MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  1lt2nq Structured version   Visualization version   GIF version

Theorem 1lt2nq 10856
Description: One is less than two (one plus one). (Contributed by NM, 13-Mar-1996.) (Revised by Mario Carneiro, 10-May-2013.) (New usage is discouraged.)
Assertion
Ref Expression
1lt2nq 1Q <Q (1Q +Q 1Q)

Proof of Theorem 1lt2nq
StepHypRef Expression
1 1lt2pi 10788 . . . . . 6 1o <N (1o +N 1o)
2 1pi 10766 . . . . . . 7 1oN
3 mulidpi 10769 . . . . . . 7 (1oN → (1o ·N 1o) = 1o)
42, 3ax-mp 5 . . . . . 6 (1o ·N 1o) = 1o
5 addclpi 10775 . . . . . . . 8 ((1oN ∧ 1oN) → (1o +N 1o) ∈ N)
62, 2, 5mp2an 692 . . . . . . 7 (1o +N 1o) ∈ N
7 mulidpi 10769 . . . . . . 7 ((1o +N 1o) ∈ N → ((1o +N 1o) ·N 1o) = (1o +N 1o))
86, 7ax-mp 5 . . . . . 6 ((1o +N 1o) ·N 1o) = (1o +N 1o)
91, 4, 83brtr4i 5119 . . . . 5 (1o ·N 1o) <N ((1o +N 1o) ·N 1o)
10 ordpipq 10825 . . . . 5 (⟨1o, 1o⟩ <pQ ⟨(1o +N 1o), 1o⟩ ↔ (1o ·N 1o) <N ((1o +N 1o) ·N 1o))
119, 10mpbir 231 . . . 4 ⟨1o, 1o⟩ <pQ ⟨(1o +N 1o), 1o
12 df-1nq 10799 . . . 4 1Q = ⟨1o, 1o
1312, 12oveq12i 7353 . . . . 5 (1Q +pQ 1Q) = (⟨1o, 1o⟩ +pQ ⟨1o, 1o⟩)
14 addpipq 10820 . . . . . 6 (((1oN ∧ 1oN) ∧ (1oN ∧ 1oN)) → (⟨1o, 1o⟩ +pQ ⟨1o, 1o⟩) = ⟨((1o ·N 1o) +N (1o ·N 1o)), (1o ·N 1o)⟩)
152, 2, 2, 2, 14mp4an 693 . . . . 5 (⟨1o, 1o⟩ +pQ ⟨1o, 1o⟩) = ⟨((1o ·N 1o) +N (1o ·N 1o)), (1o ·N 1o)⟩
164, 4oveq12i 7353 . . . . . 6 ((1o ·N 1o) +N (1o ·N 1o)) = (1o +N 1o)
1716, 4opeq12i 4828 . . . . 5 ⟨((1o ·N 1o) +N (1o ·N 1o)), (1o ·N 1o)⟩ = ⟨(1o +N 1o), 1o
1813, 15, 173eqtri 2757 . . . 4 (1Q +pQ 1Q) = ⟨(1o +N 1o), 1o
1911, 12, 183brtr4i 5119 . . 3 1Q <pQ (1Q +pQ 1Q)
20 lterpq 10853 . . 3 (1Q <pQ (1Q +pQ 1Q) ↔ ([Q]‘1Q) <Q ([Q]‘(1Q +pQ 1Q)))
2119, 20mpbi 230 . 2 ([Q]‘1Q) <Q ([Q]‘(1Q +pQ 1Q))
22 1nq 10811 . . . 4 1QQ
23 nqerid 10816 . . . 4 (1QQ → ([Q]‘1Q) = 1Q)
2422, 23ax-mp 5 . . 3 ([Q]‘1Q) = 1Q
2524eqcomi 2739 . 2 1Q = ([Q]‘1Q)
26 addpqnq 10821 . . 3 ((1QQ ∧ 1QQ) → (1Q +Q 1Q) = ([Q]‘(1Q +pQ 1Q)))
2722, 22, 26mp2an 692 . 2 (1Q +Q 1Q) = ([Q]‘(1Q +pQ 1Q))
2821, 25, 273brtr4i 5119 1 1Q <Q (1Q +Q 1Q)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  wcel 2110  cop 4580   class class class wbr 5089  cfv 6477  (class class class)co 7341  1oc1o 8373  Ncnpi 10727   +N cpli 10728   ·N cmi 10729   <N clti 10730   +pQ cplpq 10731   <pQ cltpq 10733  Qcnq 10735  1Qc1q 10736  [Q]cerq 10737   +Q cplq 10738   <Q cltq 10741
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-sep 5232  ax-nul 5242  ax-pr 5368  ax-un 7663
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rmo 3344  df-reu 3345  df-rab 3394  df-v 3436  df-sbc 3740  df-csb 3849  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-pss 3920  df-nul 4282  df-if 4474  df-pw 4550  df-sn 4575  df-pr 4577  df-op 4581  df-uni 4858  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6244  df-ord 6305  df-on 6306  df-lim 6307  df-suc 6308  df-iota 6433  df-fun 6479  df-fn 6480  df-f 6481  df-f1 6482  df-fo 6483  df-f1o 6484  df-fv 6485  df-ov 7344  df-oprab 7345  df-mpo 7346  df-om 7792  df-1st 7916  df-2nd 7917  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-1o 8380  df-oadd 8384  df-omul 8385  df-er 8617  df-ni 10755  df-pli 10756  df-mi 10757  df-lti 10758  df-plpq 10791  df-ltpq 10793  df-enq 10794  df-nq 10795  df-erq 10796  df-plq 10797  df-1nq 10799  df-ltnq 10801
This theorem is referenced by:  ltaddnq  10857
  Copyright terms: Public domain W3C validator