| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > addcompq | Structured version Visualization version GIF version | ||
| Description: Addition of positive fractions is commutative. (Contributed by NM, 30-Aug-1995.) (Revised by Mario Carneiro, 28-Apr-2013.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| addcompq | ⊢ (𝐴 +pQ 𝐵) = (𝐵 +pQ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | addcompi 10795 | . . . 4 ⊢ (((1st ‘𝐴) ·N (2nd ‘𝐵)) +N ((1st ‘𝐵) ·N (2nd ‘𝐴))) = (((1st ‘𝐵) ·N (2nd ‘𝐴)) +N ((1st ‘𝐴) ·N (2nd ‘𝐵))) | |
| 2 | mulcompi 10797 | . . . 4 ⊢ ((2nd ‘𝐴) ·N (2nd ‘𝐵)) = ((2nd ‘𝐵) ·N (2nd ‘𝐴)) | |
| 3 | 1, 2 | opeq12i 4831 | . . 3 ⊢ 〈(((1st ‘𝐴) ·N (2nd ‘𝐵)) +N ((1st ‘𝐵) ·N (2nd ‘𝐴))), ((2nd ‘𝐴) ·N (2nd ‘𝐵))〉 = 〈(((1st ‘𝐵) ·N (2nd ‘𝐴)) +N ((1st ‘𝐴) ·N (2nd ‘𝐵))), ((2nd ‘𝐵) ·N (2nd ‘𝐴))〉 |
| 4 | addpipq2 10837 | . . 3 ⊢ ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → (𝐴 +pQ 𝐵) = 〈(((1st ‘𝐴) ·N (2nd ‘𝐵)) +N ((1st ‘𝐵) ·N (2nd ‘𝐴))), ((2nd ‘𝐴) ·N (2nd ‘𝐵))〉) | |
| 5 | addpipq2 10837 | . . . 4 ⊢ ((𝐵 ∈ (N × N) ∧ 𝐴 ∈ (N × N)) → (𝐵 +pQ 𝐴) = 〈(((1st ‘𝐵) ·N (2nd ‘𝐴)) +N ((1st ‘𝐴) ·N (2nd ‘𝐵))), ((2nd ‘𝐵) ·N (2nd ‘𝐴))〉) | |
| 6 | 5 | ancoms 458 | . . 3 ⊢ ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → (𝐵 +pQ 𝐴) = 〈(((1st ‘𝐵) ·N (2nd ‘𝐴)) +N ((1st ‘𝐴) ·N (2nd ‘𝐵))), ((2nd ‘𝐵) ·N (2nd ‘𝐴))〉) |
| 7 | 3, 4, 6 | 3eqtr4a 2794 | . 2 ⊢ ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → (𝐴 +pQ 𝐵) = (𝐵 +pQ 𝐴)) |
| 8 | addpqf 10845 | . . . 4 ⊢ +pQ :((N × N) × (N × N))⟶(N × N) | |
| 9 | 8 | fdmi 6670 | . . 3 ⊢ dom +pQ = ((N × N) × (N × N)) |
| 10 | 9 | ndmovcom 7542 | . 2 ⊢ (¬ (𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → (𝐴 +pQ 𝐵) = (𝐵 +pQ 𝐴)) |
| 11 | 7, 10 | pm2.61i 182 | 1 ⊢ (𝐴 +pQ 𝐵) = (𝐵 +pQ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1541 ∈ wcel 2113 〈cop 4583 × cxp 5619 ‘cfv 6489 (class class class)co 7355 1st c1st 7928 2nd c2nd 7929 Ncnpi 10745 +N cpli 10746 ·N cmi 10747 +pQ cplpq 10749 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pr 5374 ax-un 7677 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2883 df-ne 2931 df-ral 3050 df-rex 3059 df-reu 3349 df-rab 3398 df-v 3440 df-sbc 3739 df-csb 3848 df-dif 3902 df-un 3904 df-in 3906 df-ss 3916 df-pss 3919 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6256 df-ord 6317 df-on 6318 df-lim 6319 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-ov 7358 df-oprab 7359 df-mpo 7360 df-om 7806 df-1st 7930 df-2nd 7931 df-frecs 8220 df-wrecs 8251 df-recs 8300 df-rdg 8338 df-oadd 8398 df-omul 8399 df-ni 10773 df-pli 10774 df-mi 10775 df-plpq 10809 |
| This theorem is referenced by: addcomnq 10852 adderpq 10857 |
| Copyright terms: Public domain | W3C validator |