| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mulcompq | Structured version Visualization version GIF version | ||
| Description: Multiplication of positive fractions is commutative. (Contributed by NM, 31-Aug-1995.) (Revised by Mario Carneiro, 28-Apr-2013.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| mulcompq | ⊢ (𝐴 ·pQ 𝐵) = (𝐵 ·pQ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mulcompi 10910 | . . . 4 ⊢ ((1st ‘𝐴) ·N (1st ‘𝐵)) = ((1st ‘𝐵) ·N (1st ‘𝐴)) | |
| 2 | mulcompi 10910 | . . . 4 ⊢ ((2nd ‘𝐴) ·N (2nd ‘𝐵)) = ((2nd ‘𝐵) ·N (2nd ‘𝐴)) | |
| 3 | 1, 2 | opeq12i 4854 | . . 3 ⊢ 〈((1st ‘𝐴) ·N (1st ‘𝐵)), ((2nd ‘𝐴) ·N (2nd ‘𝐵))〉 = 〈((1st ‘𝐵) ·N (1st ‘𝐴)), ((2nd ‘𝐵) ·N (2nd ‘𝐴))〉 |
| 4 | mulpipq2 10953 | . . 3 ⊢ ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → (𝐴 ·pQ 𝐵) = 〈((1st ‘𝐴) ·N (1st ‘𝐵)), ((2nd ‘𝐴) ·N (2nd ‘𝐵))〉) | |
| 5 | mulpipq2 10953 | . . . 4 ⊢ ((𝐵 ∈ (N × N) ∧ 𝐴 ∈ (N × N)) → (𝐵 ·pQ 𝐴) = 〈((1st ‘𝐵) ·N (1st ‘𝐴)), ((2nd ‘𝐵) ·N (2nd ‘𝐴))〉) | |
| 6 | 5 | ancoms 458 | . . 3 ⊢ ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → (𝐵 ·pQ 𝐴) = 〈((1st ‘𝐵) ·N (1st ‘𝐴)), ((2nd ‘𝐵) ·N (2nd ‘𝐴))〉) |
| 7 | 3, 4, 6 | 3eqtr4a 2796 | . 2 ⊢ ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → (𝐴 ·pQ 𝐵) = (𝐵 ·pQ 𝐴)) |
| 8 | mulpqf 10960 | . . . 4 ⊢ ·pQ :((N × N) × (N × N))⟶(N × N) | |
| 9 | 8 | fdmi 6717 | . . 3 ⊢ dom ·pQ = ((N × N) × (N × N)) |
| 10 | 9 | ndmovcom 7594 | . 2 ⊢ (¬ (𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → (𝐴 ·pQ 𝐵) = (𝐵 ·pQ 𝐴)) |
| 11 | 7, 10 | pm2.61i 182 | 1 ⊢ (𝐴 ·pQ 𝐵) = (𝐵 ·pQ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1540 ∈ wcel 2108 〈cop 4607 × cxp 5652 ‘cfv 6531 (class class class)co 7405 1st c1st 7986 2nd c2nd 7987 Ncnpi 10858 ·N cmi 10860 ·pQ cmpq 10863 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-1st 7988 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-oadd 8484 df-omul 8485 df-ni 10886 df-mi 10888 df-mpq 10923 |
| This theorem is referenced by: mulcomnq 10967 mulerpq 10971 |
| Copyright terms: Public domain | W3C validator |