MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  om2uzrdg Structured version   Visualization version   GIF version

Theorem om2uzrdg 13923
Description: A helper lemma for the value of a recursive definition generator on upper integers (typically either or 0) with characteristic function 𝐹(𝑥, 𝑦) and initial value 𝐴. Normally 𝐹 is a function on the partition, and 𝐴 is a member of the partition. See also comment in om2uz0i 13914. (Contributed by Mario Carneiro, 26-Jun-2013.) (Revised by Mario Carneiro, 18-Nov-2014.)
Hypotheses
Ref Expression
om2uz.1 𝐶 ∈ ℤ
om2uz.2 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐶) ↾ ω)
uzrdg.1 𝐴 ∈ V
uzrdg.2 𝑅 = (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩) ↾ ω)
Assertion
Ref Expression
om2uzrdg (𝐵 ∈ ω → (𝑅𝐵) = ⟨(𝐺𝐵), (2nd ‘(𝑅𝐵))⟩)
Distinct variable groups:   𝑦,𝐴   𝑥,𝑦,𝐶   𝑦,𝐺   𝑥,𝐹,𝑦
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥,𝑦)   𝑅(𝑥,𝑦)   𝐺(𝑥)

Proof of Theorem om2uzrdg
Dummy variables 𝑧 𝑤 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6891 . . 3 (𝑧 = ∅ → (𝑅𝑧) = (𝑅‘∅))
2 fveq2 6891 . . . 4 (𝑧 = ∅ → (𝐺𝑧) = (𝐺‘∅))
3 2fveq3 6896 . . . 4 (𝑧 = ∅ → (2nd ‘(𝑅𝑧)) = (2nd ‘(𝑅‘∅)))
42, 3opeq12d 4881 . . 3 (𝑧 = ∅ → ⟨(𝐺𝑧), (2nd ‘(𝑅𝑧))⟩ = ⟨(𝐺‘∅), (2nd ‘(𝑅‘∅))⟩)
51, 4eqeq12d 2748 . 2 (𝑧 = ∅ → ((𝑅𝑧) = ⟨(𝐺𝑧), (2nd ‘(𝑅𝑧))⟩ ↔ (𝑅‘∅) = ⟨(𝐺‘∅), (2nd ‘(𝑅‘∅))⟩))
6 fveq2 6891 . . 3 (𝑧 = 𝑣 → (𝑅𝑧) = (𝑅𝑣))
7 fveq2 6891 . . . 4 (𝑧 = 𝑣 → (𝐺𝑧) = (𝐺𝑣))
8 2fveq3 6896 . . . 4 (𝑧 = 𝑣 → (2nd ‘(𝑅𝑧)) = (2nd ‘(𝑅𝑣)))
97, 8opeq12d 4881 . . 3 (𝑧 = 𝑣 → ⟨(𝐺𝑧), (2nd ‘(𝑅𝑧))⟩ = ⟨(𝐺𝑣), (2nd ‘(𝑅𝑣))⟩)
106, 9eqeq12d 2748 . 2 (𝑧 = 𝑣 → ((𝑅𝑧) = ⟨(𝐺𝑧), (2nd ‘(𝑅𝑧))⟩ ↔ (𝑅𝑣) = ⟨(𝐺𝑣), (2nd ‘(𝑅𝑣))⟩))
11 fveq2 6891 . . 3 (𝑧 = suc 𝑣 → (𝑅𝑧) = (𝑅‘suc 𝑣))
12 fveq2 6891 . . . 4 (𝑧 = suc 𝑣 → (𝐺𝑧) = (𝐺‘suc 𝑣))
13 2fveq3 6896 . . . 4 (𝑧 = suc 𝑣 → (2nd ‘(𝑅𝑧)) = (2nd ‘(𝑅‘suc 𝑣)))
1412, 13opeq12d 4881 . . 3 (𝑧 = suc 𝑣 → ⟨(𝐺𝑧), (2nd ‘(𝑅𝑧))⟩ = ⟨(𝐺‘suc 𝑣), (2nd ‘(𝑅‘suc 𝑣))⟩)
1511, 14eqeq12d 2748 . 2 (𝑧 = suc 𝑣 → ((𝑅𝑧) = ⟨(𝐺𝑧), (2nd ‘(𝑅𝑧))⟩ ↔ (𝑅‘suc 𝑣) = ⟨(𝐺‘suc 𝑣), (2nd ‘(𝑅‘suc 𝑣))⟩))
