| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 1vgrex | Structured version Visualization version GIF version | ||
| Description: A graph with at least one vertex is a set. (Contributed by AV, 2-Mar-2021.) |
| Ref | Expression |
|---|---|
| 1vgrex.v | ⊢ 𝑉 = (Vtx‘𝐺) |
| Ref | Expression |
|---|---|
| 1vgrex | ⊢ (𝑁 ∈ 𝑉 → 𝐺 ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfvex 6862 | . 2 ⊢ (𝑁 ∈ (Vtx‘𝐺) → 𝐺 ∈ V) | |
| 2 | 1vgrex.v | . 2 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 3 | 1, 2 | eleq2s 2846 | 1 ⊢ (𝑁 ∈ 𝑉 → 𝐺 ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 Vcvv 3438 ‘cfv 6486 Vtxcvtx 28959 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-dm 5633 df-iota 6442 df-fv 6494 |
| This theorem is referenced by: upgr1e 29076 uspgr1e 29207 nbgrval 29299 cplgr1vlem 29392 vtxdgval 29432 vtxdgelxnn0 29436 wlkson 29618 trlsonfval 29667 pthsonfval 29703 spthson 29704 2wlkd 29899 is0wlk 30079 0wlkon 30082 is0trl 30085 0trlon 30086 0pthon 30089 0clwlkv 30093 1wlkd 30103 3wlkd 30132 wlkl0 30329 clnbgrval 47807 isgrtri 47926 |
| Copyright terms: Public domain | W3C validator |