MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ovconst2 Structured version   Visualization version   GIF version

Theorem ovconst2 7613
Description: The value of a constant operation. (Contributed by NM, 5-Nov-2006.)
Hypothesis
Ref Expression
oprvalconst2.1 𝐶 ∈ V
Assertion
Ref Expression
ovconst2 ((𝑅𝐴𝑆𝐵) → (𝑅((𝐴 × 𝐵) × {𝐶})𝑆) = 𝐶)

Proof of Theorem ovconst2
StepHypRef Expression
1 df-ov 7434 . 2 (𝑅((𝐴 × 𝐵) × {𝐶})𝑆) = (((𝐴 × 𝐵) × {𝐶})‘⟨𝑅, 𝑆⟩)
2 opelxpi 5726 . . 3 ((𝑅𝐴𝑆𝐵) → ⟨𝑅, 𝑆⟩ ∈ (𝐴 × 𝐵))
3 oprvalconst2.1 . . . 4 𝐶 ∈ V
43fvconst2 7224 . . 3 (⟨𝑅, 𝑆⟩ ∈ (𝐴 × 𝐵) → (((𝐴 × 𝐵) × {𝐶})‘⟨𝑅, 𝑆⟩) = 𝐶)
52, 4syl 17 . 2 ((𝑅𝐴𝑆𝐵) → (((𝐴 × 𝐵) × {𝐶})‘⟨𝑅, 𝑆⟩) = 𝐶)
61, 5eqtrid 2787 1 ((𝑅𝐴𝑆𝐵) → (𝑅((𝐴 × 𝐵) × {𝐶})𝑆) = 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2106  Vcvv 3478  {csn 4631  cop 4637   × cxp 5687  cfv 6563  (class class class)co 7431
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-fv 6571  df-ov 7434
This theorem is referenced by:  indthinc  48853  indthincALT  48854
  Copyright terms: Public domain W3C validator