Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 1vgrex | Structured version Visualization version GIF version |
Description: A graph with at least one vertex is a set. (Contributed by AV, 2-Mar-2021.) |
Ref | Expression |
---|---|
1vgrex.v | ⊢ 𝑉 = (Vtx‘𝐺) |
Ref | Expression |
---|---|
1vgrex | ⊢ (𝑁 ∈ 𝑉 → 𝐺 ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfvex 6802 | . 2 ⊢ (𝑁 ∈ (Vtx‘𝐺) → 𝐺 ∈ V) | |
2 | 1vgrex.v | . 2 ⊢ 𝑉 = (Vtx‘𝐺) | |
3 | 1, 2 | eleq2s 2859 | 1 ⊢ (𝑁 ∈ 𝑉 → 𝐺 ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1542 ∈ wcel 2110 Vcvv 3431 ‘cfv 6431 Vtxcvtx 27356 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-sep 5227 ax-nul 5234 ax-pr 5356 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-ne 2946 df-ral 3071 df-rex 3072 df-rab 3075 df-v 3433 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-sn 4568 df-pr 4570 df-op 4574 df-uni 4846 df-br 5080 df-dm 5599 df-iota 6389 df-fv 6439 |
This theorem is referenced by: upgr1e 27473 uspgr1e 27601 nbgrval 27693 cplgr1vlem 27786 vtxdgval 27825 vtxdgelxnn0 27829 wlkson 28013 trlsonfval 28062 pthsonfval 28096 spthson 28097 2wlkd 28289 is0wlk 28469 0wlkon 28472 is0trl 28475 0trlon 28476 0pthon 28479 0clwlkv 28483 1wlkd 28493 3wlkd 28522 wlkl0 28719 |
Copyright terms: Public domain | W3C validator |