![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > opvtxval | Structured version Visualization version GIF version |
Description: The set of vertices of a graph represented as an ordered pair of vertices and indexed edges. (Contributed by AV, 9-Jan-2020.) (Revised by AV, 21-Sep-2020.) |
Ref | Expression |
---|---|
opvtxval | ⊢ (𝐺 ∈ (V × V) → (Vtx‘𝐺) = (1st ‘𝐺)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vtxval 26348 | . 2 ⊢ (Vtx‘𝐺) = if(𝐺 ∈ (V × V), (1st ‘𝐺), (Base‘𝐺)) | |
2 | iftrue 4312 | . 2 ⊢ (𝐺 ∈ (V × V) → if(𝐺 ∈ (V × V), (1st ‘𝐺), (Base‘𝐺)) = (1st ‘𝐺)) | |
3 | 1, 2 | syl5eq 2825 | 1 ⊢ (𝐺 ∈ (V × V) → (Vtx‘𝐺) = (1st ‘𝐺)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1601 ∈ wcel 2106 Vcvv 3397 ifcif 4306 × cxp 5353 ‘cfv 6135 1st c1st 7443 Basecbs 16255 Vtxcvtx 26344 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2054 ax-8 2108 ax-9 2115 ax-10 2134 ax-11 2149 ax-12 2162 ax-13 2333 ax-ext 2753 ax-sep 5017 ax-nul 5025 ax-pow 5077 ax-pr 5138 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2550 df-eu 2586 df-clab 2763 df-cleq 2769 df-clel 2773 df-nfc 2920 df-ral 3094 df-rex 3095 df-rab 3098 df-v 3399 df-sbc 3652 df-dif 3794 df-un 3796 df-in 3798 df-ss 3805 df-nul 4141 df-if 4307 df-sn 4398 df-pr 4400 df-op 4404 df-uni 4672 df-br 4887 df-opab 4949 df-mpt 4966 df-id 5261 df-xp 5361 df-rel 5362 df-cnv 5363 df-co 5364 df-dm 5365 df-iota 6099 df-fun 6137 df-fv 6143 df-vtx 26346 |
This theorem is referenced by: opvtxfv 26352 |
Copyright terms: Public domain | W3C validator |