16 fveq2 6891 . . 3 (𝑧 = 𝐵 → (𝑅𝑧) = (𝑅𝐵))
17 fveq2 6891 . . . 4 (𝑧 = 𝐵 → (𝐺𝑧) = (𝐺𝐵))
18 2fveq3 6896 . . . 4 (𝑧 = 𝐵 → (2nd ‘(𝑅𝑧)) = (2nd ‘(𝑅𝐵)))
1917, 18opeq12d 4881 . . 3 (𝑧 = 𝐵 → ⟨(𝐺𝑧), (2nd ‘(𝑅𝑧))⟩ = ⟨(𝐺𝐵), (2nd ‘(𝑅𝐵))⟩)
2016, 19eqeq12d 2748 . 2 (𝑧 = 𝐵 → ((𝑅𝑧) = ⟨(𝐺𝑧), (2nd ‘(𝑅𝑧))⟩ ↔ (𝑅𝐵) = ⟨(𝐺𝐵), (2nd ‘(𝑅𝐵))⟩))
21 uzrdg.2 . . . . 5 𝑅 = (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩) ↾ ω)
2221fveq1i 6892 . . . 4 (𝑅‘∅) = ((rec((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩) ↾ ω)‘∅)
23 opex 5464 . . . . 5 𝐶, 𝐴⟩ ∈ V
24 fr0g 8438 . . . . 5 (⟨𝐶, 𝐴⟩ ∈ V → ((rec((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩) ↾ ω)‘∅) = ⟨𝐶, 𝐴⟩)
2523, 24ax-mp 5 . . . 4 ((rec((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩) ↾ ω)‘∅) = ⟨𝐶, 𝐴
2622, 25eqtri 2760 . . 3 (𝑅‘∅) = ⟨𝐶, 𝐴
27 om2uz.1 . . . . 5 𝐶 ∈ ℤ
28 om2uz.2 . . . . 5 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐶) ↾ ω)
2927, 28om2uz0i 13914 . . . 4 (𝐺‘∅) = 𝐶
3026fveq2i 6894 . . . . 5 (2nd ‘(𝑅‘∅)) = (2nd ‘⟨𝐶, 𝐴⟩)
3127elexi 3493 . . . . . 6 𝐶 ∈ V
32 uzrdg.1 . . . . . 6 𝐴 ∈ V
3331, 32op2nd 7986 . . . . 5 (2nd ‘⟨𝐶, 𝐴⟩) = 𝐴
3430, 33eqtri 2760 . . . 4 (2nd ‘(𝑅‘∅)) = 𝐴
3529, 34opeq12i 4878 . . 3 ⟨(𝐺‘∅), (2nd ‘(𝑅‘∅))⟩ = ⟨𝐶, 𝐴
3626, 35eqtr4i 2763 . 2 (𝑅‘∅) = ⟨(𝐺‘∅), (2nd ‘(𝑅‘∅))⟩
37 frsuc 8439 . . . . . 6 (𝑣 ∈ ω → ((rec((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩) ↾ ω)‘suc 𝑣) = ((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩)‘((rec((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩) ↾ ω)‘𝑣)))
3821fveq1i 6892 . . . . . 6 (𝑅‘suc 𝑣) = ((rec((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩) ↾ ω)‘suc 𝑣)
3921fveq1i 6892 . . . . . . 7 (𝑅𝑣) = ((rec((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩) ↾ ω)‘𝑣)
4039fveq2i 6894 . . . . . 6 ((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩)‘(𝑅𝑣)) = ((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩)‘((rec((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩) ↾ ω)‘𝑣))
