MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  1vgrex Structured version   Visualization version   GIF version

Theorem 1vgrex 28929
Description: A graph with at least one vertex is a set. (Contributed by AV, 2-Mar-2021.)
Hypothesis
Ref Expression
1vgrex.v 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
1vgrex (𝑁𝑉𝐺 ∈ V)

Proof of Theorem 1vgrex
StepHypRef Expression
1 elfvex 6896 . 2 (𝑁 ∈ (Vtx‘𝐺) → 𝐺 ∈ V)
2 1vgrex.v . 2 𝑉 = (Vtx‘𝐺)
31, 2eleq2s 2846 1 (𝑁𝑉𝐺 ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  Vcvv 3447  cfv 6511  Vtxcvtx 28923
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-dm 5648  df-iota 6464  df-fv 6519
This theorem is referenced by:  upgr1e  29040  uspgr1e  29171  nbgrval  29263  cplgr1vlem  29356  vtxdgval  29396  vtxdgelxnn0  29400  wlkson  29584  trlsonfval  29634  pthsonfval  29670  spthson  29671  2wlkd  29866  is0wlk  30046  0wlkon  30049  is0trl  30052  0trlon  30053  0pthon  30056  0clwlkv  30060  1wlkd  30070  3wlkd  30099  wlkl0  30296  clnbgrval  47823  isgrtri  47942
  Copyright terms: Public domain W3C validator