Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > addcompq | Structured version Visualization version GIF version |
Description: Addition of positive fractions is commutative. (Contributed by NM, 30-Aug-1995.) (Revised by Mario Carneiro, 28-Apr-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
addcompq | ⊢ (𝐴 +pQ 𝐵) = (𝐵 +pQ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | addcompi 10650 | . . . 4 ⊢ (((1st ‘𝐴) ·N (2nd ‘𝐵)) +N ((1st ‘𝐵) ·N (2nd ‘𝐴))) = (((1st ‘𝐵) ·N (2nd ‘𝐴)) +N ((1st ‘𝐴) ·N (2nd ‘𝐵))) | |
2 | mulcompi 10652 | . . . 4 ⊢ ((2nd ‘𝐴) ·N (2nd ‘𝐵)) = ((2nd ‘𝐵) ·N (2nd ‘𝐴)) | |
3 | 1, 2 | opeq12i 4809 | . . 3 ⊢ 〈(((1st ‘𝐴) ·N (2nd ‘𝐵)) +N ((1st ‘𝐵) ·N (2nd ‘𝐴))), ((2nd ‘𝐴) ·N (2nd ‘𝐵))〉 = 〈(((1st ‘𝐵) ·N (2nd ‘𝐴)) +N ((1st ‘𝐴) ·N (2nd ‘𝐵))), ((2nd ‘𝐵) ·N (2nd ‘𝐴))〉 |
4 | addpipq2 10692 | . . 3 ⊢ ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → (𝐴 +pQ 𝐵) = 〈(((1st ‘𝐴) ·N (2nd ‘𝐵)) +N ((1st ‘𝐵) ·N (2nd ‘𝐴))), ((2nd ‘𝐴) ·N (2nd ‘𝐵))〉) | |
5 | addpipq2 10692 | . . . 4 ⊢ ((𝐵 ∈ (N × N) ∧ 𝐴 ∈ (N × N)) → (𝐵 +pQ 𝐴) = 〈(((1st ‘𝐵) ·N (2nd ‘𝐴)) +N ((1st ‘𝐴) ·N (2nd ‘𝐵))), ((2nd ‘𝐵) ·N (2nd ‘𝐴))〉) | |
6 | 5 | ancoms 459 | . . 3 ⊢ ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → (𝐵 +pQ 𝐴) = 〈(((1st ‘𝐵) ·N (2nd ‘𝐴)) +N ((1st ‘𝐴) ·N (2nd ‘𝐵))), ((2nd ‘𝐵) ·N (2nd ‘𝐴))〉) |
7 | 3, 4, 6 | 3eqtr4a 2804 | . 2 ⊢ ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → (𝐴 +pQ 𝐵) = (𝐵 +pQ 𝐴)) |
8 | addpqf 10700 | . . . 4 ⊢ +pQ :((N × N) × (N × N))⟶(N × N) | |
9 | 8 | fdmi 6612 | . . 3 ⊢ dom +pQ = ((N × N) × (N × N)) |
10 | 9 | ndmovcom 7459 | . 2 ⊢ (¬ (𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → (𝐴 +pQ 𝐵) = (𝐵 +pQ 𝐴)) |
11 | 7, 10 | pm2.61i 182 | 1 ⊢ (𝐴 +pQ 𝐵) = (𝐵 +pQ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 396 = wceq 1539 ∈ wcel 2106 〈cop 4567 × cxp 5587 ‘cfv 6433 (class class class)co 7275 1st c1st 7829 2nd c2nd 7830 Ncnpi 10600 +N cpli 10601 ·N cmi 10602 +pQ cplpq 10604 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-1st 7831 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-oadd 8301 df-omul 8302 df-ni 10628 df-pli 10629 df-mi 10630 df-plpq 10664 |
This theorem is referenced by: addcomnq 10707 adderpq 10712 |
Copyright terms: Public domain | W3C validator |