MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  om2uzrdg Structured version   Visualization version   GIF version

Theorem om2uzrdg 13604
Description: A helper lemma for the value of a recursive definition generator on upper integers (typically either or 0) with characteristic function 𝐹(𝑥, 𝑦) and initial value 𝐴. Normally 𝐹 is a function on the partition, and 𝐴 is a member of the partition. See also comment in om2uz0i 13595. (Contributed by Mario Carneiro, 26-Jun-2013.) (Revised by Mario Carneiro, 18-Nov-2014.)
Hypotheses
Ref Expression
om2uz.1 𝐶 ∈ ℤ
om2uz.2 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐶) ↾ ω)
uzrdg.1 𝐴 ∈ V
uzrdg.2 𝑅 = (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩) ↾ ω)
Assertion
Ref Expression
om2uzrdg (𝐵 ∈ ω → (𝑅𝐵) = ⟨(𝐺𝐵), (2nd ‘(𝑅𝐵))⟩)
Distinct variable groups:   𝑦,𝐴   𝑥,𝑦,𝐶   𝑦,𝐺   𝑥,𝐹,𝑦
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥,𝑦)   𝑅(𝑥,𝑦)   𝐺(𝑥)

Proof of Theorem om2uzrdg
Dummy variables 𝑧 𝑤 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6756 . . 3 (𝑧 = ∅ → (𝑅𝑧) = (𝑅‘∅))
2 fveq2 6756 . . . 4 (𝑧 = ∅ → (𝐺𝑧) = (𝐺‘∅))
3 2fveq3 6761 . . . 4 (𝑧 = ∅ → (2nd ‘(𝑅𝑧)) = (2nd ‘(𝑅‘∅)))
42, 3opeq12d 4809 . . 3 (𝑧 = ∅ → ⟨(𝐺𝑧), (2nd ‘(𝑅𝑧))⟩ = ⟨(𝐺‘∅), (2nd ‘(𝑅‘∅))⟩)
51, 4eqeq12d 2754 . 2 (𝑧 = ∅ → ((𝑅𝑧) = ⟨(𝐺𝑧), (2nd ‘(𝑅𝑧))⟩ ↔ (𝑅‘∅) = ⟨(𝐺‘∅), (2nd ‘(𝑅‘∅))⟩))
6 fveq2 6756 . . 3 (𝑧 = 𝑣 → (𝑅𝑧) = (𝑅𝑣))
7 fveq2 6756 . . . 4 (𝑧 = 𝑣 → (𝐺𝑧) = (𝐺𝑣))
8 2fveq3 6761 . . . 4 (𝑧 = 𝑣 → (2nd ‘(𝑅𝑧)) = (2nd ‘(𝑅𝑣)))
97, 8opeq12d 4809 . . 3 (𝑧 = 𝑣 → ⟨(𝐺𝑧), (2nd ‘(𝑅𝑧))⟩ = ⟨(𝐺𝑣), (2nd ‘(𝑅𝑣))⟩)
106, 9eqeq12d 2754 . 2 (𝑧 = 𝑣 → ((𝑅𝑧) = ⟨(𝐺𝑧), (2nd ‘(𝑅𝑧))⟩ ↔ (𝑅𝑣) = ⟨(𝐺𝑣), (2nd ‘(𝑅𝑣))⟩))
11 fveq2 6756 . . 3 (𝑧 = suc 𝑣 → (𝑅𝑧) = (𝑅‘suc 𝑣))
12 fveq2 6756 . . . 4 (𝑧 = suc 𝑣 → (𝐺𝑧) = (𝐺‘suc 𝑣))
13 2fveq3 6761 . . . 4 (𝑧 = suc 𝑣 → (2nd ‘(𝑅𝑧)) = (2nd ‘(𝑅‘suc 𝑣)))
1412, 13opeq12d 4809 . . 3 (𝑧 = suc 𝑣 → ⟨(𝐺𝑧), (2nd ‘(𝑅𝑧))⟩ = ⟨(𝐺‘suc 𝑣), (2nd ‘(𝑅‘suc 𝑣))⟩)