4137, 38, 403eqtr4g 2797 . . . . 5 (𝑣 ∈ ω → (𝑅‘suc 𝑣) = ((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩)‘(𝑅𝑣)))
42 fveq2 6891 . . . . . 6 ((𝑅𝑣) = ⟨(𝐺𝑣), (2nd ‘(𝑅𝑣))⟩ → ((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩)‘(𝑅𝑣)) = ((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩)‘⟨(𝐺𝑣), (2nd ‘(𝑅𝑣))⟩))
43 df-ov 7414 . . . . . . 7 ((𝐺𝑣)(𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩)(2nd ‘(𝑅𝑣))) = ((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩)‘⟨(𝐺𝑣), (2nd ‘(𝑅𝑣))⟩)
44 fvex 6904 . . . . . . . 8 (𝐺𝑣) ∈ V
45 fvex 6904 . . . . . . . 8 (2nd ‘(𝑅𝑣)) ∈ V
46 oveq1 7418 . . . . . . . . . 10 (𝑤 = (𝐺𝑣) → (𝑤 + 1) = ((𝐺𝑣) + 1))
47 oveq1 7418 . . . . . . . . . 10 (𝑤 = (𝐺𝑣) → (𝑤𝐹𝑧) = ((𝐺𝑣)𝐹𝑧))
4846, 47opeq12d 4881 . . . . . . . . 9 (𝑤 = (𝐺𝑣) → ⟨(𝑤 + 1), (𝑤𝐹𝑧)⟩ = ⟨((𝐺𝑣) + 1), ((𝐺𝑣)𝐹𝑧)⟩)
49 oveq2 7419 . . . . . . . . . 10 (𝑧 = (2nd ‘(𝑅𝑣)) → ((𝐺𝑣)𝐹𝑧) = ((𝐺𝑣)𝐹(2nd ‘(𝑅𝑣))))
5049opeq2d 4880 . . . . . . . . 9 (𝑧 = (2nd ‘(𝑅𝑣)) → ⟨((𝐺𝑣) + 1), ((𝐺𝑣)𝐹𝑧)⟩ = ⟨((𝐺𝑣) + 1), ((𝐺𝑣)𝐹(2nd ‘(𝑅𝑣)))⟩)
51 oveq1 7418 . . . . . . . . . . 11 (𝑥 = 𝑤 → (𝑥 + 1) = (𝑤 + 1))
52 oveq1 7418 . . . . . . . . . . 11 (𝑥 = 𝑤 → (𝑥𝐹𝑦) = (𝑤𝐹𝑦))
5351, 52opeq12d 4881 . . . . . . . . . 10 (𝑥 = 𝑤 → ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩ = ⟨(𝑤 + 1), (𝑤𝐹𝑦)⟩)
54 oveq2 7419 . . . . . . . . . . 11 (𝑦 = 𝑧 → (𝑤𝐹𝑦) = (𝑤𝐹𝑧))
5554opeq2d 4880 . . . . . . . . . 10 (𝑦 = 𝑧 → ⟨(𝑤 + 1), (𝑤𝐹𝑦)⟩ = ⟨(𝑤 + 1), (𝑤𝐹𝑧)⟩)
5653, 55cbvmpov 7506 . . . . . . . . 9 (𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩) = (𝑤 ∈ V, 𝑧 ∈ V ↦ ⟨(𝑤 + 1), (𝑤𝐹𝑧)⟩)
57 opex 5464 . . . . . . . . 9 ⟨((𝐺𝑣) + 1), ((𝐺𝑣)𝐹(2nd ‘(𝑅𝑣)))⟩ ∈ V
5848, 50, 56, 57ovmpo 7570 . . . . . . . 8 (((𝐺𝑣) ∈ V ∧ (2nd ‘(𝑅𝑣)) ∈ V) → ((𝐺𝑣)(𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩)(2nd ‘(𝑅𝑣))) = ⟨((𝐺𝑣) + 1), ((𝐺𝑣)𝐹(2nd ‘(𝑅𝑣)))⟩)
5944, 45, 58mp2an 690 . . . . . . 7 ((𝐺𝑣)(𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩)(2nd ‘(𝑅𝑣))) = ⟨((𝐺𝑣) + 1), ((𝐺𝑣)𝐹(2nd ‘(𝑅𝑣)))⟩
