| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > addcompq | Structured version Visualization version GIF version | ||
| Description: Addition of positive fractions is commutative. (Contributed by NM, 30-Aug-1995.) (Revised by Mario Carneiro, 28-Apr-2013.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| addcompq | ⊢ (𝐴 +pQ 𝐵) = (𝐵 +pQ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | addcompi 10934 | . . . 4 ⊢ (((1st ‘𝐴) ·N (2nd ‘𝐵)) +N ((1st ‘𝐵) ·N (2nd ‘𝐴))) = (((1st ‘𝐵) ·N (2nd ‘𝐴)) +N ((1st ‘𝐴) ·N (2nd ‘𝐵))) | |
| 2 | mulcompi 10936 | . . . 4 ⊢ ((2nd ‘𝐴) ·N (2nd ‘𝐵)) = ((2nd ‘𝐵) ·N (2nd ‘𝐴)) | |
| 3 | 1, 2 | opeq12i 4878 | . . 3 ⊢ 〈(((1st ‘𝐴) ·N (2nd ‘𝐵)) +N ((1st ‘𝐵) ·N (2nd ‘𝐴))), ((2nd ‘𝐴) ·N (2nd ‘𝐵))〉 = 〈(((1st ‘𝐵) ·N (2nd ‘𝐴)) +N ((1st ‘𝐴) ·N (2nd ‘𝐵))), ((2nd ‘𝐵) ·N (2nd ‘𝐴))〉 |
| 4 | addpipq2 10976 | . . 3 ⊢ ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → (𝐴 +pQ 𝐵) = 〈(((1st ‘𝐴) ·N (2nd ‘𝐵)) +N ((1st ‘𝐵) ·N (2nd ‘𝐴))), ((2nd ‘𝐴) ·N (2nd ‘𝐵))〉) | |
| 5 | addpipq2 10976 | . . . 4 ⊢ ((𝐵 ∈ (N × N) ∧ 𝐴 ∈ (N × N)) → (𝐵 +pQ 𝐴) = 〈(((1st ‘𝐵) ·N (2nd ‘𝐴)) +N ((1st ‘𝐴) ·N (2nd ‘𝐵))), ((2nd ‘𝐵) ·N (2nd ‘𝐴))〉) | |
| 6 | 5 | ancoms 458 | . . 3 ⊢ ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → (𝐵 +pQ 𝐴) = 〈(((1st ‘𝐵) ·N (2nd ‘𝐴)) +N ((1st ‘𝐴) ·N (2nd ‘𝐵))), ((2nd ‘𝐵) ·N (2nd ‘𝐴))〉) |
| 7 | 3, 4, 6 | 3eqtr4a 2803 | . 2 ⊢ ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → (𝐴 +pQ 𝐵) = (𝐵 +pQ 𝐴)) |
| 8 | addpqf 10984 | . . . 4 ⊢ +pQ :((N × N) × (N × N))⟶(N × N) | |
| 9 | 8 | fdmi 6747 | . . 3 ⊢ dom +pQ = ((N × N) × (N × N)) |
| 10 | 9 | ndmovcom 7620 | . 2 ⊢ (¬ (𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → (𝐴 +pQ 𝐵) = (𝐵 +pQ 𝐴)) |
| 11 | 7, 10 | pm2.61i 182 | 1 ⊢ (𝐴 +pQ 𝐵) = (𝐵 +pQ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1540 ∈ wcel 2108 〈cop 4632 × cxp 5683 ‘cfv 6561 (class class class)co 7431 1st c1st 8012 2nd c2nd 8013 Ncnpi 10884 +N cpli 10885 ·N cmi 10886 +pQ cplpq 10888 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pr 5432 ax-un 7755 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8014 df-2nd 8015 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-oadd 8510 df-omul 8511 df-ni 10912 df-pli 10913 df-mi 10914 df-plpq 10948 |
| This theorem is referenced by: addcomnq 10991 adderpq 10996 |
| Copyright terms: Public domain | W3C validator |