MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  1lt2nq Structured version   Visualization version   GIF version

Theorem 1lt2nq 10713
Description: One is less than two (one plus one). (Contributed by NM, 13-Mar-1996.) (Revised by Mario Carneiro, 10-May-2013.) (New usage is discouraged.)
Assertion
Ref Expression
1lt2nq 1Q <Q (1Q +Q 1Q)

Proof of Theorem 1lt2nq
StepHypRef Expression
1 1lt2pi 10645 . . . . . 6 1o <N (1o +N 1o)
2 1pi 10623 . . . . . . 7 1oN
3 mulidpi 10626 . . . . . . 7 (1oN → (1o ·N 1o) = 1o)
42, 3ax-mp 5 . . . . . 6 (1o ·N 1o) = 1o
5 addclpi 10632 . . . . . . . 8 ((1oN ∧ 1oN) → (1o +N 1o) ∈ N)
62, 2, 5mp2an 688 . . . . . . 7 (1o +N 1o) ∈ N
7 mulidpi 10626 . . . . . . 7 ((1o +N 1o) ∈ N → ((1o +N 1o) ·N 1o) = (1o +N 1o))
86, 7ax-mp 5 . . . . . 6 ((1o +N 1o) ·N 1o) = (1o +N 1o)
91, 4, 83brtr4i 5108 . . . . 5 (1o ·N 1o) <N ((1o +N 1o) ·N 1o)
10 ordpipq 10682 . . . . 5 (⟨1o, 1o⟩ <pQ ⟨(1o +N 1o), 1o⟩ ↔ (1o ·N 1o) <N ((1o +N 1o) ·N 1o))
119, 10mpbir 230 . . . 4 ⟨1o, 1o⟩ <pQ ⟨(1o +N 1o), 1o
12 df-1nq 10656 . . . 4 1Q = ⟨1o, 1o
1312, 12oveq12i 7280 . . . . 5 (1Q +pQ 1Q) = (⟨1o, 1o⟩ +pQ ⟨1o, 1o⟩)
14 addpipq 10677 . . . . . 6 (((1oN ∧ 1oN) ∧ (1oN ∧ 1oN)) → (⟨1o, 1o⟩ +pQ ⟨1o, 1o⟩) = ⟨((1o ·N 1o) +N (1o ·N 1o)), (1o ·N 1o)⟩)
152, 2, 2, 2, 14mp4an 689 . . . . 5 (⟨1o, 1o⟩ +pQ ⟨1o, 1o⟩) = ⟨((1o ·N 1o) +N (1o ·N 1o)), (1o ·N 1o)⟩
164, 4oveq12i 7280 . . . . . 6 ((1o ·N 1o) +N (1o ·N 1o)) = (1o +N 1o)
1716, 4opeq12i 4814 . . . . 5 ⟨((1o ·N 1o) +N (1o ·N 1o)), (1o ·N 1o)⟩ = ⟨(1o +N 1o), 1o
1813, 15, 173eqtri 2771 . . . 4 (1Q +pQ 1Q) = ⟨(1o +N 1o), 1o
1911, 12, 183brtr4i 5108 . . 3 1Q <pQ (1Q +pQ 1Q)
20 lterpq 10710 . . 3 (1Q <pQ (1Q +pQ 1Q) ↔ ([Q]‘1Q) <Q ([Q]‘(1Q +pQ 1Q)))
2119, 20mpbi 229 . 2 ([Q]‘1Q) <Q ([Q]‘(1Q +pQ 1Q))
22 1nq 10668 . . . 4 1QQ
23 nqerid 10673 . . . 4 (1QQ → ([Q]‘1Q) = 1Q)
2422, 23ax-mp 5 . . 3 ([Q]‘1Q) = 1Q
2524eqcomi 2748 . 2 1Q = ([Q]‘1Q)
26 addpqnq 10678 . . 3 ((1QQ ∧ 1QQ) → (1Q +Q 1Q) = ([Q]‘(1Q +pQ 1Q)))
2722, 22, 26mp2an 688 . 2 (1Q +Q 1Q) = ([Q]‘(1Q +pQ 1Q))
2821, 25, 273brtr4i 5108 1 1Q <Q (1Q +Q 1Q)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  wcel 2109  cop 4572   class class class wbr 5078  cfv 6430  (class class class)co 7268  1oc1o 8274  Ncnpi 10584   +N cpli 10585   ·N cmi 10586   <N clti 10587   +pQ cplpq 10588   <pQ cltpq 10590  Qcnq 10592  1Qc1q 10593  [Q]cerq 10594   +Q cplq 10595   <Q cltq 10598
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-sep 5226  ax-nul 5233  ax-pr 5355  ax-un 7579
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-ral 3070  df-rex 3071  df-reu 3072  df-rmo 3073  df-rab 3074  df-v 3432  df-sbc 3720  df-csb 3837  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-pss 3910  df-nul 4262  df-if 4465  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4845  df-iun 4931  df-br 5079  df-opab 5141  df-mpt 5162  df-tr 5196  df-id 5488  df-eprel 5494  df-po 5502  df-so 5503  df-fr 5543  df-we 5545  df-xp 5594  df-rel 5595  df-cnv 5596  df-co 5597  df-dm 5598  df-rn 5599  df-res 5600  df-ima 5601  df-pred 6199  df-ord 6266  df-on 6267  df-lim 6268  df-suc 6269  df-iota 6388  df-fun 6432  df-fn 6433  df-f 6434  df-f1 6435  df-fo 6436  df-f1o 6437  df-fv 6438  df-ov 7271  df-oprab 7272  df-mpo 7273  df-om 7701  df-1st 7817  df-2nd 7818  df-frecs 8081  df-wrecs 8112  df-recs 8186  df-rdg 8225  df-1o 8281  df-oadd 8285  df-omul 8286  df-er 8472  df-ni 10612  df-pli 10613  df-mi 10614  df-lti 10615  df-plpq 10648  df-ltpq 10650  df-enq 10651  df-nq 10652  df-erq 10653  df-plq 10654  df-1nq 10656  df-ltnq 10658
This theorem is referenced by:  ltaddnq  10714
  Copyright terms: Public domain W3C validator