MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  1lt2nq Structured version   Visualization version   GIF version

Theorem 1lt2nq 10974
Description: One is less than two (one plus one). (Contributed by NM, 13-Mar-1996.) (Revised by Mario Carneiro, 10-May-2013.) (New usage is discouraged.)
Assertion
Ref Expression
1lt2nq 1Q <Q (1Q +Q 1Q)

Proof of Theorem 1lt2nq
StepHypRef Expression
1 1lt2pi 10906 . . . . . 6 1o <N (1o +N 1o)
2 1pi 10884 . . . . . . 7 1oN
3 mulidpi 10887 . . . . . . 7 (1oN → (1o ·N 1o) = 1o)
42, 3ax-mp 5 . . . . . 6 (1o ·N 1o) = 1o
5 addclpi 10893 . . . . . . . 8 ((1oN ∧ 1oN) → (1o +N 1o) ∈ N)
62, 2, 5mp2an 689 . . . . . . 7 (1o +N 1o) ∈ N
7 mulidpi 10887 . . . . . . 7 ((1o +N 1o) ∈ N → ((1o +N 1o) ·N 1o) = (1o +N 1o))
86, 7ax-mp 5 . . . . . 6 ((1o +N 1o) ·N 1o) = (1o +N 1o)
91, 4, 83brtr4i 5178 . . . . 5 (1o ·N 1o) <N ((1o +N 1o) ·N 1o)
10 ordpipq 10943 . . . . 5 (⟨1o, 1o⟩ <pQ ⟨(1o +N 1o), 1o⟩ ↔ (1o ·N 1o) <N ((1o +N 1o) ·N 1o))
119, 10mpbir 230 . . . 4 ⟨1o, 1o⟩ <pQ ⟨(1o +N 1o), 1o
12 df-1nq 10917 . . . 4 1Q = ⟨1o, 1o
1312, 12oveq12i 7424 . . . . 5 (1Q +pQ 1Q) = (⟨1o, 1o⟩ +pQ ⟨1o, 1o⟩)
14 addpipq 10938 . . . . . 6 (((1oN ∧ 1oN) ∧ (1oN ∧ 1oN)) → (⟨1o, 1o⟩ +pQ ⟨1o, 1o⟩) = ⟨((1o ·N 1o) +N (1o ·N 1o)), (1o ·N 1o)⟩)
152, 2, 2, 2, 14mp4an 690 . . . . 5 (⟨1o, 1o⟩ +pQ ⟨1o, 1o⟩) = ⟨((1o ·N 1o) +N (1o ·N 1o)), (1o ·N 1o)⟩
164, 4oveq12i 7424 . . . . . 6 ((1o ·N 1o) +N (1o ·N 1o)) = (1o +N 1o)
1716, 4opeq12i 4878 . . . . 5 ⟨((1o ·N 1o) +N (1o ·N 1o)), (1o ·N 1o)⟩ = ⟨(1o +N 1o), 1o
1813, 15, 173eqtri 2763 . . . 4 (1Q +pQ 1Q) = ⟨(1o +N 1o), 1o
1911, 12, 183brtr4i 5178 . . 3 1Q <pQ (1Q +pQ 1Q)
20 lterpq 10971 . . 3 (1Q <pQ (1Q +pQ 1Q) ↔ ([Q]‘1Q) <Q ([Q]‘(1Q +pQ 1Q)))
2119, 20mpbi 229 . 2 ([Q]‘1Q) <Q ([Q]‘(1Q +pQ 1Q))
22 1nq 10929 . . . 4 1QQ
23 nqerid 10934 . . . 4 (1QQ → ([Q]‘1Q) = 1Q)
2422, 23ax-mp 5 . . 3 ([Q]‘1Q) = 1Q
2524eqcomi 2740 . 2 1Q = ([Q]‘1Q)
26 addpqnq 10939 . . 3 ((1QQ ∧ 1QQ) → (1Q +Q 1Q) = ([Q]‘(1Q +pQ 1Q)))
2722, 22, 26mp2an 689 . 2 (1Q +Q 1Q) = ([Q]‘(1Q +pQ 1Q))
2821, 25, 273brtr4i 5178 1 1Q <Q (1Q +Q 1Q)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wcel 2105  cop 4634   class class class wbr 5148  cfv 6543  (class class class)co 7412  1oc1o 8465  Ncnpi 10845   +N cpli 10846   ·N cmi 10847   <N clti 10848   +pQ cplpq 10849   <pQ cltpq 10851  Qcnq 10853  1Qc1q 10854  [Q]cerq 10855   +Q cplq 10856   <Q cltq 10859
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pr 5427  ax-un 7729
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-ov 7415  df-oprab 7416  df-mpo 7417  df-om 7860  df-1st 7979  df-2nd 7980  df-frecs 8272  df-wrecs 8303  df-recs 8377  df-rdg 8416  df-1o 8472  df-oadd 8476  df-omul 8477  df-er 8709  df-ni 10873  df-pli 10874  df-mi 10875  df-lti 10876  df-plpq 10909  df-ltpq 10911  df-enq 10912  df-nq 10913  df-erq 10914  df-plq 10915  df-1nq 10917  df-ltnq 10919
This theorem is referenced by:  ltaddnq  10975
  Copyright terms: Public domain W3C validator