MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  om2uzrdg Structured version   Visualization version   GIF version

Theorem om2uzrdg 13928
Description: A helper lemma for the value of a recursive definition generator on upper integers (typically either or 0) with characteristic function 𝐹(𝑥, 𝑦) and initial value 𝐴. Normally 𝐹 is a function on the partition, and 𝐴 is a member of the partition. See also comment in om2uz0i 13919. (Contributed by Mario Carneiro, 26-Jun-2013.) (Revised by Mario Carneiro, 18-Nov-2014.)
Hypotheses
Ref Expression
om2uz.1 𝐶 ∈ ℤ
om2uz.2 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐶) ↾ ω)
uzrdg.1 𝐴 ∈ V
uzrdg.2 𝑅 = (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩) ↾ ω)
Assertion
Ref Expression
om2uzrdg (𝐵 ∈ ω → (𝑅𝐵) = ⟨(𝐺𝐵), (2nd ‘(𝑅𝐵))⟩)
Distinct variable groups:   𝑦,𝐴   𝑥,𝑦,𝐶   𝑦,𝐺   𝑥,𝐹,𝑦
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥,𝑦)   𝑅(𝑥,𝑦)   𝐺(𝑥)

Proof of Theorem om2uzrdg
Dummy variables 𝑧 𝑤 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6861 . . 3 (𝑧 = ∅ → (𝑅𝑧) = (𝑅‘∅))
2 fveq2 6861 . . . 4 (𝑧 = ∅ → (𝐺𝑧) = (𝐺‘∅))
3 2fveq3 6866 . . . 4 (𝑧 = ∅ → (2nd ‘(𝑅𝑧)) = (2nd ‘(𝑅‘∅)))
42, 3opeq12d 4848 . . 3 (𝑧 = ∅ → ⟨(𝐺𝑧), (2nd ‘(𝑅𝑧))⟩ = ⟨(𝐺‘∅), (2nd ‘(𝑅‘∅))⟩)
51, 4eqeq12d 2746 . 2 (𝑧 = ∅ → ((𝑅𝑧) = ⟨(𝐺𝑧), (2nd ‘(𝑅𝑧))⟩ ↔ (𝑅‘∅) = ⟨(𝐺‘∅), (2nd ‘(𝑅‘∅))⟩))
6 fveq2 6861 . . 3 (𝑧 = 𝑣 → (𝑅𝑧) = (𝑅𝑣))
7 fveq2 6861 . . . 4 (𝑧 = 𝑣 → (𝐺𝑧) = (𝐺𝑣))
8 2fveq3 6866 . . . 4 (𝑧 = 𝑣 → (2nd ‘(𝑅𝑧)) = (2nd ‘(𝑅𝑣)))
97, 8opeq12d 4848 . . 3 (𝑧 = 𝑣 → ⟨(𝐺𝑧), (2nd ‘(𝑅𝑧))⟩ = ⟨(𝐺𝑣), (2nd ‘(𝑅𝑣))⟩)
106, 9eqeq12d 2746 . 2 (𝑧 = 𝑣 → ((𝑅𝑧) = ⟨(𝐺𝑧), (2nd ‘(𝑅𝑧))⟩ ↔ (𝑅𝑣) = ⟨(𝐺𝑣), (2nd ‘(𝑅𝑣))⟩))
11 fveq2 6861 . . 3 (𝑧 = suc 𝑣 → (𝑅𝑧) = (𝑅‘suc 𝑣))
12 fveq2 6861 . . . 4 (𝑧 = suc 𝑣 → (𝐺𝑧) = (𝐺‘suc 𝑣))
13 2fveq3 6866 . . . 4 (𝑧 = suc 𝑣 → (2nd ‘(𝑅𝑧)) = (2nd ‘(𝑅‘suc 𝑣)))
1412, 13opeq12d 4848 . . 3 (𝑧 = suc 𝑣 → ⟨(𝐺𝑧), (2nd ‘(𝑅𝑧))⟩ = ⟨(𝐺‘suc 𝑣), (2nd ‘(𝑅‘suc 𝑣))⟩)