6043, 59eqtr3i 2762 . . . . . 6 ((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩)‘⟨(𝐺𝑣), (2nd ‘(𝑅𝑣))⟩) = ⟨((𝐺𝑣) + 1), ((𝐺𝑣)𝐹(2nd ‘(𝑅𝑣)))⟩
6142, 60eqtrdi 2788 . . . . 5 ((𝑅𝑣) = ⟨(𝐺𝑣), (2nd ‘(𝑅𝑣))⟩ → ((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩)‘(𝑅𝑣)) = ⟨((𝐺𝑣) + 1), ((𝐺𝑣)𝐹(2nd ‘(𝑅𝑣)))⟩)
6241, 61sylan9eq 2792 . . . 4 ((𝑣 ∈ ω ∧ (𝑅𝑣) = ⟨(𝐺𝑣), (2nd ‘(𝑅𝑣))⟩) → (𝑅‘suc 𝑣) = ⟨((𝐺𝑣) + 1), ((𝐺𝑣)𝐹(2nd ‘(𝑅𝑣)))⟩)
6327, 28om2uzsuci 13915 . . . . . 6 (𝑣 ∈ ω → (𝐺‘suc 𝑣) = ((𝐺𝑣) + 1))
6463adantr 481 . . . . 5 ((𝑣 ∈ ω ∧ (𝑅𝑣) = ⟨(𝐺𝑣), (2nd ‘(𝑅𝑣))⟩) → (𝐺‘suc 𝑣) = ((𝐺𝑣) + 1))
6562fveq2d 6895 . . . . . 6 ((𝑣 ∈ ω ∧ (𝑅𝑣) = ⟨(𝐺𝑣), (2nd ‘(𝑅𝑣))⟩) → (2nd ‘(𝑅‘suc 𝑣)) = (2nd ‘⟨((𝐺𝑣) + 1), ((𝐺𝑣)𝐹(2nd ‘(𝑅𝑣)))⟩))
66 ovex 7444 . . . . . . 7 ((𝐺𝑣) + 1) ∈ V
67 ovex 7444 . . . . . . 7 ((𝐺𝑣)𝐹(2nd ‘(𝑅𝑣))) ∈ V
6866, 67op2nd 7986 . . . . . 6 (2nd ‘⟨((𝐺𝑣) + 1), ((𝐺𝑣)𝐹(2nd ‘(𝑅𝑣)))⟩) = ((𝐺𝑣)𝐹(2nd ‘(𝑅𝑣)))
6965, 68eqtrdi 2788 . . . . 5 ((𝑣 ∈ ω ∧ (𝑅𝑣) = ⟨(𝐺𝑣), (2nd ‘(𝑅𝑣))⟩) → (2nd ‘(𝑅‘suc 𝑣)) = ((𝐺𝑣)𝐹(2nd ‘(𝑅𝑣))))
7064, 69opeq12d 4881 . . . 4 ((𝑣 ∈ ω ∧ (𝑅𝑣) = ⟨(𝐺𝑣), (2nd ‘(𝑅𝑣))⟩) → ⟨(𝐺‘suc 𝑣), (2nd ‘(𝑅‘suc 𝑣))⟩ = ⟨((𝐺𝑣) + 1), ((𝐺𝑣)𝐹(2nd ‘(𝑅𝑣)))⟩)
7162, 70eqtr4d 2775 . . 3 ((𝑣 ∈ ω ∧ (𝑅𝑣) = ⟨(𝐺𝑣), (2nd ‘(𝑅𝑣))⟩) → (𝑅‘suc 𝑣) = ⟨(𝐺‘suc 𝑣), (2nd ‘(𝑅‘suc 𝑣))⟩)
7271ex 413 . 2 (𝑣 ∈ ω → ((𝑅𝑣) = ⟨(𝐺𝑣), (2nd ‘(𝑅𝑣))⟩ → (𝑅‘suc 𝑣) = ⟨(𝐺‘suc 𝑣), (2nd ‘(𝑅‘suc 𝑣))⟩))
735, 10, 15, 20, 36, 72finds 7891 1 (𝐵 ∈ ω → (𝑅𝐵) = ⟨(𝐺𝐵), (2nd ‘(𝑅𝐵))⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1541  wcel 2106  Vcvv 3474  c0 4322  cop 4634  cmpt 5231  cres 5678  suc csuc 6366  cfv 6543  (class class class)co 7411  cmpo 7413  ωcom 7857  2nd c2nd 7976  reccrdg 8411  1c1 11113   + caddc 11115  cz 12560
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pr 5427  ax-un 7727
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-ov 7414  df-oprab 7415  df-mpo 7416  df-om 7858  df-2nd 7978  df-frecs 8268  df-wrecs 8299  df-recs 8373  df-rdg 8412
This theorem is referenced by:  uzrdglem  13924  uzrdgfni  13925  uzrdgsuci  13927
  Copyright terms: Public domain W3C validator