MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  addcompq Structured version   Visualization version   GIF version

Theorem addcompq 10637
Description: Addition of positive fractions is commutative. (Contributed by NM, 30-Aug-1995.) (Revised by Mario Carneiro, 28-Apr-2013.) (New usage is discouraged.)
Assertion
Ref Expression
addcompq (𝐴 +pQ 𝐵) = (𝐵 +pQ 𝐴)

Proof of Theorem addcompq
StepHypRef Expression
1 addcompi 10581 . . . 4 (((1st𝐴) ·N (2nd𝐵)) +N ((1st𝐵) ·N (2nd𝐴))) = (((1st𝐵) ·N (2nd𝐴)) +N ((1st𝐴) ·N (2nd𝐵)))
2 mulcompi 10583 . . . 4 ((2nd𝐴) ·N (2nd𝐵)) = ((2nd𝐵) ·N (2nd𝐴))
31, 2opeq12i 4806 . . 3 ⟨(((1st𝐴) ·N (2nd𝐵)) +N ((1st𝐵) ·N (2nd𝐴))), ((2nd𝐴) ·N (2nd𝐵))⟩ = ⟨(((1st𝐵) ·N (2nd𝐴)) +N ((1st𝐴) ·N (2nd𝐵))), ((2nd𝐵) ·N (2nd𝐴))⟩
4 addpipq2 10623 . . 3 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → (𝐴 +pQ 𝐵) = ⟨(((1st𝐴) ·N (2nd𝐵)) +N ((1st𝐵) ·N (2nd𝐴))), ((2nd𝐴) ·N (2nd𝐵))⟩)
5 addpipq2 10623 . . . 4 ((𝐵 ∈ (N × N) ∧ 𝐴 ∈ (N × N)) → (𝐵 +pQ 𝐴) = ⟨(((1st𝐵) ·N (2nd𝐴)) +N ((1st𝐴) ·N (2nd𝐵))), ((2nd𝐵) ·N (2nd𝐴))⟩)
65ancoms 458 . . 3 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → (𝐵 +pQ 𝐴) = ⟨(((1st𝐵) ·N (2nd𝐴)) +N ((1st𝐴) ·N (2nd𝐵))), ((2nd𝐵) ·N (2nd𝐴))⟩)
73, 4, 63eqtr4a 2805 . 2 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → (𝐴 +pQ 𝐵) = (𝐵 +pQ 𝐴))
8 addpqf 10631 . . . 4 +pQ :((N × N) × (N × N))⟶(N × N)
98fdmi 6596 . . 3 dom +pQ = ((N × N) × (N × N))
109ndmovcom 7437 . 2 (¬ (𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → (𝐴 +pQ 𝐵) = (𝐵 +pQ 𝐴))
117, 10pm2.61i 182 1 (𝐴 +pQ 𝐵) = (𝐵 +pQ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1539  wcel 2108  cop 4564   × cxp 5578  cfv 6418  (class class class)co 7255  1st c1st 7802  2nd c2nd 7803  Ncnpi 10531   +N cpli 10532   ·N cmi 10533   +pQ cplpq 10535
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-oadd 8271  df-omul 8272  df-ni 10559  df-pli 10560  df-mi 10561  df-plpq 10595
This theorem is referenced by:  addcomnq  10638  adderpq  10643
  Copyright terms: Public domain W3C validator