MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulcompq Structured version   Visualization version   GIF version

Theorem mulcompq 10853
Description: Multiplication of positive fractions is commutative. (Contributed by NM, 31-Aug-1995.) (Revised by Mario Carneiro, 28-Apr-2013.) (New usage is discouraged.)
Assertion
Ref Expression
mulcompq (𝐴 ·pQ 𝐵) = (𝐵 ·pQ 𝐴)

Proof of Theorem mulcompq
StepHypRef Expression
1 mulcompi 10797 . . . 4 ((1st𝐴) ·N (1st𝐵)) = ((1st𝐵) ·N (1st𝐴))
2 mulcompi 10797 . . . 4 ((2nd𝐴) ·N (2nd𝐵)) = ((2nd𝐵) ·N (2nd𝐴))
31, 2opeq12i 4831 . . 3 ⟨((1st𝐴) ·N (1st𝐵)), ((2nd𝐴) ·N (2nd𝐵))⟩ = ⟨((1st𝐵) ·N (1st𝐴)), ((2nd𝐵) ·N (2nd𝐴))⟩
4 mulpipq2 10840 . . 3 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → (𝐴 ·pQ 𝐵) = ⟨((1st𝐴) ·N (1st𝐵)), ((2nd𝐴) ·N (2nd𝐵))⟩)
5 mulpipq2 10840 . . . 4 ((𝐵 ∈ (N × N) ∧ 𝐴 ∈ (N × N)) → (𝐵 ·pQ 𝐴) = ⟨((1st𝐵) ·N (1st𝐴)), ((2nd𝐵) ·N (2nd𝐴))⟩)
65ancoms 458 . . 3 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → (𝐵 ·pQ 𝐴) = ⟨((1st𝐵) ·N (1st𝐴)), ((2nd𝐵) ·N (2nd𝐴))⟩)
73, 4, 63eqtr4a 2794 . 2 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → (𝐴 ·pQ 𝐵) = (𝐵 ·pQ 𝐴))
8 mulpqf 10847 . . . 4 ·pQ :((N × N) × (N × N))⟶(N × N)
98fdmi 6670 . . 3 dom ·pQ = ((N × N) × (N × N))
109ndmovcom 7542 . 2 (¬ (𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → (𝐴 ·pQ 𝐵) = (𝐵 ·pQ 𝐴))
117, 10pm2.61i 182 1 (𝐴 ·pQ 𝐵) = (𝐵 ·pQ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1541  wcel 2113  cop 4583   × cxp 5619  cfv 6489  (class class class)co 7355  1st c1st 7928  2nd c2nd 7929  Ncnpi 10745   ·N cmi 10747   ·pQ cmpq 10750
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pr 5374  ax-un 7677
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2883  df-ne 2931  df-ral 3050  df-rex 3059  df-reu 3349  df-rab 3398  df-v 3440  df-sbc 3739  df-csb 3848  df-dif 3902  df-un 3904  df-in 3906  df-ss 3916  df-pss 3919  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-ov 7358  df-oprab 7359  df-mpo 7360  df-om 7806  df-1st 7930  df-2nd 7931  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-rdg 8338  df-oadd 8398  df-omul 8399  df-ni 10773  df-mi 10775  df-mpq 10810
This theorem is referenced by:  mulcomnq  10854  mulerpq  10858
  Copyright terms: Public domain W3C validator