1511, 14eqeq12d 2754 . 2 (𝑧 = suc 𝑣 → ((𝑅𝑧) = ⟨(𝐺𝑧), (2nd ‘(𝑅𝑧))⟩ ↔ (𝑅‘suc 𝑣) = ⟨(𝐺‘suc 𝑣), (2nd ‘(𝑅‘suc 𝑣))⟩))
16 fveq2 6756 . . 3 (𝑧 = 𝐵 → (𝑅𝑧) = (𝑅𝐵))
17 fveq2 6756 . . . 4 (𝑧 = 𝐵 → (𝐺𝑧) = (𝐺𝐵))
18 2fveq3 6761 . . . 4 (𝑧 = 𝐵 → (2nd ‘(𝑅𝑧)) = (2nd ‘(𝑅𝐵)))
1917, 18opeq12d 4809 . . 3 (𝑧 = 𝐵 → ⟨(𝐺𝑧), (2nd ‘(𝑅𝑧))⟩ = ⟨(𝐺𝐵), (2nd ‘(𝑅𝐵))⟩)
2016, 19eqeq12d 2754 . 2 (𝑧 = 𝐵 → ((𝑅𝑧) = ⟨(𝐺𝑧), (2nd ‘(𝑅𝑧))⟩ ↔ (𝑅𝐵) = ⟨(𝐺𝐵), (2nd ‘(𝑅𝐵))⟩))
21 uzrdg.2 . . . . 5 𝑅 = (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩) ↾ ω)
2221fveq1i 6757 . . . 4 (𝑅‘∅) = ((rec((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩) ↾ ω)‘∅)
23 opex 5373 . . . . 5 𝐶, 𝐴⟩ ∈ V
24 fr0g 8237 . . . . 5 (⟨𝐶, 𝐴⟩ ∈ V → ((rec((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩) ↾ ω)‘∅) = ⟨𝐶, 𝐴⟩)
2523, 24ax-mp 5 . . . 4 ((rec((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩) ↾ ω)‘∅) = ⟨𝐶, 𝐴
2622, 25eqtri 2766 . . 3 (𝑅‘∅) = ⟨𝐶, 𝐴
27 om2uz.1 . . . . 5 𝐶 ∈ ℤ
28 om2uz.2 . . . . 5 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐶) ↾ ω)
2927, 28om2uz0i 13595 . . . 4 (𝐺‘∅) = 𝐶
3026fveq2i 6759 . . . . 5 (2nd ‘(𝑅‘∅)) = (2nd ‘⟨𝐶, 𝐴⟩)
3127elexi 3441 . . . . . 6 𝐶 ∈ V
32 uzrdg.1 . . . . . 6 𝐴 ∈ V
3331, 32op2nd 7813 . . . . 5 (2nd ‘⟨𝐶, 𝐴⟩) = 𝐴
3430, 33eqtri 2766 . . . 4 (2nd ‘(𝑅‘∅)) = 𝐴
3529, 34opeq12i 4806 . . 3 ⟨(𝐺‘∅), (2nd ‘(𝑅‘∅))⟩ = ⟨𝐶, 𝐴
3626, 35eqtr4i 2769 . 2 (𝑅‘∅) = ⟨(𝐺‘∅), (2nd ‘(𝑅‘∅))⟩
37 frsuc 8238 . . . . . 6 (𝑣 ∈ ω → ((rec((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩) ↾ ω)‘suc 𝑣) = ((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩)‘((rec((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩) ↾ ω)‘𝑣)))
3821fveq1i 6757 . . . . . 6 (𝑅‘suc 𝑣) = ((rec((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩) ↾ ω)‘suc 𝑣)
3921fveq1i 6757 . . . . . . 7 (𝑅𝑣) = ((rec((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩) ↾ ω)‘𝑣)
4039fveq2i 6759 . . . . . 6 ((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩)‘(𝑅𝑣)) = ((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩)‘((rec((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩) ↾ ω)‘𝑣))