1511, 14eqeq12d 2746 . 2 (𝑧 = suc 𝑣 → ((𝑅𝑧) = ⟨(𝐺𝑧), (2nd ‘(𝑅𝑧))⟩ ↔ (𝑅‘suc 𝑣) = ⟨(𝐺‘suc 𝑣), (2nd ‘(𝑅‘suc 𝑣))⟩))
16 fveq2 6861 . . 3 (𝑧 = 𝐵 → (𝑅𝑧) = (𝑅𝐵))
17 fveq2 6861 . . . 4 (𝑧 = 𝐵 → (𝐺𝑧) = (𝐺𝐵))
18 2fveq3 6866 . . . 4 (𝑧 = 𝐵 → (2nd ‘(𝑅𝑧)) = (2nd ‘(𝑅𝐵)))
1917, 18opeq12d 4848 . . 3 (𝑧 = 𝐵 → ⟨(𝐺𝑧), (2nd ‘(𝑅𝑧))⟩ = ⟨(𝐺𝐵), (2nd ‘(𝑅𝐵))⟩)
2016, 19eqeq12d 2746 . 2 (𝑧 = 𝐵 → ((𝑅𝑧) = ⟨(𝐺𝑧), (2nd ‘(𝑅𝑧))⟩ ↔ (𝑅𝐵) = ⟨(𝐺𝐵), (2nd ‘(𝑅𝐵))⟩))
21 uzrdg.2 . . . . 5 𝑅 = (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩) ↾ ω)
2221fveq1i 6862 . . . 4 (𝑅‘∅) = ((rec((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩) ↾ ω)‘∅)
23 opex 5427 . . . . 5 𝐶, 𝐴⟩ ∈ V
24 fr0g 8407 . . . . 5 (⟨𝐶, 𝐴⟩ ∈ V → ((rec((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩) ↾ ω)‘∅) = ⟨𝐶, 𝐴⟩)
2523, 24ax-mp 5 . . . 4 ((rec((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩) ↾ ω)‘∅) = ⟨𝐶, 𝐴
2622, 25eqtri 2753 . . 3 (𝑅‘∅) = ⟨𝐶, 𝐴
27 om2uz.1 . . . . 5 𝐶 ∈ ℤ
28 om2uz.2 . . . . 5 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐶) ↾ ω)
2927, 28om2uz0i 13919 . . . 4 (𝐺‘∅) = 𝐶
3026fveq2i 6864 . . . . 5 (2nd ‘(𝑅‘∅)) = (2nd ‘⟨𝐶, 𝐴⟩)
3127elexi 3473 . . . . . 6 𝐶 ∈ V
32 uzrdg.1 . . . . . 6 𝐴 ∈ V
3331, 32op2nd 7980 . . . . 5 (2nd ‘⟨𝐶, 𝐴⟩) = 𝐴
3430, 33eqtri 2753 . . . 4 (2nd ‘(𝑅‘∅)) = 𝐴
3529, 34opeq12i 4845 . . 3 ⟨(𝐺‘∅), (2nd ‘(𝑅‘∅))⟩ = ⟨𝐶, 𝐴
3626, 35eqtr4i 2756 . 2 (𝑅‘∅) = ⟨(𝐺‘∅), (2nd ‘(𝑅‘∅))⟩
37 frsuc 8408 . . . . . 6 (𝑣 ∈ ω → ((rec((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩) ↾ ω)‘suc 𝑣) = ((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩)‘((rec((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩) ↾ ω)‘𝑣)))
3821fveq1i 6862 . . . . . 6 (𝑅‘suc 𝑣) = ((rec((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩) ↾ ω)‘suc 𝑣)
3921fveq1i 6862 . . . . . . 7 (𝑅𝑣) = ((rec((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩) ↾ ω)‘𝑣)
4039fveq2i 6864 . . . . . 6 ((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩)‘(𝑅𝑣)) = ((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩)‘((rec((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩) ↾ ω)‘𝑣))
