MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  om2uzrdg Structured version   Visualization version   GIF version

Theorem om2uzrdg 12973
Description: A helper lemma for the value of a recursive definition generator on upper integers (typically either or 0) with characteristic function 𝐹(𝑥, 𝑦) and initial value 𝐴. Normally 𝐹 is a function on the partition, and 𝐴 is a member of the partition. See also comment in om2uz0i 12964. (Contributed by Mario Carneiro, 26-Jun-2013.) (Revised by Mario Carneiro, 18-Nov-2014.)
Hypotheses
Ref Expression
om2uz.1 𝐶 ∈ ℤ
om2uz.2 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐶) ↾ ω)
uzrdg.1 𝐴 ∈ V
uzrdg.2 𝑅 = (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩) ↾ ω)
Assertion
Ref Expression
om2uzrdg (𝐵 ∈ ω → (𝑅𝐵) = ⟨(𝐺𝐵), (2nd ‘(𝑅𝐵))⟩)
Distinct variable groups:   𝑦,𝐴   𝑥,𝑦,𝐶   𝑦,𝐺   𝑥,𝐹,𝑦
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥,𝑦)   𝑅(𝑥,𝑦)   𝐺(𝑥)

Proof of Theorem om2uzrdg
Dummy variables 𝑧 𝑤 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6402 . . 3 (𝑧 = ∅ → (𝑅𝑧) = (𝑅‘∅))
2 fveq2 6402 . . . 4 (𝑧 = ∅ → (𝐺𝑧) = (𝐺‘∅))
3 2fveq3 6407 . . . 4 (𝑧 = ∅ → (2nd ‘(𝑅𝑧)) = (2nd ‘(𝑅‘∅)))
42, 3opeq12d 4596 . . 3 (𝑧 = ∅ → ⟨(𝐺𝑧), (2nd ‘(𝑅𝑧))⟩ = ⟨(𝐺‘∅), (2nd ‘(𝑅‘∅))⟩)
51, 4eqeq12d 2817 . 2 (𝑧 = ∅ → ((𝑅𝑧) = ⟨(𝐺𝑧), (2nd ‘(𝑅𝑧))⟩ ↔ (𝑅‘∅) = ⟨(𝐺‘∅), (2nd ‘(𝑅‘∅))⟩))
6 fveq2 6402 . . 3 (𝑧 = 𝑣 → (𝑅𝑧) = (𝑅𝑣))
7 fveq2 6402 . . . 4 (𝑧 = 𝑣 → (𝐺𝑧) = (𝐺𝑣))
8 2fveq3 6407 . . . 4 (𝑧 = 𝑣 → (2nd ‘(𝑅𝑧)) = (2nd ‘(𝑅𝑣)))
97, 8opeq12d 4596 . . 3 (𝑧 = 𝑣 → ⟨(𝐺𝑧), (2nd ‘(𝑅𝑧))⟩ = ⟨(𝐺𝑣), (2nd ‘(𝑅𝑣))⟩)
106, 9eqeq12d 2817 . 2 (𝑧 = 𝑣 → ((𝑅𝑧) = ⟨(𝐺𝑧), (2nd ‘(𝑅𝑧))⟩ ↔ (𝑅𝑣) = ⟨(𝐺𝑣), (2nd ‘(𝑅𝑣))⟩))
11 fveq2 6402 . . 3 (𝑧 = suc 𝑣 → (𝑅𝑧) = (𝑅‘suc 𝑣))
12 fveq2 6402 . . . 4 (𝑧 = suc 𝑣 → (𝐺𝑧) = (𝐺‘suc 𝑣))
13 2fveq3 6407 . . . 4 (𝑧 = suc 𝑣 → (2nd ‘(𝑅𝑧)) = (2nd ‘(𝑅‘suc 𝑣)))
1412, 13opeq12d 4596 . . 3 (𝑧 = suc 𝑣 → ⟨(𝐺𝑧), (2nd ‘(𝑅𝑧))⟩ = ⟨(𝐺‘suc 𝑣), (2nd ‘(𝑅‘suc 𝑣))⟩)
1511, 14eqeq12d 2817 . 2 (𝑧 = suc 𝑣 → ((𝑅𝑧) = ⟨(𝐺𝑧), (2nd ‘(𝑅𝑧))⟩ ↔ (𝑅‘suc 𝑣) = ⟨(𝐺‘suc 𝑣), (2nd ‘(𝑅‘suc 𝑣))⟩))
16 fveq2 6402 . . 3 (𝑧 = 𝐵 → (𝑅𝑧) = (𝑅𝐵))
17 fveq2 6402 . . . 4 (𝑧 = 𝐵 → (𝐺𝑧) = (𝐺𝐵))
18 2fveq3 6407 . . . 4 (𝑧 = 𝐵 → (2nd ‘(𝑅𝑧)) = (2nd ‘(𝑅𝐵)))
1917, 18opeq12d 4596 . . 3 (𝑧 = 𝐵 → ⟨(𝐺𝑧), (2nd ‘(𝑅𝑧))⟩ = ⟨(𝐺𝐵), (2nd ‘(𝑅𝐵))⟩)
