![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 1vgrex | Structured version Visualization version GIF version |
Description: A graph with at least one vertex is a set. (Contributed by AV, 2-Mar-2021.) |
Ref | Expression |
---|---|
1vgrex.v | ⊢ 𝑉 = (Vtx‘𝐺) |
Ref | Expression |
---|---|
1vgrex | ⊢ (𝑁 ∈ 𝑉 → 𝐺 ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfvex 6930 | . 2 ⊢ (𝑁 ∈ (Vtx‘𝐺) → 𝐺 ∈ V) | |
2 | 1vgrex.v | . 2 ⊢ 𝑉 = (Vtx‘𝐺) | |
3 | 1, 2 | eleq2s 2847 | 1 ⊢ (𝑁 ∈ 𝑉 → 𝐺 ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1534 ∈ wcel 2099 Vcvv 3470 ‘cfv 6543 Vtxcvtx 28803 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-nul 5301 ax-pr 5424 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-ral 3058 df-rex 3067 df-rab 3429 df-v 3472 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-nul 4320 df-if 4526 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4905 df-br 5144 df-dm 5683 df-iota 6495 df-fv 6551 |
This theorem is referenced by: upgr1e 28920 uspgr1e 29051 nbgrval 29143 cplgr1vlem 29236 vtxdgval 29276 vtxdgelxnn0 29280 wlkson 29464 trlsonfval 29514 pthsonfval 29548 spthson 29549 2wlkd 29741 is0wlk 29921 0wlkon 29924 is0trl 29927 0trlon 29928 0pthon 29931 0clwlkv 29935 1wlkd 29945 3wlkd 29974 wlkl0 30171 |
Copyright terms: Public domain | W3C validator |