MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  1vgrex Structured version   Visualization version   GIF version

Theorem 1vgrex 29019
Description: A graph with at least one vertex is a set. (Contributed by AV, 2-Mar-2021.)
Hypothesis
Ref Expression
1vgrex.v 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
1vgrex (𝑁𝑉𝐺 ∈ V)

Proof of Theorem 1vgrex
StepHypRef Expression
1 elfvex 6944 . 2 (𝑁 ∈ (Vtx‘𝐺) → 𝐺 ∈ V)
2 1vgrex.v . 2 𝑉 = (Vtx‘𝐺)
31, 2eleq2s 2859 1 (𝑁𝑉𝐺 ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2108  Vcvv 3480  cfv 6561  Vtxcvtx 29013
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-nul 5306  ax-pr 5432
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3482  df-dif 3954  df-un 3956  df-ss 3968  df-nul 4334  df-if 4526  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-br 5144  df-dm 5695  df-iota 6514  df-fv 6569
This theorem is referenced by:  upgr1e  29130  uspgr1e  29261  nbgrval  29353  cplgr1vlem  29446  vtxdgval  29486  vtxdgelxnn0  29490  wlkson  29674  trlsonfval  29724  pthsonfval  29760  spthson  29761  2wlkd  29956  is0wlk  30136  0wlkon  30139  is0trl  30142  0trlon  30143  0pthon  30146  0clwlkv  30150  1wlkd  30160  3wlkd  30189  wlkl0  30386  clnbgrval  47809  isgrtri  47910
  Copyright terms: Public domain W3C validator