2016, 19eqeq12d 2817 . 2 (𝑧 = 𝐵 → ((𝑅𝑧) = ⟨(𝐺𝑧), (2nd ‘(𝑅𝑧))⟩ ↔ (𝑅𝐵) = ⟨(𝐺𝐵), (2nd ‘(𝑅𝐵))⟩))
21 uzrdg.2 . . . . 5 𝑅 = (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩) ↾ ω)
2221fveq1i 6403 . . . 4 (𝑅‘∅) = ((rec((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩) ↾ ω)‘∅)
23 opex 5116 . . . . 5 𝐶, 𝐴⟩ ∈ V
24 fr0g 7761 . . . . 5 (⟨𝐶, 𝐴⟩ ∈ V → ((rec((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩) ↾ ω)‘∅) = ⟨𝐶, 𝐴⟩)
2523, 24ax-mp 5 . . . 4 ((rec((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩) ↾ ω)‘∅) = ⟨𝐶, 𝐴
2622, 25eqtri 2824 . . 3 (𝑅‘∅) = ⟨𝐶, 𝐴
27 om2uz.1 . . . . 5 𝐶 ∈ ℤ
28 om2uz.2 . . . . 5 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐶) ↾ ω)
2927, 28om2uz0i 12964 . . . 4 (𝐺‘∅) = 𝐶
3026fveq2i 6405 . . . . 5 (2nd ‘(𝑅‘∅)) = (2nd ‘⟨𝐶, 𝐴⟩)
3127elexi 3403 . . . . . 6 𝐶 ∈ V
32 uzrdg.1 . . . . . 6 𝐴 ∈ V
3331, 32op2nd 7401 . . . . 5 (2nd ‘⟨𝐶, 𝐴⟩) = 𝐴
3430, 33eqtri 2824 . . . 4 (2nd ‘(𝑅‘∅)) = 𝐴
3529, 34opeq12i 4593 . . 3 ⟨(𝐺‘∅), (2nd ‘(𝑅‘∅))⟩ = ⟨𝐶, 𝐴
3626, 35eqtr4i 2827 . 2 (𝑅‘∅) = ⟨(𝐺‘∅), (2nd ‘(𝑅‘∅))⟩
37 frsuc 7762 . . . . . 6 (𝑣 ∈ ω → ((rec((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩) ↾ ω)‘suc 𝑣) = ((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩)‘((rec((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩) ↾ ω)‘𝑣)))
3821fveq1i 6403 . . . . . 6 (𝑅‘suc 𝑣) = ((rec((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩) ↾ ω)‘suc 𝑣)
3921fveq1i 6403 . . . . . . 7 (𝑅𝑣) = ((rec((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩) ↾ ω)‘𝑣)
4039fveq2i 6405 . . . . . 6 ((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩)‘(𝑅𝑣)) = ((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩)‘((rec((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩) ↾ ω)‘𝑣))
4137, 38, 403eqtr4g 2861 . . . . 5 (𝑣 ∈ ω → (𝑅‘suc 𝑣) = ((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩)‘(𝑅𝑣)))
42 fveq2 6402 . . . . . 6 ((𝑅𝑣) = ⟨(𝐺𝑣), (2nd ‘(𝑅𝑣))⟩ → ((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩)‘(𝑅𝑣)) = ((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩)‘⟨(𝐺𝑣), (2nd ‘(𝑅𝑣))⟩))
43 df-ov 6871 . . . . . . 7 ((𝐺𝑣)(𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩)(2nd ‘(𝑅𝑣))) = ((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩)‘⟨(𝐺𝑣), (2nd ‘(𝑅𝑣))⟩)
