Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > addcompq | Structured version Visualization version GIF version |
Description: Addition of positive fractions is commutative. (Contributed by NM, 30-Aug-1995.) (Revised by Mario Carneiro, 28-Apr-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
addcompq | ⊢ (𝐴 +pQ 𝐵) = (𝐵 +pQ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | addcompi 10720 | . . . 4 ⊢ (((1st ‘𝐴) ·N (2nd ‘𝐵)) +N ((1st ‘𝐵) ·N (2nd ‘𝐴))) = (((1st ‘𝐵) ·N (2nd ‘𝐴)) +N ((1st ‘𝐴) ·N (2nd ‘𝐵))) | |
2 | mulcompi 10722 | . . . 4 ⊢ ((2nd ‘𝐴) ·N (2nd ‘𝐵)) = ((2nd ‘𝐵) ·N (2nd ‘𝐴)) | |
3 | 1, 2 | opeq12i 4818 | . . 3 ⊢ 〈(((1st ‘𝐴) ·N (2nd ‘𝐵)) +N ((1st ‘𝐵) ·N (2nd ‘𝐴))), ((2nd ‘𝐴) ·N (2nd ‘𝐵))〉 = 〈(((1st ‘𝐵) ·N (2nd ‘𝐴)) +N ((1st ‘𝐴) ·N (2nd ‘𝐵))), ((2nd ‘𝐵) ·N (2nd ‘𝐴))〉 |
4 | addpipq2 10762 | . . 3 ⊢ ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → (𝐴 +pQ 𝐵) = 〈(((1st ‘𝐴) ·N (2nd ‘𝐵)) +N ((1st ‘𝐵) ·N (2nd ‘𝐴))), ((2nd ‘𝐴) ·N (2nd ‘𝐵))〉) | |
5 | addpipq2 10762 | . . . 4 ⊢ ((𝐵 ∈ (N × N) ∧ 𝐴 ∈ (N × N)) → (𝐵 +pQ 𝐴) = 〈(((1st ‘𝐵) ·N (2nd ‘𝐴)) +N ((1st ‘𝐴) ·N (2nd ‘𝐵))), ((2nd ‘𝐵) ·N (2nd ‘𝐴))〉) | |
6 | 5 | ancoms 459 | . . 3 ⊢ ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → (𝐵 +pQ 𝐴) = 〈(((1st ‘𝐵) ·N (2nd ‘𝐴)) +N ((1st ‘𝐴) ·N (2nd ‘𝐵))), ((2nd ‘𝐵) ·N (2nd ‘𝐴))〉) |
7 | 3, 4, 6 | 3eqtr4a 2803 | . 2 ⊢ ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → (𝐴 +pQ 𝐵) = (𝐵 +pQ 𝐴)) |
8 | addpqf 10770 | . . . 4 ⊢ +pQ :((N × N) × (N × N))⟶(N × N) | |
9 | 8 | fdmi 6647 | . . 3 ⊢ dom +pQ = ((N × N) × (N × N)) |
10 | 9 | ndmovcom 7497 | . 2 ⊢ (¬ (𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → (𝐴 +pQ 𝐵) = (𝐵 +pQ 𝐴)) |
11 | 7, 10 | pm2.61i 182 | 1 ⊢ (𝐴 +pQ 𝐵) = (𝐵 +pQ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 396 = wceq 1540 ∈ wcel 2105 〈cop 4575 × cxp 5603 ‘cfv 6463 (class class class)co 7313 1st c1st 7872 2nd c2nd 7873 Ncnpi 10670 +N cpli 10671 ·N cmi 10672 +pQ cplpq 10674 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2708 ax-sep 5236 ax-nul 5243 ax-pr 5365 ax-un 7626 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-ral 3063 df-rex 3072 df-reu 3351 df-rab 3405 df-v 3443 df-sbc 3726 df-csb 3842 df-dif 3899 df-un 3901 df-in 3903 df-ss 3913 df-pss 3915 df-nul 4267 df-if 4470 df-pw 4545 df-sn 4570 df-pr 4572 df-op 4576 df-uni 4849 df-iun 4937 df-br 5086 df-opab 5148 df-mpt 5169 df-tr 5203 df-id 5505 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5560 df-we 5562 df-xp 5611 df-rel 5612 df-cnv 5613 df-co 5614 df-dm 5615 df-rn 5616 df-res 5617 df-ima 5618 df-pred 6222 df-ord 6289 df-on 6290 df-lim 6291 df-suc 6292 df-iota 6415 df-fun 6465 df-fn 6466 df-f 6467 df-f1 6468 df-fo 6469 df-f1o 6470 df-fv 6471 df-ov 7316 df-oprab 7317 df-mpo 7318 df-om 7756 df-1st 7874 df-2nd 7875 df-frecs 8142 df-wrecs 8173 df-recs 8247 df-rdg 8286 df-oadd 8346 df-omul 8347 df-ni 10698 df-pli 10699 df-mi 10700 df-plpq 10734 |
This theorem is referenced by: addcomnq 10777 adderpq 10782 |
Copyright terms: Public domain | W3C validator |