4137, 38, 403eqtr4g 2790 . . . . 5 (𝑣 ∈ ω → (𝑅‘suc 𝑣) = ((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩)‘(𝑅𝑣)))
42 fveq2 6861 . . . . . 6 ((𝑅𝑣) = ⟨(𝐺𝑣), (2nd ‘(𝑅𝑣))⟩ → ((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩)‘(𝑅𝑣)) = ((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩)‘⟨(𝐺𝑣), (2nd ‘(𝑅𝑣))⟩))
43 df-ov 7393 . . . . . . 7 ((𝐺𝑣)(𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩)(2nd ‘(𝑅𝑣))) = ((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩)‘⟨(𝐺𝑣), (2nd ‘(𝑅𝑣))⟩)
44 fvex 6874 . . . . . . . 8 (𝐺𝑣) ∈ V
45 fvex 6874 . . . . . . . 8 (2nd ‘(𝑅𝑣)) ∈ V
46 oveq1 7397 . . . . . . . . . 10 (𝑤 = (𝐺𝑣) → (𝑤 + 1) = ((𝐺𝑣) + 1))
47 oveq1 7397 . . . . . . . . . 10 (𝑤 = (𝐺𝑣) → (𝑤𝐹𝑧) = ((𝐺𝑣)𝐹𝑧))
4846, 47opeq12d 4848 . . . . . . . . 9 (𝑤 = (𝐺𝑣) → ⟨(𝑤 + 1), (𝑤𝐹𝑧)⟩ = ⟨((𝐺𝑣) + 1), ((𝐺𝑣)𝐹𝑧)⟩)
49 oveq2 7398 . . . . . . . . . 10 (𝑧 = (2nd ‘(𝑅𝑣)) → ((𝐺𝑣)𝐹𝑧) = ((𝐺𝑣)𝐹(2nd ‘(𝑅𝑣))))
5049opeq2d 4847 . . . . . . . . 9 (𝑧 = (2nd ‘(𝑅𝑣)) → ⟨((𝐺𝑣) + 1), ((𝐺𝑣)𝐹𝑧)⟩ = ⟨((𝐺𝑣) + 1), ((𝐺𝑣)𝐹(2nd ‘(𝑅𝑣)))⟩)
51 oveq1 7397 . . . . . . . . . . 11 (𝑥 = 𝑤 → (𝑥 + 1) = (𝑤 + 1))
52 oveq1 7397 . . . . . . . . . . 11 (𝑥 = 𝑤 → (𝑥𝐹𝑦) = (𝑤𝐹𝑦))
5351, 52opeq12d 4848 . . . . . . . . . 10 (𝑥 = 𝑤 → ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩ = ⟨(𝑤 + 1), (𝑤𝐹𝑦)⟩)
54 oveq2 7398 . . . . . . . . . . 11 (𝑦 = 𝑧 → (𝑤𝐹𝑦) = (𝑤𝐹𝑧))
5554opeq2d 4847 . . . . . . . . . 10 (𝑦 = 𝑧 → ⟨(𝑤 + 1), (𝑤𝐹𝑦)⟩ = ⟨(𝑤 + 1), (𝑤𝐹𝑧)⟩)
5653, 55cbvmpov 7487 . . . . . . . . 9 (𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩) = (𝑤 ∈ V, 𝑧 ∈ V ↦ ⟨(𝑤 + 1), (𝑤𝐹𝑧)⟩)
57 opex 5427 . . . . . . . . 9 ⟨((𝐺𝑣) + 1), ((𝐺𝑣)𝐹(2nd ‘(𝑅𝑣)))⟩ ∈ V
5848, 50, 56, 57ovmpo 7552 . . . . . . . 8 (((𝐺𝑣) ∈ V ∧ (2nd ‘(𝑅𝑣)) ∈ V) → ((𝐺𝑣)(𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩)(2nd ‘(𝑅𝑣))) = ⟨((𝐺𝑣) + 1), ((𝐺𝑣)𝐹(2nd ‘(𝑅𝑣)))⟩)