44 fvex 6415 . . . . . . . 8 (𝐺𝑣) ∈ V
45 fvex 6415 . . . . . . . 8 (2nd ‘(𝑅𝑣)) ∈ V
46 oveq1 6875 . . . . . . . . . 10 (𝑤 = (𝐺𝑣) → (𝑤 + 1) = ((𝐺𝑣) + 1))
47 oveq1 6875 . . . . . . . . . 10 (𝑤 = (𝐺𝑣) → (𝑤𝐹𝑧) = ((𝐺𝑣)𝐹𝑧))
4846, 47opeq12d 4596 . . . . . . . . 9 (𝑤 = (𝐺𝑣) → ⟨(𝑤 + 1), (𝑤𝐹𝑧)⟩ = ⟨((𝐺𝑣) + 1), ((𝐺𝑣)𝐹𝑧)⟩)
49 oveq2 6876 . . . . . . . . . 10 (𝑧 = (2nd ‘(𝑅𝑣)) → ((𝐺𝑣)𝐹𝑧) = ((𝐺𝑣)𝐹(2nd ‘(𝑅𝑣))))
5049opeq2d 4595 . . . . . . . . 9 (𝑧 = (2nd ‘(𝑅𝑣)) → ⟨((𝐺𝑣) + 1), ((𝐺𝑣)𝐹𝑧)⟩ = ⟨((𝐺𝑣) + 1), ((𝐺𝑣)𝐹(2nd ‘(𝑅𝑣)))⟩)
51 oveq1 6875 . . . . . . . . . . 11 (𝑥 = 𝑤 → (𝑥 + 1) = (𝑤 + 1))
52 oveq1 6875 . . . . . . . . . . 11 (𝑥 = 𝑤 → (𝑥𝐹𝑦) = (𝑤𝐹𝑦))
5351, 52opeq12d 4596 . . . . . . . . . 10 (𝑥 = 𝑤 → ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩ = ⟨(𝑤 + 1), (𝑤𝐹𝑦)⟩)
54 oveq2 6876 . . . . . . . . . . 11 (𝑦 = 𝑧 → (𝑤𝐹𝑦) = (𝑤𝐹𝑧))
5554opeq2d 4595 . . . . . . . . . 10 (𝑦 = 𝑧 → ⟨(𝑤 + 1), (𝑤𝐹𝑦)⟩ = ⟨(𝑤 + 1), (𝑤𝐹𝑧)⟩)
5653, 55cbvmpt2v 6959 . . . . . . . . 9 (𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩) = (𝑤 ∈ V, 𝑧 ∈ V ↦ ⟨(𝑤 + 1), (𝑤𝐹𝑧)⟩)
57 opex 5116 . . . . . . . . 9 ⟨((𝐺𝑣) + 1), ((𝐺𝑣)𝐹(2nd ‘(𝑅𝑣)))⟩ ∈ V
5848, 50, 56, 57ovmpt2 7020 . . . . . . . 8 (((𝐺𝑣) ∈ V ∧ (2nd ‘(𝑅𝑣)) ∈ V) → ((𝐺𝑣)(𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩)(2nd ‘(𝑅𝑣))) = ⟨((𝐺𝑣) + 1), ((𝐺𝑣)𝐹(2nd ‘(𝑅𝑣)))⟩)
5944, 45, 58mp2an 675 . . . . . . 7 ((𝐺𝑣)(𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩)(2nd ‘(𝑅𝑣))) = ⟨((𝐺𝑣) + 1), ((𝐺𝑣)𝐹(2nd ‘(𝑅𝑣)))⟩
6043, 59eqtr3i 2826 . . . . . 6 ((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩)‘⟨(𝐺𝑣), (2nd ‘(𝑅𝑣))⟩) = ⟨((𝐺𝑣) + 1), ((𝐺𝑣)𝐹(2nd ‘(𝑅𝑣)))⟩
6142, 60syl6eq 2852 . . . . 5 ((𝑅𝑣) = ⟨(𝐺𝑣), (2nd ‘(𝑅𝑣))⟩ → ((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩)‘(𝑅𝑣)) = ⟨((𝐺𝑣) + 1), ((𝐺𝑣)𝐹(2nd ‘(𝑅𝑣)))⟩)
6241, 61sylan9eq 2856 . . . 4 ((𝑣 ∈ ω ∧ (𝑅𝑣) = ⟨(𝐺𝑣), (2nd ‘(𝑅𝑣))⟩) → (𝑅‘suc 𝑣) = ⟨((𝐺𝑣) + 1), ((𝐺𝑣)𝐹(2nd ‘(𝑅𝑣)))⟩)
6327, 28om2uzsuci 12965 . . . . . 6 (𝑣 ∈ ω → (𝐺‘suc 𝑣) = ((𝐺𝑣) + 1))
6463adantr 468 . . . . 5 ((𝑣 ∈ ω ∧ (𝑅𝑣) = ⟨(𝐺𝑣), (2nd ‘(𝑅𝑣))⟩) → (𝐺‘suc 𝑣) = ((𝐺𝑣) + 1))
6562fveq2d 6406 . . . . . 6 ((𝑣 ∈ ω ∧ (𝑅𝑣) = ⟨(𝐺𝑣), (2nd ‘(𝑅𝑣))⟩) → (2nd ‘(𝑅‘suc 𝑣)) = (2nd ‘⟨((𝐺𝑣) + 1), ((𝐺𝑣)𝐹(2nd ‘(𝑅𝑣)))⟩))
66 ovex 6900 . . . . . . 7 ((𝐺𝑣) + 1) ∈ V
67 ovex 6900 . . . . . . 7 ((𝐺𝑣)𝐹(2nd ‘(𝑅𝑣))) ∈ V
