Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > opvtxval | Structured version Visualization version GIF version |
Description: The set of vertices of a graph represented as an ordered pair of vertices and indexed edges. (Contributed by AV, 9-Jan-2020.) (Revised by AV, 21-Sep-2020.) |
Ref | Expression |
---|---|
opvtxval | ⊢ (𝐺 ∈ (V × V) → (Vtx‘𝐺) = (1st ‘𝐺)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vtxval 27659 | . 2 ⊢ (Vtx‘𝐺) = if(𝐺 ∈ (V × V), (1st ‘𝐺), (Base‘𝐺)) | |
2 | iftrue 4484 | . 2 ⊢ (𝐺 ∈ (V × V) → if(𝐺 ∈ (V × V), (1st ‘𝐺), (Base‘𝐺)) = (1st ‘𝐺)) | |
3 | 1, 2 | eqtrid 2789 | 1 ⊢ (𝐺 ∈ (V × V) → (Vtx‘𝐺) = (1st ‘𝐺)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2106 Vcvv 3442 ifcif 4478 × cxp 5623 ‘cfv 6484 1st c1st 7902 Basecbs 17010 Vtxcvtx 27655 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2708 ax-sep 5248 ax-nul 5255 ax-pr 5377 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3405 df-v 3444 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4275 df-if 4479 df-sn 4579 df-pr 4581 df-op 4585 df-uni 4858 df-br 5098 df-opab 5160 df-mpt 5181 df-id 5523 df-xp 5631 df-rel 5632 df-cnv 5633 df-co 5634 df-dm 5635 df-iota 6436 df-fun 6486 df-fv 6492 df-vtx 27657 |
This theorem is referenced by: opvtxfv 27663 |
Copyright terms: Public domain | W3C validator |