MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulcompq Structured version   Visualization version   GIF version

Theorem mulcompq 10531
Description: Multiplication of positive fractions is commutative. (Contributed by NM, 31-Aug-1995.) (Revised by Mario Carneiro, 28-Apr-2013.) (New usage is discouraged.)
Assertion
Ref Expression
mulcompq (𝐴 ·pQ 𝐵) = (𝐵 ·pQ 𝐴)

Proof of Theorem mulcompq
StepHypRef Expression
1 mulcompi 10475 . . . 4 ((1st𝐴) ·N (1st𝐵)) = ((1st𝐵) ·N (1st𝐴))
2 mulcompi 10475 . . . 4 ((2nd𝐴) ·N (2nd𝐵)) = ((2nd𝐵) ·N (2nd𝐴))
31, 2opeq12i 4775 . . 3 ⟨((1st𝐴) ·N (1st𝐵)), ((2nd𝐴) ·N (2nd𝐵))⟩ = ⟨((1st𝐵) ·N (1st𝐴)), ((2nd𝐵) ·N (2nd𝐴))⟩
4 mulpipq2 10518 . . 3 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → (𝐴 ·pQ 𝐵) = ⟨((1st𝐴) ·N (1st𝐵)), ((2nd𝐴) ·N (2nd𝐵))⟩)
5 mulpipq2 10518 . . . 4 ((𝐵 ∈ (N × N) ∧ 𝐴 ∈ (N × N)) → (𝐵 ·pQ 𝐴) = ⟨((1st𝐵) ·N (1st𝐴)), ((2nd𝐵) ·N (2nd𝐴))⟩)
65ancoms 462 . . 3 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → (𝐵 ·pQ 𝐴) = ⟨((1st𝐵) ·N (1st𝐴)), ((2nd𝐵) ·N (2nd𝐴))⟩)
73, 4, 63eqtr4a 2797 . 2 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → (𝐴 ·pQ 𝐵) = (𝐵 ·pQ 𝐴))
8 mulpqf 10525 . . . 4 ·pQ :((N × N) × (N × N))⟶(N × N)
98fdmi 6535 . . 3 dom ·pQ = ((N × N) × (N × N))
109ndmovcom 7373 . 2 (¬ (𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → (𝐴 ·pQ 𝐵) = (𝐵 ·pQ 𝐴))
117, 10pm2.61i 185 1 (𝐴 ·pQ 𝐵) = (𝐵 ·pQ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wa 399   = wceq 1543  wcel 2112  cop 4533   × cxp 5534  cfv 6358  (class class class)co 7191  1st c1st 7737  2nd c2nd 7738  Ncnpi 10423   ·N cmi 10425   ·pQ cmpq 10428
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2708  ax-sep 5177  ax-nul 5184  ax-pr 5307  ax-un 7501
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2728  df-clel 2809  df-nfc 2879  df-ne 2933  df-ral 3056  df-rex 3057  df-reu 3058  df-rab 3060  df-v 3400  df-sbc 3684  df-csb 3799  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-pss 3872  df-nul 4224  df-if 4426  df-pw 4501  df-sn 4528  df-pr 4530  df-tp 4532  df-op 4534  df-uni 4806  df-iun 4892  df-br 5040  df-opab 5102  df-mpt 5121  df-tr 5147  df-id 5440  df-eprel 5445  df-po 5453  df-so 5454  df-fr 5494  df-we 5496  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-pred 6140  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6316  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-ov 7194  df-oprab 7195  df-mpo 7196  df-om 7623  df-1st 7739  df-2nd 7740  df-wrecs 8025  df-recs 8086  df-rdg 8124  df-oadd 8184  df-omul 8185  df-ni 10451  df-mi 10453  df-mpq 10488
This theorem is referenced by:  mulcomnq  10532  mulerpq  10536
  Copyright terms: Public domain W3C validator