4137, 38, 403eqtr4g 2804 . . . . 5 (𝑣 ∈ ω → (𝑅‘suc 𝑣) = ((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩)‘(𝑅𝑣)))
42 fveq2 6756 . . . . . 6 ((𝑅𝑣) = ⟨(𝐺𝑣), (2nd ‘(𝑅𝑣))⟩ → ((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩)‘(𝑅𝑣)) = ((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩)‘⟨(𝐺𝑣), (2nd ‘(𝑅𝑣))⟩))
43 df-ov 7258 . . . . . . 7 ((𝐺𝑣)(𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩)(2nd ‘(𝑅𝑣))) = ((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩)‘⟨(𝐺𝑣), (2nd ‘(𝑅𝑣))⟩)
44 fvex 6769 . . . . . . . 8 (𝐺𝑣) ∈ V
45 fvex 6769 . . . . . . . 8 (2nd ‘(𝑅𝑣)) ∈ V
46 oveq1 7262 . . . . . . . . . 10 (𝑤 = (𝐺𝑣) → (𝑤 + 1) = ((𝐺𝑣) + 1))
47 oveq1 7262 . . . . . . . . . 10 (𝑤 = (𝐺𝑣) → (𝑤𝐹𝑧) = ((𝐺𝑣)𝐹𝑧))
4846, 47opeq12d 4809 . . . . . . . . 9 (𝑤 = (𝐺𝑣) → ⟨(𝑤 + 1), (𝑤𝐹𝑧)⟩ = ⟨((𝐺𝑣) + 1), ((𝐺𝑣)𝐹𝑧)⟩)
49 oveq2 7263 . . . . . . . . . 10 (𝑧 = (2nd ‘(𝑅𝑣)) → ((𝐺𝑣)𝐹𝑧) = ((𝐺𝑣)𝐹(2nd ‘(𝑅𝑣))))
5049opeq2d 4808 . . . . . . . . 9 (𝑧 = (2nd ‘(𝑅𝑣)) → ⟨((𝐺𝑣) + 1), ((𝐺𝑣)𝐹𝑧)⟩ = ⟨((𝐺𝑣) + 1), ((𝐺𝑣)𝐹(2nd ‘(𝑅𝑣)))⟩)
51 oveq1 7262 . . . . . . . . . . 11 (𝑥 = 𝑤 → (𝑥 + 1) = (𝑤 + 1))
52 oveq1 7262 . . . . . . . . . . 11 (𝑥 = 𝑤 → (𝑥𝐹𝑦) = (𝑤𝐹𝑦))
5351, 52opeq12d 4809 . . . . . . . . . 10 (𝑥 = 𝑤 → ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩ = ⟨(𝑤 + 1), (𝑤𝐹𝑦)⟩)
54 oveq2 7263 . . . . . . . . . . 11 (𝑦 = 𝑧 → (𝑤𝐹𝑦) = (𝑤𝐹𝑧))
5554opeq2d 4808 . . . . . . . . . 10 (𝑦 = 𝑧 → ⟨(𝑤 + 1), (𝑤𝐹𝑦)⟩ = ⟨(𝑤 + 1), (𝑤𝐹𝑧)⟩)
5653, 55cbvmpov 7348 . . . . . . . . 9 (𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩) = (𝑤 ∈ V, 𝑧 ∈ V ↦ ⟨(𝑤 + 1), (𝑤𝐹𝑧)⟩)
57 opex 5373 . . . . . . . . 9 ⟨((𝐺𝑣) + 1), ((𝐺𝑣)𝐹(2nd ‘(𝑅𝑣)))⟩ ∈ V
5848, 50, 56, 57ovmpo 7411 . . . . . . . 8 (((𝐺𝑣) ∈ V ∧ (2nd ‘(𝑅𝑣)) ∈ V) → ((𝐺𝑣)(𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩)(2nd ‘(𝑅𝑣))) = ⟨((𝐺𝑣) + 1), ((𝐺𝑣)𝐹(2nd ‘(𝑅𝑣)))⟩)
