MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  konigsbergvtx Structured version   Visualization version   GIF version

Theorem konigsbergvtx 30095
Description: The set of vertices of the Kânigsberg graph 𝐺. (Contributed by AV, 28-Feb-2021.)
Hypotheses
Ref Expression
konigsberg.v 𝑉 = (0...3)
konigsberg.e 𝐸 = βŸ¨β€œ{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}β€βŸ©
konigsberg.g 𝐺 = βŸ¨π‘‰, 𝐸⟩
Assertion
Ref Expression
konigsbergvtx (Vtxβ€˜πΊ) = (0...3)

Proof of Theorem konigsbergvtx
StepHypRef Expression
1 konigsberg.g . . . 4 𝐺 = βŸ¨π‘‰, 𝐸⟩
2 konigsberg.v . . . . 5 𝑉 = (0...3)
3 konigsberg.e . . . . 5 𝐸 = βŸ¨β€œ{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}β€βŸ©
42, 3opeq12i 4875 . . . 4 βŸ¨π‘‰, 𝐸⟩ = ⟨(0...3), βŸ¨β€œ{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}β€βŸ©βŸ©
51, 4eqtri 2753 . . 3 𝐺 = ⟨(0...3), βŸ¨β€œ{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}β€βŸ©βŸ©
65fveq2i 6893 . 2 (Vtxβ€˜πΊ) = (Vtxβ€˜βŸ¨(0...3), βŸ¨β€œ{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}β€βŸ©βŸ©)
7 ovex 7446 . . 3 (0...3) ∈ V
8 s7cli 14863 . . 3 βŸ¨β€œ{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}β€βŸ© ∈ Word V
9 opvtxfv 28856 . . 3 (((0...3) ∈ V ∧ βŸ¨β€œ{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}β€βŸ© ∈ Word V) β†’ (Vtxβ€˜βŸ¨(0...3), βŸ¨β€œ{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}β€βŸ©βŸ©) = (0...3))
107, 8, 9mp2an 690 . 2 (Vtxβ€˜βŸ¨(0...3), βŸ¨β€œ{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}β€βŸ©βŸ©) = (0...3)
116, 10eqtri 2753 1 (Vtxβ€˜πΊ) = (0...3)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1533   ∈ wcel 2098  Vcvv 3463  {cpr 4627  βŸ¨cop 4631  β€˜cfv 6543  (class class class)co 7413  0cc0 11133  1c1 11134  2c2 12292  3c3 12293  ...cfz 13511  Word cword 14491  βŸ¨β€œcs7 14824  Vtxcvtx 28848
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5281  ax-sep 5295  ax-nul 5302  ax-pow 5360  ax-pr 5424  ax-un 7735  ax-cnex 11189  ax-resscn 11190  ax-1cn 11191  ax-icn 11192  ax-addcl 11193  ax-addrcl 11194  ax-mulcl 11195  ax-mulrcl 11196  ax-mulcom 11197  ax-addass 11198  ax-mulass 11199  ax-distr 11200  ax-i2m1 11201  ax-1ne0 11202  ax-1rid 11203  ax-rnegex 11204  ax-rrecex 11205  ax-cnre 11206  ax-pre-lttri 11207  ax-pre-lttrn 11208  ax-pre-ltadd 11209  ax-pre-mulgt0 11210
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3365  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3887  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-pss 3961  df-nul 4320  df-if 4526  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4905  df-int 4946  df-iun 4994  df-br 5145  df-opab 5207  df-mpt 5228  df-tr 5262  df-id 5571  df-eprel 5577  df-po 5585  df-so 5586  df-fr 5628  df-we 5630  df-xp 5679  df-rel 5680  df-cnv 5681  df-co 5682  df-dm 5683  df-rn 5684  df-res 5685  df-ima 5686  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7369  df-ov 7416  df-oprab 7417  df-mpo 7418  df-om 7866  df-1st 7987  df-2nd 7988  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-er 8718  df-en 8958  df-dom 8959  df-sdom 8960  df-fin 8961  df-card 9957  df-pnf 11275  df-mnf 11276  df-xr 11277  df-ltxr 11278  df-le 11279  df-sub 11471  df-neg 11472  df-nn 12238  df-n0 12498  df-z 12584  df-uz 12848  df-fz 13512  df-fzo 13655  df-hash 14317  df-word 14492  df-concat 14548  df-s1 14573  df-s2 14826  df-s3 14827  df-s4 14828  df-s5 14829  df-s6 14830  df-s7 14831  df-vtx 28850
This theorem is referenced by:  konigsbergumgr  30100  konigsberglem1  30101  konigsberglem2  30102  konigsberglem3  30103
  Copyright terms: Public domain W3C validator