MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  1vgrex Structured version   Visualization version   GIF version

Theorem 1vgrex 28965
Description: A graph with at least one vertex is a set. (Contributed by AV, 2-Mar-2021.)
Hypothesis
Ref Expression
1vgrex.v 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
1vgrex (𝑁𝑉𝐺 ∈ V)

Proof of Theorem 1vgrex
StepHypRef Expression
1 elfvex 6862 . 2 (𝑁 ∈ (Vtx‘𝐺) → 𝐺 ∈ V)
2 1vgrex.v . 2 𝑉 = (Vtx‘𝐺)
31, 2eleq2s 2846 1 (𝑁𝑉𝐺 ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  Vcvv 3438  cfv 6486  Vtxcvtx 28959
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-dif 3908  df-un 3910  df-ss 3922  df-nul 4287  df-if 4479  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-dm 5633  df-iota 6442  df-fv 6494
This theorem is referenced by:  upgr1e  29076  uspgr1e  29207  nbgrval  29299  cplgr1vlem  29392  vtxdgval  29432  vtxdgelxnn0  29436  wlkson  29618  trlsonfval  29667  pthsonfval  29703  spthson  29704  2wlkd  29899  is0wlk  30079  0wlkon  30082  is0trl  30085  0trlon  30086  0pthon  30089  0clwlkv  30093  1wlkd  30103  3wlkd  30132  wlkl0  30329  clnbgrval  47807  isgrtri  47926
  Copyright terms: Public domain W3C validator