![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 1lt2nq | Structured version Visualization version GIF version |
Description: One is less than two (one plus one). (Contributed by NM, 13-Mar-1996.) (Revised by Mario Carneiro, 10-May-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
1lt2nq | ⊢ 1Q <Q (1Q +Q 1Q) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1lt2pi 10173 | . . . . . 6 ⊢ 1o <N (1o +N 1o) | |
2 | 1pi 10151 | . . . . . . 7 ⊢ 1o ∈ N | |
3 | mulidpi 10154 | . . . . . . 7 ⊢ (1o ∈ N → (1o ·N 1o) = 1o) | |
4 | 2, 3 | ax-mp 5 | . . . . . 6 ⊢ (1o ·N 1o) = 1o |
5 | addclpi 10160 | . . . . . . . 8 ⊢ ((1o ∈ N ∧ 1o ∈ N) → (1o +N 1o) ∈ N) | |
6 | 2, 2, 5 | mp2an 688 | . . . . . . 7 ⊢ (1o +N 1o) ∈ N |
7 | mulidpi 10154 | . . . . . . 7 ⊢ ((1o +N 1o) ∈ N → ((1o +N 1o) ·N 1o) = (1o +N 1o)) | |
8 | 6, 7 | ax-mp 5 | . . . . . 6 ⊢ ((1o +N 1o) ·N 1o) = (1o +N 1o) |
9 | 1, 4, 8 | 3brtr4i 4992 | . . . . 5 ⊢ (1o ·N 1o) <N ((1o +N 1o) ·N 1o) |
10 | ordpipq 10210 | . . . . 5 ⊢ (〈1o, 1o〉 <pQ 〈(1o +N 1o), 1o〉 ↔ (1o ·N 1o) <N ((1o +N 1o) ·N 1o)) | |
11 | 9, 10 | mpbir 232 | . . . 4 ⊢ 〈1o, 1o〉 <pQ 〈(1o +N 1o), 1o〉 |
12 | df-1nq 10184 | . . . 4 ⊢ 1Q = 〈1o, 1o〉 | |
13 | 12, 12 | oveq12i 7028 | . . . . 5 ⊢ (1Q +pQ 1Q) = (〈1o, 1o〉 +pQ 〈1o, 1o〉) |
14 | addpipq 10205 | . . . . . 6 ⊢ (((1o ∈ N ∧ 1o ∈ N) ∧ (1o ∈ N ∧ 1o ∈ N)) → (〈1o, 1o〉 +pQ 〈1o, 1o〉) = 〈((1o ·N 1o) +N (1o ·N 1o)), (1o ·N 1o)〉) | |
15 | 2, 2, 2, 2, 14 | mp4an 689 | . . . . 5 ⊢ (〈1o, 1o〉 +pQ 〈1o, 1o〉) = 〈((1o ·N 1o) +N (1o ·N 1o)), (1o ·N 1o)〉 |
16 | 4, 4 | oveq12i 7028 | . . . . . 6 ⊢ ((1o ·N 1o) +N (1o ·N 1o)) = (1o +N 1o) |
17 | 16, 4 | opeq12i 4715 | . . . . 5 ⊢ 〈((1o ·N 1o) +N (1o ·N 1o)), (1o ·N 1o)〉 = 〈(1o +N 1o), 1o〉 |
18 | 13, 15, 17 | 3eqtri 2823 | . . . 4 ⊢ (1Q +pQ 1Q) = 〈(1o +N 1o), 1o〉 |
19 | 11, 12, 18 | 3brtr4i 4992 | . . 3 ⊢ 1Q <pQ (1Q +pQ 1Q) |
20 | lterpq 10238 | . . 3 ⊢ (1Q <pQ (1Q +pQ 1Q) ↔ ([Q]‘1Q) <Q ([Q]‘(1Q +pQ 1Q))) | |
21 | 19, 20 | mpbi 231 | . 2 ⊢ ([Q]‘1Q) <Q ([Q]‘(1Q +pQ 1Q)) |
22 | 1nq 10196 | . . . 4 ⊢ 1Q ∈ Q | |
23 | nqerid 10201 | . . . 4 ⊢ (1Q ∈ Q → ([Q]‘1Q) = 1Q) | |
24 | 22, 23 | ax-mp 5 | . . 3 ⊢ ([Q]‘1Q) = 1Q |
25 | 24 | eqcomi 2804 | . 2 ⊢ 1Q = ([Q]‘1Q) |
26 | addpqnq 10206 | . . 3 ⊢ ((1Q ∈ Q ∧ 1Q ∈ Q) → (1Q +Q 1Q) = ([Q]‘(1Q +pQ 1Q))) | |
27 | 22, 22, 26 | mp2an 688 | . 2 ⊢ (1Q +Q 1Q) = ([Q]‘(1Q +pQ 1Q)) |
28 | 21, 25, 27 | 3brtr4i 4992 | 1 ⊢ 1Q <Q (1Q +Q 1Q) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1522 ∈ wcel 2081 〈cop 4478 class class class wbr 4962 ‘cfv 6225 (class class class)co 7016 1oc1o 7946 Ncnpi 10112 +N cpli 10113 ·N cmi 10114 <N clti 10115 +pQ cplpq 10116 <pQ cltpq 10118 Qcnq 10120 1Qc1q 10121 [Q]cerq 10122 +Q cplq 10123 <Q cltq 10126 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1777 ax-4 1791 ax-5 1888 ax-6 1947 ax-7 1992 ax-8 2083 ax-9 2091 ax-10 2112 ax-11 2126 ax-12 2141 ax-13 2344 ax-ext 2769 ax-sep 5094 ax-nul 5101 ax-pow 5157 ax-pr 5221 ax-un 7319 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3or 1081 df-3an 1082 df-tru 1525 df-ex 1762 df-nf 1766 df-sb 2043 df-mo 2576 df-eu 2612 df-clab 2776 df-cleq 2788 df-clel 2863 df-nfc 2935 df-ne 2985 df-ral 3110 df-rex 3111 df-reu 3112 df-rmo 3113 df-rab 3114 df-v 3439 df-sbc 3707 df-csb 3812 df-dif 3862 df-un 3864 df-in 3866 df-ss 3874 df-pss 3876 df-nul 4212 df-if 4382 df-pw 4455 df-sn 4473 df-pr 4475 df-tp 4477 df-op 4479 df-uni 4746 df-iun 4827 df-br 4963 df-opab 5025 df-mpt 5042 df-tr 5064 df-id 5348 df-eprel 5353 df-po 5362 df-so 5363 df-fr 5402 df-we 5404 df-xp 5449 df-rel 5450 df-cnv 5451 df-co 5452 df-dm 5453 df-rn 5454 df-res 5455 df-ima 5456 df-pred 6023 df-ord 6069 df-on 6070 df-lim 6071 df-suc 6072 df-iota 6189 df-fun 6227 df-fn 6228 df-f 6229 df-f1 6230 df-fo 6231 df-f1o 6232 df-fv 6233 df-ov 7019 df-oprab 7020 df-mpo 7021 df-om 7437 df-1st 7545 df-2nd 7546 df-wrecs 7798 df-recs 7860 df-rdg 7898 df-1o 7953 df-oadd 7957 df-omul 7958 df-er 8139 df-ni 10140 df-pli 10141 df-mi 10142 df-lti 10143 df-plpq 10176 df-ltpq 10178 df-enq 10179 df-nq 10180 df-erq 10181 df-plq 10182 df-1nq 10184 df-ltnq 10186 |
This theorem is referenced by: ltaddnq 10242 |
Copyright terms: Public domain | W3C validator |