6866, 67op2nd 7401 . . . . . 6 (2nd ‘⟨((𝐺𝑣) + 1), ((𝐺𝑣)𝐹(2nd ‘(𝑅𝑣)))⟩) = ((𝐺𝑣)𝐹(2nd ‘(𝑅𝑣)))
6965, 68syl6eq 2852 . . . . 5 ((𝑣 ∈ ω ∧ (𝑅𝑣) = ⟨(𝐺𝑣), (2nd ‘(𝑅𝑣))⟩) → (2nd ‘(𝑅‘suc 𝑣)) = ((𝐺𝑣)𝐹(2nd ‘(𝑅𝑣))))
7064, 69opeq12d 4596 . . . 4 ((𝑣 ∈ ω ∧ (𝑅𝑣) = ⟨(𝐺𝑣), (2nd ‘(𝑅𝑣))⟩) → ⟨(𝐺‘suc 𝑣), (2nd ‘(𝑅‘suc 𝑣))⟩ = ⟨((𝐺𝑣) + 1), ((𝐺𝑣)𝐹(2nd ‘(𝑅𝑣)))⟩)
7162, 70eqtr4d 2839 . . 3 ((𝑣 ∈ ω ∧ (𝑅𝑣) = ⟨(𝐺𝑣), (2nd ‘(𝑅𝑣))⟩) → (𝑅‘suc 𝑣) = ⟨(𝐺‘suc 𝑣), (2nd ‘(𝑅‘suc 𝑣))⟩)
7271ex 399 . 2 (𝑣 ∈ ω → ((𝑅𝑣) = ⟨(𝐺𝑣), (2nd ‘(𝑅𝑣))⟩ → (𝑅‘suc 𝑣) = ⟨(𝐺‘suc 𝑣), (2nd ‘(𝑅‘suc 𝑣))⟩))
735, 10, 15, 20, 36, 72finds 7316 1 (𝐵 ∈ ω → (𝑅𝐵) = ⟨(𝐺𝐵), (2nd ‘(𝑅𝐵))⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1637  wcel 2155  Vcvv 3387  c0 4110  cop 4370  cmpt 4916  cres 5307  suc csuc 5932  cfv 6095  (class class class)co 6868  cmpt2 6870  ωcom 7289  2nd c2nd 7391  reccrdg 7735  1c1 10216   + caddc 10218  cz 11637
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1877  ax-4 1894  ax-5 2001  ax-6 2067  ax-7 2103  ax-8 2157  ax-9 2164  ax-10 2184  ax-11 2200  ax-12 2213  ax-13 2419  ax-ext 2781  ax-sep 4968  ax-nul 4977  ax-pow 5029  ax-pr 5090  ax-un 7173
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 866  df-3or 1101  df-3an 1102  df-tru 1641  df-ex 1860  df-nf 1864  df-sb 2060  df-eu 2633  df-mo 2634  df-clab 2789  df-cleq 2795  df-clel 2798  df-nfc 2933  df-ne 2975  df-ral 3097  df-rex 3098  df-reu 3099  df-rab 3101  df-v 3389  df-sbc 3628  df-csb 3723  df-dif 3766  df-un 3768  df-in 3770  df-ss 3777  df-pss 3779  df-nul 4111  df-if 4274  df-pw 4347  df-sn 4365  df-pr 4367  df-tp 4369  df-op 4371  df-uni 4624  df-iun 4707  df-br 4838  df-opab 4900  df-mpt 4917  df-tr 4940  df-id 5213  df-eprel 5218  df-po 5226  df-so 5227  df-fr 5264  df-we 5266  df-xp 5311  df-rel 5312  df-cnv 5313  df-co 5314  df-dm 5315  df-rn 5316  df-res 5317  df-ima 5318  df-pred 5887  df-ord 5933  df-on 5934  df-lim 5935  df-suc 5936  df-iota 6058  df-fun 6097  df-fn 6098  df-f 6099  df-f1 6100  df-fo 6101  df-f1o 6102  df-fv 6103  df-ov 6871  df-oprab 6872  df-mpt2 6873  df-om 7290  df-2nd 7393  df-wrecs 7636  df-recs 7698  df-rdg 7736
This theorem is referenced by:  uzrdglem  12974  uzrdgfni  12975  uzrdgsuci  12977
  Copyright terms: Public domain W3C validator