5944, 45, 58mp2an 688 . . . . . . 7 ((𝐺𝑣)(𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩)(2nd ‘(𝑅𝑣))) = ⟨((𝐺𝑣) + 1), ((𝐺𝑣)𝐹(2nd ‘(𝑅𝑣)))⟩
6043, 59eqtr3i 2768 . . . . . 6 ((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩)‘⟨(𝐺𝑣), (2nd ‘(𝑅𝑣))⟩) = ⟨((𝐺𝑣) + 1), ((𝐺𝑣)𝐹(2nd ‘(𝑅𝑣)))⟩
6142, 60eqtrdi 2795 . . . . 5 ((𝑅𝑣) = ⟨(𝐺𝑣), (2nd ‘(𝑅𝑣))⟩ → ((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩)‘(𝑅𝑣)) = ⟨((𝐺𝑣) + 1), ((𝐺𝑣)𝐹(2nd ‘(𝑅𝑣)))⟩)
6241, 61sylan9eq 2799 . . . 4 ((𝑣 ∈ ω ∧ (𝑅𝑣) = ⟨(𝐺𝑣), (2nd ‘(𝑅𝑣))⟩) → (𝑅‘suc 𝑣) = ⟨((𝐺𝑣) + 1), ((𝐺𝑣)𝐹(2nd ‘(𝑅𝑣)))⟩)
6327, 28om2uzsuci 13596 . . . . . 6 (𝑣 ∈ ω → (𝐺‘suc 𝑣) = ((𝐺𝑣) + 1))
6463adantr 480 . . . . 5 ((𝑣 ∈ ω ∧ (𝑅𝑣) = ⟨(𝐺𝑣), (2nd ‘(𝑅𝑣))⟩) → (𝐺‘suc 𝑣) = ((𝐺𝑣) + 1))
6562fveq2d 6760 . . . . . 6 ((𝑣 ∈ ω ∧ (𝑅𝑣) = ⟨(𝐺𝑣), (2nd ‘(𝑅𝑣))⟩) → (2nd ‘(𝑅‘suc 𝑣)) = (2nd ‘⟨((𝐺𝑣) + 1), ((𝐺𝑣)𝐹(2nd ‘(𝑅𝑣)))⟩))
66 ovex 7288 . . . . . . 7 ((𝐺𝑣) + 1) ∈ V
67 ovex 7288 . . . . . . 7 ((𝐺𝑣)𝐹(2nd ‘(𝑅𝑣))) ∈ V
6866, 67op2nd 7813 . . . . . 6 (2nd ‘⟨((𝐺𝑣) + 1), ((𝐺𝑣)𝐹(2nd ‘(𝑅𝑣)))⟩) = ((𝐺𝑣)𝐹(2nd ‘(𝑅𝑣)))
6965, 68eqtrdi 2795 . . . . 5 ((𝑣 ∈ ω ∧ (𝑅𝑣) = ⟨(𝐺𝑣), (2nd ‘(𝑅𝑣))⟩) → (2nd ‘(𝑅‘suc 𝑣)) = ((𝐺𝑣)𝐹(2nd ‘(𝑅𝑣))))
7064, 69opeq12d 4809 . . . 4 ((𝑣 ∈ ω ∧ (𝑅𝑣) = ⟨(𝐺𝑣), (2nd ‘(𝑅𝑣))⟩) → ⟨(𝐺‘suc 𝑣), (2nd ‘(𝑅‘suc 𝑣))⟩ = ⟨((𝐺𝑣) + 1), ((𝐺𝑣)𝐹(2nd ‘(𝑅𝑣)))⟩)
7162, 70eqtr4d 2781 . . 3 ((𝑣 ∈ ω ∧ (𝑅𝑣) = ⟨(𝐺𝑣), (2nd ‘(𝑅𝑣))⟩) → (𝑅‘suc 𝑣) = ⟨(𝐺‘suc 𝑣), (2nd ‘(𝑅‘suc 𝑣))⟩)
7271ex 412 . 2 (𝑣 ∈ ω → ((𝑅𝑣) = ⟨(𝐺𝑣), (2nd ‘(𝑅𝑣))⟩ → (𝑅‘suc 𝑣) = ⟨(𝐺‘suc 𝑣), (2nd ‘(𝑅‘suc 𝑣))⟩))
735, 10, 15, 20, 36, 72finds 7719 1 (𝐵 ∈ ω → (𝑅𝐵) = ⟨(𝐺𝐵), (2nd ‘(𝑅𝐵))⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  Vcvv 3422  c0 4253  cop 4564  cmpt 5153  cres 5582  suc csuc 6253  cfv 6418  (class class class)co 7255  cmpo 7257  ωcom 7687  2nd c2nd 7803  reccrdg 8211  1c1 10803   + caddc 10805  cz 12249
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212
This theorem is referenced by:  uzrdglem  13605  uzrdgfni  13606  uzrdgsuci  13608
  Copyright terms: Public domain W3C validator