![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 1vgrex | Structured version Visualization version GIF version |
Description: A graph with at least one vertex is a set. (Contributed by AV, 2-Mar-2021.) |
Ref | Expression |
---|---|
1vgrex.v | ⊢ 𝑉 = (Vtx‘𝐺) |
Ref | Expression |
---|---|
1vgrex | ⊢ (𝑁 ∈ 𝑉 → 𝐺 ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfvex 6958 | . 2 ⊢ (𝑁 ∈ (Vtx‘𝐺) → 𝐺 ∈ V) | |
2 | 1vgrex.v | . 2 ⊢ 𝑉 = (Vtx‘𝐺) | |
3 | 1, 2 | eleq2s 2862 | 1 ⊢ (𝑁 ∈ 𝑉 → 𝐺 ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2108 Vcvv 3488 ‘cfv 6573 Vtxcvtx 29031 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-dm 5710 df-iota 6525 df-fv 6581 |
This theorem is referenced by: upgr1e 29148 uspgr1e 29279 nbgrval 29371 cplgr1vlem 29464 vtxdgval 29504 vtxdgelxnn0 29508 wlkson 29692 trlsonfval 29742 pthsonfval 29776 spthson 29777 2wlkd 29969 is0wlk 30149 0wlkon 30152 is0trl 30155 0trlon 30156 0pthon 30159 0clwlkv 30163 1wlkd 30173 3wlkd 30202 wlkl0 30399 clnbgrval 47696 isgrtri 47794 |
Copyright terms: Public domain | W3C validator |