Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mulcompq | Structured version Visualization version GIF version |
Description: Multiplication of positive fractions is commutative. (Contributed by NM, 31-Aug-1995.) (Revised by Mario Carneiro, 28-Apr-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
mulcompq | ⊢ (𝐴 ·pQ 𝐵) = (𝐵 ·pQ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mulcompi 10753 | . . . 4 ⊢ ((1st ‘𝐴) ·N (1st ‘𝐵)) = ((1st ‘𝐵) ·N (1st ‘𝐴)) | |
2 | mulcompi 10753 | . . . 4 ⊢ ((2nd ‘𝐴) ·N (2nd ‘𝐵)) = ((2nd ‘𝐵) ·N (2nd ‘𝐴)) | |
3 | 1, 2 | opeq12i 4822 | . . 3 ⊢ 〈((1st ‘𝐴) ·N (1st ‘𝐵)), ((2nd ‘𝐴) ·N (2nd ‘𝐵))〉 = 〈((1st ‘𝐵) ·N (1st ‘𝐴)), ((2nd ‘𝐵) ·N (2nd ‘𝐴))〉 |
4 | mulpipq2 10796 | . . 3 ⊢ ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → (𝐴 ·pQ 𝐵) = 〈((1st ‘𝐴) ·N (1st ‘𝐵)), ((2nd ‘𝐴) ·N (2nd ‘𝐵))〉) | |
5 | mulpipq2 10796 | . . . 4 ⊢ ((𝐵 ∈ (N × N) ∧ 𝐴 ∈ (N × N)) → (𝐵 ·pQ 𝐴) = 〈((1st ‘𝐵) ·N (1st ‘𝐴)), ((2nd ‘𝐵) ·N (2nd ‘𝐴))〉) | |
6 | 5 | ancoms 459 | . . 3 ⊢ ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → (𝐵 ·pQ 𝐴) = 〈((1st ‘𝐵) ·N (1st ‘𝐴)), ((2nd ‘𝐵) ·N (2nd ‘𝐴))〉) |
7 | 3, 4, 6 | 3eqtr4a 2802 | . 2 ⊢ ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → (𝐴 ·pQ 𝐵) = (𝐵 ·pQ 𝐴)) |
8 | mulpqf 10803 | . . . 4 ⊢ ·pQ :((N × N) × (N × N))⟶(N × N) | |
9 | 8 | fdmi 6663 | . . 3 ⊢ dom ·pQ = ((N × N) × (N × N)) |
10 | 9 | ndmovcom 7521 | . 2 ⊢ (¬ (𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → (𝐴 ·pQ 𝐵) = (𝐵 ·pQ 𝐴)) |
11 | 7, 10 | pm2.61i 182 | 1 ⊢ (𝐴 ·pQ 𝐵) = (𝐵 ·pQ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 396 = wceq 1540 ∈ wcel 2105 〈cop 4579 × cxp 5618 ‘cfv 6479 (class class class)co 7337 1st c1st 7897 2nd c2nd 7898 Ncnpi 10701 ·N cmi 10703 ·pQ cmpq 10706 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-sep 5243 ax-nul 5250 ax-pr 5372 ax-un 7650 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3350 df-rab 3404 df-v 3443 df-sbc 3728 df-csb 3844 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3917 df-nul 4270 df-if 4474 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4853 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5176 df-tr 5210 df-id 5518 df-eprel 5524 df-po 5532 df-so 5533 df-fr 5575 df-we 5577 df-xp 5626 df-rel 5627 df-cnv 5628 df-co 5629 df-dm 5630 df-rn 5631 df-res 5632 df-ima 5633 df-pred 6238 df-ord 6305 df-on 6306 df-lim 6307 df-suc 6308 df-iota 6431 df-fun 6481 df-fn 6482 df-f 6483 df-f1 6484 df-fo 6485 df-f1o 6486 df-fv 6487 df-ov 7340 df-oprab 7341 df-mpo 7342 df-om 7781 df-1st 7899 df-2nd 7900 df-frecs 8167 df-wrecs 8198 df-recs 8272 df-rdg 8311 df-oadd 8371 df-omul 8372 df-ni 10729 df-mi 10731 df-mpq 10766 |
This theorem is referenced by: mulcomnq 10810 mulerpq 10814 |
Copyright terms: Public domain | W3C validator |