| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 1vgrex | Structured version Visualization version GIF version | ||
| Description: A graph with at least one vertex is a set. (Contributed by AV, 2-Mar-2021.) |
| Ref | Expression |
|---|---|
| 1vgrex.v | ⊢ 𝑉 = (Vtx‘𝐺) |
| Ref | Expression |
|---|---|
| 1vgrex | ⊢ (𝑁 ∈ 𝑉 → 𝐺 ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfvex 6866 | . 2 ⊢ (𝑁 ∈ (Vtx‘𝐺) → 𝐺 ∈ V) | |
| 2 | 1vgrex.v | . 2 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 3 | 1, 2 | eleq2s 2851 | 1 ⊢ (𝑁 ∈ 𝑉 → 𝐺 ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2113 Vcvv 3438 ‘cfv 6489 Vtxcvtx 28985 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-ne 2931 df-rab 3398 df-v 3440 df-dif 3902 df-un 3904 df-ss 3916 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-dm 5631 df-iota 6445 df-fv 6497 |
| This theorem is referenced by: upgr1e 29102 uspgr1e 29233 nbgrval 29325 cplgr1vlem 29418 vtxdgval 29458 vtxdgelxnn0 29462 wlkson 29644 trlsonfval 29693 pthsonfval 29729 spthson 29730 2wlkd 29925 is0wlk 30108 0wlkon 30111 is0trl 30114 0trlon 30115 0pthon 30118 0clwlkv 30122 1wlkd 30132 3wlkd 30161 wlkl0 30358 clnbgrval 47936 isgrtri 48057 |
| Copyright terms: Public domain | W3C validator |