| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 1vgrex | Structured version Visualization version GIF version | ||
| Description: A graph with at least one vertex is a set. (Contributed by AV, 2-Mar-2021.) |
| Ref | Expression |
|---|---|
| 1vgrex.v | ⊢ 𝑉 = (Vtx‘𝐺) |
| Ref | Expression |
|---|---|
| 1vgrex | ⊢ (𝑁 ∈ 𝑉 → 𝐺 ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfvex 6896 | . 2 ⊢ (𝑁 ∈ (Vtx‘𝐺) → 𝐺 ∈ V) | |
| 2 | 1vgrex.v | . 2 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 3 | 1, 2 | eleq2s 2846 | 1 ⊢ (𝑁 ∈ 𝑉 → 𝐺 ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 Vcvv 3447 ‘cfv 6511 Vtxcvtx 28923 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-dm 5648 df-iota 6464 df-fv 6519 |
| This theorem is referenced by: upgr1e 29040 uspgr1e 29171 nbgrval 29263 cplgr1vlem 29356 vtxdgval 29396 vtxdgelxnn0 29400 wlkson 29584 trlsonfval 29634 pthsonfval 29670 spthson 29671 2wlkd 29866 is0wlk 30046 0wlkon 30049 is0trl 30052 0trlon 30053 0pthon 30056 0clwlkv 30060 1wlkd 30070 3wlkd 30099 wlkl0 30296 clnbgrval 47823 isgrtri 47942 |
| Copyright terms: Public domain | W3C validator |