MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  1vgrex Structured version   Visualization version   GIF version

Theorem 1vgrex 28802
Description: A graph with at least one vertex is a set. (Contributed by AV, 2-Mar-2021.)
Hypothesis
Ref Expression
1vgrex.v 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
1vgrex (𝑁 ∈ 𝑉 → 𝐺 ∈ V)

Proof of Theorem 1vgrex
StepHypRef Expression
1 elfvex 6929 . 2 (𝑁 ∈ (Vtx‘𝐺) → 𝐺 ∈ V)
2 1vgrex.v . 2 𝑉 = (Vtx‘𝐺)
31, 2eleq2s 2846 1 (𝑁 ∈ 𝑉 → 𝐺 ∈ V)
Colors of variables: wff setvar class
Syntax hints:   → wi 4   = wceq 1534   ∈ wcel 2099  Vcvv 3469  â€˜cfv 6542  Vtxcvtx 28796
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698  ax-nul 5300  ax-pr 5423
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-ral 3057  df-rex 3066  df-rab 3428  df-v 3471  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4319  df-if 4525  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-br 5143  df-dm 5682  df-iota 6494  df-fv 6550
This theorem is referenced by:  upgr1e  28913  uspgr1e  29044  nbgrval  29136  cplgr1vlem  29229  vtxdgval  29269  vtxdgelxnn0  29273  wlkson  29457  trlsonfval  29507  pthsonfval  29541  spthson  29542  2wlkd  29734  is0wlk  29914  0wlkon  29917  is0trl  29920  0trlon  29921  0pthon  29924  0clwlkv  29928  1wlkd  29938  3wlkd  29967  wlkl0  30164
  Copyright terms: Public domain W3C validator