![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > konigsbergiedg | Structured version Visualization version GIF version |
Description: The indexed edges of the KΓΆnigsberg graph πΊ. (Contributed by AV, 28-Feb-2021.) |
Ref | Expression |
---|---|
konigsberg.v | β’ π = (0...3) |
konigsberg.e | β’ πΈ = β¨β{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}ββ© |
konigsberg.g | β’ πΊ = β¨π, πΈβ© |
Ref | Expression |
---|---|
konigsbergiedg | β’ (iEdgβπΊ) = β¨β{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}ββ© |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | konigsberg.g | . . . 4 β’ πΊ = β¨π, πΈβ© | |
2 | konigsberg.v | . . . . 5 β’ π = (0...3) | |
3 | konigsberg.e | . . . . 5 β’ πΈ = β¨β{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}ββ© | |
4 | 2, 3 | opeq12i 4878 | . . . 4 β’ β¨π, πΈβ© = β¨(0...3), β¨β{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}ββ©β© |
5 | 1, 4 | eqtri 2760 | . . 3 β’ πΊ = β¨(0...3), β¨β{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}ββ©β© |
6 | 5 | fveq2i 6894 | . 2 β’ (iEdgβπΊ) = (iEdgββ¨(0...3), β¨β{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}ββ©β©) |
7 | ovex 7441 | . . 3 β’ (0...3) β V | |
8 | s7cli 14835 | . . 3 β’ β¨β{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}ββ© β Word V | |
9 | opiedgfv 28264 | . . 3 β’ (((0...3) β V β§ β¨β{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}ββ© β Word V) β (iEdgββ¨(0...3), β¨β{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}ββ©β©) = β¨β{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}ββ©) | |
10 | 7, 8, 9 | mp2an 690 | . 2 β’ (iEdgββ¨(0...3), β¨β{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}ββ©β©) = β¨β{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}ββ© |
11 | 6, 10 | eqtri 2760 | 1 β’ (iEdgβπΊ) = β¨β{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}ββ© |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1541 β wcel 2106 Vcvv 3474 {cpr 4630 β¨cop 4634 βcfv 6543 (class class class)co 7408 0cc0 11109 1c1 11110 2c2 12266 3c3 12267 ...cfz 13483 Word cword 14463 β¨βcs7 14796 iEdgciedg 28254 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 ax-cnex 11165 ax-resscn 11166 ax-1cn 11167 ax-icn 11168 ax-addcl 11169 ax-addrcl 11170 ax-mulcl 11171 ax-mulrcl 11172 ax-mulcom 11173 ax-addass 11174 ax-mulass 11175 ax-distr 11176 ax-i2m1 11177 ax-1ne0 11178 ax-1rid 11179 ax-rnegex 11180 ax-rrecex 11181 ax-cnre 11182 ax-pre-lttri 11183 ax-pre-lttrn 11184 ax-pre-ltadd 11185 ax-pre-mulgt0 11186 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7364 df-ov 7411 df-oprab 7412 df-mpo 7413 df-om 7855 df-1st 7974 df-2nd 7975 df-frecs 8265 df-wrecs 8296 df-recs 8370 df-rdg 8409 df-1o 8465 df-er 8702 df-en 8939 df-dom 8940 df-sdom 8941 df-fin 8942 df-card 9933 df-pnf 11249 df-mnf 11250 df-xr 11251 df-ltxr 11252 df-le 11253 df-sub 11445 df-neg 11446 df-nn 12212 df-n0 12472 df-z 12558 df-uz 12822 df-fz 13484 df-fzo 13627 df-hash 14290 df-word 14464 df-concat 14520 df-s1 14545 df-s2 14798 df-s3 14799 df-s4 14800 df-s5 14801 df-s6 14802 df-s7 14803 df-iedg 28256 |
This theorem is referenced by: konigsbergumgr 29501 konigsberglem1 29502 konigsberglem2 29503 konigsberglem3 29504 |
Copyright terms: Public domain | W3C validator |