Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 1lt2nq | Structured version Visualization version GIF version |
Description: One is less than two (one plus one). (Contributed by NM, 13-Mar-1996.) (Revised by Mario Carneiro, 10-May-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
1lt2nq | ⊢ 1Q <Q (1Q +Q 1Q) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1lt2pi 10645 | . . . . . 6 ⊢ 1o <N (1o +N 1o) | |
2 | 1pi 10623 | . . . . . . 7 ⊢ 1o ∈ N | |
3 | mulidpi 10626 | . . . . . . 7 ⊢ (1o ∈ N → (1o ·N 1o) = 1o) | |
4 | 2, 3 | ax-mp 5 | . . . . . 6 ⊢ (1o ·N 1o) = 1o |
5 | addclpi 10632 | . . . . . . . 8 ⊢ ((1o ∈ N ∧ 1o ∈ N) → (1o +N 1o) ∈ N) | |
6 | 2, 2, 5 | mp2an 688 | . . . . . . 7 ⊢ (1o +N 1o) ∈ N |
7 | mulidpi 10626 | . . . . . . 7 ⊢ ((1o +N 1o) ∈ N → ((1o +N 1o) ·N 1o) = (1o +N 1o)) | |
8 | 6, 7 | ax-mp 5 | . . . . . 6 ⊢ ((1o +N 1o) ·N 1o) = (1o +N 1o) |
9 | 1, 4, 8 | 3brtr4i 5108 | . . . . 5 ⊢ (1o ·N 1o) <N ((1o +N 1o) ·N 1o) |
10 | ordpipq 10682 | . . . . 5 ⊢ (〈1o, 1o〉 <pQ 〈(1o +N 1o), 1o〉 ↔ (1o ·N 1o) <N ((1o +N 1o) ·N 1o)) | |
11 | 9, 10 | mpbir 230 | . . . 4 ⊢ 〈1o, 1o〉 <pQ 〈(1o +N 1o), 1o〉 |
12 | df-1nq 10656 | . . . 4 ⊢ 1Q = 〈1o, 1o〉 | |
13 | 12, 12 | oveq12i 7280 | . . . . 5 ⊢ (1Q +pQ 1Q) = (〈1o, 1o〉 +pQ 〈1o, 1o〉) |
14 | addpipq 10677 | . . . . . 6 ⊢ (((1o ∈ N ∧ 1o ∈ N) ∧ (1o ∈ N ∧ 1o ∈ N)) → (〈1o, 1o〉 +pQ 〈1o, 1o〉) = 〈((1o ·N 1o) +N (1o ·N 1o)), (1o ·N 1o)〉) | |
15 | 2, 2, 2, 2, 14 | mp4an 689 | . . . . 5 ⊢ (〈1o, 1o〉 +pQ 〈1o, 1o〉) = 〈((1o ·N 1o) +N (1o ·N 1o)), (1o ·N 1o)〉 |
16 | 4, 4 | oveq12i 7280 | . . . . . 6 ⊢ ((1o ·N 1o) +N (1o ·N 1o)) = (1o +N 1o) |
17 | 16, 4 | opeq12i 4814 | . . . . 5 ⊢ 〈((1o ·N 1o) +N (1o ·N 1o)), (1o ·N 1o)〉 = 〈(1o +N 1o), 1o〉 |
18 | 13, 15, 17 | 3eqtri 2771 | . . . 4 ⊢ (1Q +pQ 1Q) = 〈(1o +N 1o), 1o〉 |
19 | 11, 12, 18 | 3brtr4i 5108 | . . 3 ⊢ 1Q <pQ (1Q +pQ 1Q) |
20 | lterpq 10710 | . . 3 ⊢ (1Q <pQ (1Q +pQ 1Q) ↔ ([Q]‘1Q) <Q ([Q]‘(1Q +pQ 1Q))) | |
21 | 19, 20 | mpbi 229 | . 2 ⊢ ([Q]‘1Q) <Q ([Q]‘(1Q +pQ 1Q)) |
22 | 1nq 10668 | . . . 4 ⊢ 1Q ∈ Q | |
23 | nqerid 10673 | . . . 4 ⊢ (1Q ∈ Q → ([Q]‘1Q) = 1Q) | |
24 | 22, 23 | ax-mp 5 | . . 3 ⊢ ([Q]‘1Q) = 1Q |
25 | 24 | eqcomi 2748 | . 2 ⊢ 1Q = ([Q]‘1Q) |
26 | addpqnq 10678 | . . 3 ⊢ ((1Q ∈ Q ∧ 1Q ∈ Q) → (1Q +Q 1Q) = ([Q]‘(1Q +pQ 1Q))) | |
27 | 22, 22, 26 | mp2an 688 | . 2 ⊢ (1Q +Q 1Q) = ([Q]‘(1Q +pQ 1Q)) |
28 | 21, 25, 27 | 3brtr4i 5108 | 1 ⊢ 1Q <Q (1Q +Q 1Q) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1541 ∈ wcel 2109 〈cop 4572 class class class wbr 5078 ‘cfv 6430 (class class class)co 7268 1oc1o 8274 Ncnpi 10584 +N cpli 10585 ·N cmi 10586 <N clti 10587 +pQ cplpq 10588 <pQ cltpq 10590 Qcnq 10592 1Qc1q 10593 [Q]cerq 10594 +Q cplq 10595 <Q cltq 10598 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pr 5355 ax-un 7579 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-ral 3070 df-rex 3071 df-reu 3072 df-rmo 3073 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-pss 3910 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-tp 4571 df-op 4573 df-uni 4845 df-iun 4931 df-br 5079 df-opab 5141 df-mpt 5162 df-tr 5196 df-id 5488 df-eprel 5494 df-po 5502 df-so 5503 df-fr 5543 df-we 5545 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-pred 6199 df-ord 6266 df-on 6267 df-lim 6268 df-suc 6269 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-f1 6435 df-fo 6436 df-f1o 6437 df-fv 6438 df-ov 7271 df-oprab 7272 df-mpo 7273 df-om 7701 df-1st 7817 df-2nd 7818 df-frecs 8081 df-wrecs 8112 df-recs 8186 df-rdg 8225 df-1o 8281 df-oadd 8285 df-omul 8286 df-er 8472 df-ni 10612 df-pli 10613 df-mi 10614 df-lti 10615 df-plpq 10648 df-ltpq 10650 df-enq 10651 df-nq 10652 df-erq 10653 df-plq 10654 df-1nq 10656 df-ltnq 10658 |
This theorem is referenced by: ltaddnq 10714 |
Copyright terms: Public domain | W3C validator |