MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  1lt2nq Structured version   Visualization version   GIF version

Theorem 1lt2nq 10987
Description: One is less than two (one plus one). (Contributed by NM, 13-Mar-1996.) (Revised by Mario Carneiro, 10-May-2013.) (New usage is discouraged.)
Assertion
Ref Expression
1lt2nq 1Q <Q (1Q +Q 1Q)

Proof of Theorem 1lt2nq
StepHypRef Expression
1 1lt2pi 10919 . . . . . 6 1o <N (1o +N 1o)
2 1pi 10897 . . . . . . 7 1oN
3 mulidpi 10900 . . . . . . 7 (1oN → (1o ·N 1o) = 1o)
42, 3ax-mp 5 . . . . . 6 (1o ·N 1o) = 1o
5 addclpi 10906 . . . . . . . 8 ((1oN ∧ 1oN) → (1o +N 1o) ∈ N)
62, 2, 5mp2an 692 . . . . . . 7 (1o +N 1o) ∈ N
7 mulidpi 10900 . . . . . . 7 ((1o +N 1o) ∈ N → ((1o +N 1o) ·N 1o) = (1o +N 1o))
86, 7ax-mp 5 . . . . . 6 ((1o +N 1o) ·N 1o) = (1o +N 1o)
91, 4, 83brtr4i 5149 . . . . 5 (1o ·N 1o) <N ((1o +N 1o) ·N 1o)
10 ordpipq 10956 . . . . 5 (⟨1o, 1o⟩ <pQ ⟨(1o +N 1o), 1o⟩ ↔ (1o ·N 1o) <N ((1o +N 1o) ·N 1o))
119, 10mpbir 231 . . . 4 ⟨1o, 1o⟩ <pQ ⟨(1o +N 1o), 1o
12 df-1nq 10930 . . . 4 1Q = ⟨1o, 1o
1312, 12oveq12i 7417 . . . . 5 (1Q +pQ 1Q) = (⟨1o, 1o⟩ +pQ ⟨1o, 1o⟩)
14 addpipq 10951 . . . . . 6 (((1oN ∧ 1oN) ∧ (1oN ∧ 1oN)) → (⟨1o, 1o⟩ +pQ ⟨1o, 1o⟩) = ⟨((1o ·N 1o) +N (1o ·N 1o)), (1o ·N 1o)⟩)
152, 2, 2, 2, 14mp4an 693 . . . . 5 (⟨1o, 1o⟩ +pQ ⟨1o, 1o⟩) = ⟨((1o ·N 1o) +N (1o ·N 1o)), (1o ·N 1o)⟩
164, 4oveq12i 7417 . . . . . 6 ((1o ·N 1o) +N (1o ·N 1o)) = (1o +N 1o)
1716, 4opeq12i 4854 . . . . 5 ⟨((1o ·N 1o) +N (1o ·N 1o)), (1o ·N 1o)⟩ = ⟨(1o +N 1o), 1o
1813, 15, 173eqtri 2762 . . . 4 (1Q +pQ 1Q) = ⟨(1o +N 1o), 1o
1911, 12, 183brtr4i 5149 . . 3 1Q <pQ (1Q +pQ 1Q)
20 lterpq 10984 . . 3 (1Q <pQ (1Q +pQ 1Q) ↔ ([Q]‘1Q) <Q ([Q]‘(1Q +pQ 1Q)))
2119, 20mpbi 230 . 2 ([Q]‘1Q) <Q ([Q]‘(1Q +pQ 1Q))
22 1nq 10942 . . . 4 1QQ
23 nqerid 10947 . . . 4 (1QQ → ([Q]‘1Q) = 1Q)
2422, 23ax-mp 5 . . 3 ([Q]‘1Q) = 1Q
2524eqcomi 2744 . 2 1Q = ([Q]‘1Q)
26 addpqnq 10952 . . 3 ((1QQ ∧ 1QQ) → (1Q +Q 1Q) = ([Q]‘(1Q +pQ 1Q)))
2722, 22, 26mp2an 692 . 2 (1Q +Q 1Q) = ([Q]‘(1Q +pQ 1Q))
2821, 25, 273brtr4i 5149 1 1Q <Q (1Q +Q 1Q)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wcel 2108  cop 4607   class class class wbr 5119  cfv 6531  (class class class)co 7405  1oc1o 8473  Ncnpi 10858   +N cpli 10859   ·N cmi 10860   <N clti 10861   +pQ cplpq 10862   <pQ cltpq 10864  Qcnq 10866  1Qc1q 10867  [Q]cerq 10868   +Q cplq 10869   <Q cltq 10872
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-oadd 8484  df-omul 8485  df-er 8719  df-ni 10886  df-pli 10887  df-mi 10888  df-lti 10889  df-plpq 10922  df-ltpq 10924  df-enq 10925  df-nq 10926  df-erq 10927  df-plq 10928  df-1nq 10930  df-ltnq 10932
This theorem is referenced by:  ltaddnq  10988
  Copyright terms: Public domain W3C validator