MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ovconst2 Structured version   Visualization version   GIF version

Theorem ovconst2 7569
Description: The value of a constant operation. (Contributed by NM, 5-Nov-2006.)
Hypothesis
Ref Expression
oprvalconst2.1 𝐶 ∈ V
Assertion
Ref Expression
ovconst2 ((𝑅𝐴𝑆𝐵) → (𝑅((𝐴 × 𝐵) × {𝐶})𝑆) = 𝐶)

Proof of Theorem ovconst2
StepHypRef Expression
1 df-ov 7390 . 2 (𝑅((𝐴 × 𝐵) × {𝐶})𝑆) = (((𝐴 × 𝐵) × {𝐶})‘⟨𝑅, 𝑆⟩)
2 opelxpi 5675 . . 3 ((𝑅𝐴𝑆𝐵) → ⟨𝑅, 𝑆⟩ ∈ (𝐴 × 𝐵))
3 oprvalconst2.1 . . . 4 𝐶 ∈ V
43fvconst2 7178 . . 3 (⟨𝑅, 𝑆⟩ ∈ (𝐴 × 𝐵) → (((𝐴 × 𝐵) × {𝐶})‘⟨𝑅, 𝑆⟩) = 𝐶)
52, 4syl 17 . 2 ((𝑅𝐴𝑆𝐵) → (((𝐴 × 𝐵) × {𝐶})‘⟨𝑅, 𝑆⟩) = 𝐶)
61, 5eqtrid 2776 1 ((𝑅𝐴𝑆𝐵) → (𝑅((𝐴 × 𝐵) × {𝐶})𝑆) = 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  Vcvv 3447  {csn 4589  cop 4595   × cxp 5636  cfv 6511  (class class class)co 7387
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-fv 6519  df-ov 7390
This theorem is referenced by:  nelsubclem  49056  indthinc  49451  indthincALT  49452
  Copyright terms: Public domain W3C validator