| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 1vgrex | Structured version Visualization version GIF version | ||
| Description: A graph with at least one vertex is a set. (Contributed by AV, 2-Mar-2021.) |
| Ref | Expression |
|---|---|
| 1vgrex.v | ⊢ 𝑉 = (Vtx‘𝐺) |
| Ref | Expression |
|---|---|
| 1vgrex | ⊢ (𝑁 ∈ 𝑉 → 𝐺 ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfvex 6852 | . 2 ⊢ (𝑁 ∈ (Vtx‘𝐺) → 𝐺 ∈ V) | |
| 2 | 1vgrex.v | . 2 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 3 | 1, 2 | eleq2s 2847 | 1 ⊢ (𝑁 ∈ 𝑉 → 𝐺 ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2110 Vcvv 3434 ‘cfv 6477 Vtxcvtx 28967 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-11 2159 ax-12 2179 ax-ext 2702 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-rex 3055 df-rab 3394 df-v 3436 df-dif 3903 df-un 3905 df-ss 3917 df-nul 4282 df-if 4474 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4858 df-br 5090 df-dm 5624 df-iota 6433 df-fv 6485 |
| This theorem is referenced by: upgr1e 29084 uspgr1e 29215 nbgrval 29307 cplgr1vlem 29400 vtxdgval 29440 vtxdgelxnn0 29444 wlkson 29626 trlsonfval 29675 pthsonfval 29711 spthson 29712 2wlkd 29907 is0wlk 30087 0wlkon 30090 is0trl 30093 0trlon 30094 0pthon 30097 0clwlkv 30101 1wlkd 30111 3wlkd 30140 wlkl0 30337 clnbgrval 47832 isgrtri 47953 |
| Copyright terms: Public domain | W3C validator |