| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 1lt2nq | Structured version Visualization version GIF version | ||
| Description: One is less than two (one plus one). (Contributed by NM, 13-Mar-1996.) (Revised by Mario Carneiro, 10-May-2013.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| 1lt2nq | ⊢ 1Q <Q (1Q +Q 1Q) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1lt2pi 10865 | . . . . . 6 ⊢ 1o <N (1o +N 1o) | |
| 2 | 1pi 10843 | . . . . . . 7 ⊢ 1o ∈ N | |
| 3 | mulidpi 10846 | . . . . . . 7 ⊢ (1o ∈ N → (1o ·N 1o) = 1o) | |
| 4 | 2, 3 | ax-mp 5 | . . . . . 6 ⊢ (1o ·N 1o) = 1o |
| 5 | addclpi 10852 | . . . . . . . 8 ⊢ ((1o ∈ N ∧ 1o ∈ N) → (1o +N 1o) ∈ N) | |
| 6 | 2, 2, 5 | mp2an 692 | . . . . . . 7 ⊢ (1o +N 1o) ∈ N |
| 7 | mulidpi 10846 | . . . . . . 7 ⊢ ((1o +N 1o) ∈ N → ((1o +N 1o) ·N 1o) = (1o +N 1o)) | |
| 8 | 6, 7 | ax-mp 5 | . . . . . 6 ⊢ ((1o +N 1o) ·N 1o) = (1o +N 1o) |
| 9 | 1, 4, 8 | 3brtr4i 5140 | . . . . 5 ⊢ (1o ·N 1o) <N ((1o +N 1o) ·N 1o) |
| 10 | ordpipq 10902 | . . . . 5 ⊢ (〈1o, 1o〉 <pQ 〈(1o +N 1o), 1o〉 ↔ (1o ·N 1o) <N ((1o +N 1o) ·N 1o)) | |
| 11 | 9, 10 | mpbir 231 | . . . 4 ⊢ 〈1o, 1o〉 <pQ 〈(1o +N 1o), 1o〉 |
| 12 | df-1nq 10876 | . . . 4 ⊢ 1Q = 〈1o, 1o〉 | |
| 13 | 12, 12 | oveq12i 7402 | . . . . 5 ⊢ (1Q +pQ 1Q) = (〈1o, 1o〉 +pQ 〈1o, 1o〉) |
| 14 | addpipq 10897 | . . . . . 6 ⊢ (((1o ∈ N ∧ 1o ∈ N) ∧ (1o ∈ N ∧ 1o ∈ N)) → (〈1o, 1o〉 +pQ 〈1o, 1o〉) = 〈((1o ·N 1o) +N (1o ·N 1o)), (1o ·N 1o)〉) | |
| 15 | 2, 2, 2, 2, 14 | mp4an 693 | . . . . 5 ⊢ (〈1o, 1o〉 +pQ 〈1o, 1o〉) = 〈((1o ·N 1o) +N (1o ·N 1o)), (1o ·N 1o)〉 |
| 16 | 4, 4 | oveq12i 7402 | . . . . . 6 ⊢ ((1o ·N 1o) +N (1o ·N 1o)) = (1o +N 1o) |
| 17 | 16, 4 | opeq12i 4845 | . . . . 5 ⊢ 〈((1o ·N 1o) +N (1o ·N 1o)), (1o ·N 1o)〉 = 〈(1o +N 1o), 1o〉 |
| 18 | 13, 15, 17 | 3eqtri 2757 | . . . 4 ⊢ (1Q +pQ 1Q) = 〈(1o +N 1o), 1o〉 |
| 19 | 11, 12, 18 | 3brtr4i 5140 | . . 3 ⊢ 1Q <pQ (1Q +pQ 1Q) |
| 20 | lterpq 10930 | . . 3 ⊢ (1Q <pQ (1Q +pQ 1Q) ↔ ([Q]‘1Q) <Q ([Q]‘(1Q +pQ 1Q))) | |
| 21 | 19, 20 | mpbi 230 | . 2 ⊢ ([Q]‘1Q) <Q ([Q]‘(1Q +pQ 1Q)) |
| 22 | 1nq 10888 | . . . 4 ⊢ 1Q ∈ Q | |
| 23 | nqerid 10893 | . . . 4 ⊢ (1Q ∈ Q → ([Q]‘1Q) = 1Q) | |
| 24 | 22, 23 | ax-mp 5 | . . 3 ⊢ ([Q]‘1Q) = 1Q |
| 25 | 24 | eqcomi 2739 | . 2 ⊢ 1Q = ([Q]‘1Q) |
| 26 | addpqnq 10898 | . . 3 ⊢ ((1Q ∈ Q ∧ 1Q ∈ Q) → (1Q +Q 1Q) = ([Q]‘(1Q +pQ 1Q))) | |
| 27 | 22, 22, 26 | mp2an 692 | . 2 ⊢ (1Q +Q 1Q) = ([Q]‘(1Q +pQ 1Q)) |
| 28 | 21, 25, 27 | 3brtr4i 5140 | 1 ⊢ 1Q <Q (1Q +Q 1Q) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 〈cop 4598 class class class wbr 5110 ‘cfv 6514 (class class class)co 7390 1oc1o 8430 Ncnpi 10804 +N cpli 10805 ·N cmi 10806 <N clti 10807 +pQ cplpq 10808 <pQ cltpq 10810 Qcnq 10812 1Qc1q 10813 [Q]cerq 10814 +Q cplq 10815 <Q cltq 10818 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-oadd 8441 df-omul 8442 df-er 8674 df-ni 10832 df-pli 10833 df-mi 10834 df-lti 10835 df-plpq 10868 df-ltpq 10870 df-enq 10871 df-nq 10872 df-erq 10873 df-plq 10874 df-1nq 10876 df-ltnq 10878 |
| This theorem is referenced by: ltaddnq 10934 |
| Copyright terms: Public domain | W3C validator |