MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  1vgrex Structured version   Visualization version   GIF version

Theorem 1vgrex 28981
Description: A graph with at least one vertex is a set. (Contributed by AV, 2-Mar-2021.)
Hypothesis
Ref Expression
1vgrex.v 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
1vgrex (𝑁𝑉𝐺 ∈ V)

Proof of Theorem 1vgrex
StepHypRef Expression
1 elfvex 6914 . 2 (𝑁 ∈ (Vtx‘𝐺) → 𝐺 ∈ V)
2 1vgrex.v . 2 𝑉 = (Vtx‘𝐺)
31, 2eleq2s 2852 1 (𝑁𝑉𝐺 ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2108  Vcvv 3459  cfv 6531  Vtxcvtx 28975
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-nul 5276  ax-pr 5402
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-ss 3943  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-dm 5664  df-iota 6484  df-fv 6539
This theorem is referenced by:  upgr1e  29092  uspgr1e  29223  nbgrval  29315  cplgr1vlem  29408  vtxdgval  29448  vtxdgelxnn0  29452  wlkson  29636  trlsonfval  29686  pthsonfval  29722  spthson  29723  2wlkd  29918  is0wlk  30098  0wlkon  30101  is0trl  30104  0trlon  30105  0pthon  30108  0clwlkv  30112  1wlkd  30122  3wlkd  30151  wlkl0  30348  clnbgrval  47836  isgrtri  47955
  Copyright terms: Public domain W3C validator