . . 5 ⊢ (〈1o, 1o〉 <pQ 〈(1o +N 1o), 1o〉 ↔ (1o ·N 1o) <N ((1o +N 1o) ·N 1o)) | |
| 11 | 9, 10 | mpbir 231 | . . . 4 ⊢ 〈1o, 1o〉 <pQ 〈(1o +N 1o), 1o〉 |
| 12 | df-1nq 10869 | . . . 4 ⊢ 1Q = 〈1o, 1o〉 | |
| 13 | 12, 12 | oveq12i 7399 | . . . . 5 ⊢ (1Q +pQ 1Q) = (〈1o, 1o〉 +pQ 〈1o, 1o〉) |
| 14 | addpipq 10890 | . . . . . 6 ⊢ (((1o ∈ N ∧ 1o ∈ N) ∧ (1o ∈ N ∧ 1o ∈ N)) → (〈1o, 1o〉 +pQ 〈1o, 1o〉) = 〈((1o ·N 1o) +N (1o ·N 1o)), (1o ·N 1o)〉) | |
| 15 | 2, 2, 2, 2, 14 | mp4an 693 | . . . . 5 ⊢ (〈1o, 1o〉 +pQ 〈1o, 1o〉) = 〈((1o ·N 1o) +N (1o ·N 1o)), (1o ·N 1o)〉 |
| 16 | 4, 4 | oveq12i 7399 | . . . . . 6 ⊢ ((1o ·N 1o) +N (1o ·N 1o)) = (1o +N 1o) |
| 17 | 16, 4 | opeq12i 4842 | . . . . 5 ⊢ 〈((1o ·N 1o) +N (1o ·N 1o)), (1o ·N 1o)〉 = 〈(1o +N 1o), 1o〉 |
| 18 | 13, 15, 17 | 3eqtri 2756 | . . . 4 ⊢ (1Q +pQ 1Q) = 〈(1o +N 1o), 1o〉 |
| 19 | 11, 12, 18 | 3brtr4i 5137 | . . 3 ⊢ 1Q <pQ (1Q +pQ 1Q) |
| 20 | lterpq 10923 | . . 3 ⊢ (1Q <pQ (1Q +pQ 1Q) ↔ ([Q]‘1Q) <Q ([Q]‘(1Q +pQ 1Q))) | |
| 21 | 19, 20 | mpbi 230 | . 2 ⊢ ([Q]‘1Q) <Q ([Q]‘(1Q +pQ 1Q)) |
| 22 | 1nq 10881 | . . . 4 ⊢ 1Q ∈ Q | |
| 23 | nqerid 10886 | . . . 4 ⊢ (1Q ∈ Q → ([Q]‘1Q) = 1Q) | |
| 24 | 22, 23 | ax-mp 5 | . . 3 ⊢ ([Q]‘1Q) = 1Q |
| 25 | 24 | eqcomi 2738 | . 2 ⊢ 1Q = ([Q]‘1Q) |
| 26 | addpqnq 10891 | . . 3 ⊢ ((1Q ∈ Q ∧ 1Q ∈ Q) → (1Q +Q 1Q) = ([Q]‘(1Q +pQ 1Q))) | |
| 27 | 22, 22, 26 | mp2an 692 | . 2 ⊢ (1Q +Q 1Q) = ([Q]‘(1Q +pQ 1Q)) |
| 28 | 21, 25, 27 | 3brtr4i 5137 | 1 ⊢ 1Q <Q (1Q +Q 1Q) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 〈cop 4595 class class class wbr 5107 ‘cfv 6511 (class class class)co 7387 1oc1o 8427 Ncnpi 10797 +N cpli 10798 ·N cmi 10799 <N clti 10800 +pQ cplpq 10801 <pQ cltpq 10803 Qcnq 10805 1Qc1q 10806 [Q]cerq 10807 +Q cplq 10808 <Q cltq 10811 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-oadd 8438 df-omul 8439 df-er 8671 df-ni 10825 df-pli 10826 df-mi 10827 df-lti 10828 df-plpq 10861 df-ltpq 10863 df-enq 10864 df-nq 10865 df-erq 10866 df-plq 10867 df-1nq 10869 df-ltnq 10871 |
| This theorem is referenced by: ltaddnq 10927 |
| Copyright terms: Public domain | W3C validator |