5944, 45, 58mp2an 692 . . . . . . 7 ((𝐺𝑣)(𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩)(2nd ‘(𝑅𝑣))) = ⟨((𝐺𝑣) + 1), ((𝐺𝑣)𝐹(2nd ‘(𝑅𝑣)))⟩
6043, 59eqtr3i 2755 . . . . . 6 ((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩)‘⟨(𝐺𝑣), (2nd ‘(𝑅𝑣))⟩) = ⟨((𝐺𝑣) + 1), ((𝐺𝑣)𝐹(2nd ‘(𝑅𝑣)))⟩
6142, 60eqtrdi 2781 . . . . 5 ((𝑅𝑣) = ⟨(𝐺𝑣), (2nd ‘(𝑅𝑣))⟩ → ((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩)‘(𝑅𝑣)) = ⟨((𝐺𝑣) + 1), ((𝐺𝑣)𝐹(2nd ‘(𝑅𝑣)))⟩)
6241, 61sylan9eq 2785 . . . 4 ((𝑣 ∈ ω ∧ (𝑅𝑣) = ⟨(𝐺𝑣), (2nd ‘(𝑅𝑣))⟩) → (𝑅‘suc 𝑣) = ⟨((𝐺𝑣) + 1), ((𝐺𝑣)𝐹(2nd ‘(𝑅𝑣)))⟩)
6327, 28om2uzsuci 13920 . . . . . 6 (𝑣 ∈ ω → (𝐺‘suc 𝑣) = ((𝐺𝑣) + 1))
6463adantr 480 . . . . 5 ((𝑣 ∈ ω ∧ (𝑅𝑣) = ⟨(𝐺𝑣), (2nd ‘(𝑅𝑣))⟩) → (𝐺‘suc 𝑣) = ((𝐺𝑣) + 1))
6562fveq2d 6865 . . . . . 6 ((𝑣 ∈ ω ∧ (𝑅𝑣) = ⟨(𝐺𝑣), (2nd ‘(𝑅𝑣))⟩) → (2nd ‘(𝑅‘suc 𝑣)) = (2nd ‘⟨((𝐺𝑣) + 1), ((𝐺𝑣)𝐹(2nd ‘(𝑅𝑣)))⟩))
66 ovex 7423 . . . . . . 7 ((𝐺𝑣) + 1) ∈ V
67 ovex 7423 . . . . . . 7 ((𝐺𝑣)𝐹(2nd ‘(𝑅𝑣))) ∈ V
6866, 67op2nd 7980 . . . . . 6 (2nd ‘⟨((𝐺𝑣) + 1), ((𝐺𝑣)𝐹(2nd ‘(𝑅𝑣)))⟩) = ((𝐺𝑣)𝐹(2nd ‘(𝑅𝑣)))
6965, 68eqtrdi 2781 . . . . 5 ((𝑣 ∈ ω ∧ (𝑅𝑣) = ⟨(𝐺𝑣), (2nd ‘(𝑅𝑣))⟩) → (2nd ‘(𝑅‘suc 𝑣)) = ((𝐺𝑣)𝐹(2nd ‘(𝑅𝑣))))
7064, 69opeq12d 4848 . . . 4 ((𝑣 ∈ ω ∧ (𝑅𝑣) = ⟨(𝐺𝑣), (2nd ‘(𝑅𝑣))⟩) → ⟨(𝐺‘suc 𝑣), (2nd ‘(𝑅‘suc 𝑣))⟩ = ⟨((𝐺𝑣) + 1), ((𝐺𝑣)𝐹(2nd ‘(𝑅𝑣)))⟩)
7162, 70eqtr4d 2768 . . 3 ((𝑣 ∈ ω ∧ (𝑅𝑣) = ⟨(𝐺𝑣), (2nd ‘(𝑅𝑣))⟩) → (𝑅‘suc 𝑣) = ⟨(𝐺‘suc 𝑣), (2nd ‘(𝑅‘suc 𝑣))⟩)
7271ex 412 . 2 (𝑣 ∈ ω → ((𝑅𝑣) = ⟨(𝐺𝑣), (2nd ‘(𝑅𝑣))⟩ → (𝑅‘suc 𝑣) = ⟨(𝐺‘suc 𝑣), (2nd ‘(𝑅‘suc 𝑣))⟩))
735, 10, 15, 20, 36, 72finds 7875 1 (𝐵 ∈ ω → (𝑅𝐵) = ⟨(𝐺𝐵), (2nd ‘(𝑅𝐵))⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  Vcvv 3450  c0 4299  cop 4598  cmpt 5191  cres 5643  suc csuc 6337  cfv 6514  (class class class)co 7390  cmpo 7392  ωcom 7845  2nd c2nd 7970  reccrdg 8380  1c1 11076   + caddc 11078  cz 12536
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381
This theorem is referenced by:  uzrdglem  13929  uzrdgfni  13930  uzrdgsuci  13932
  Copyright terms: Public domain W3C validator