|   | Mathbox for Richard Penner | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > oege1 | Structured version Visualization version GIF version | ||
| Description: Any non-zero ordinal power is greater-than-or-equal to the term on the left. Lemma 3.19 of [Schloeder] p. 10. See oewordi 8630. (Contributed by RP, 29-Jan-2025.) | 
| Ref | Expression | 
|---|---|
| oege1 | ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐵 ≠ ∅) → 𝐴 ⊆ (𝐴 ↑o 𝐵)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | id 22 | . . . 4 ⊢ (𝐴 = ∅ → 𝐴 = ∅) | |
| 2 | 0ss 4399 | . . . 4 ⊢ ∅ ⊆ (𝐴 ↑o 𝐵) | |
| 3 | 1, 2 | eqsstrdi 4027 | . . 3 ⊢ (𝐴 = ∅ → 𝐴 ⊆ (𝐴 ↑o 𝐵)) | 
| 4 | 3 | a1i 11 | . 2 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐵 ≠ ∅) → (𝐴 = ∅ → 𝐴 ⊆ (𝐴 ↑o 𝐵))) | 
| 5 | simpl1 1191 | . . . . 5 ⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐵 ≠ ∅) ∧ ∅ ∈ 𝐴) → 𝐴 ∈ On) | |
| 6 | oe1 8583 | . . . . 5 ⊢ (𝐴 ∈ On → (𝐴 ↑o 1o) = 𝐴) | |
| 7 | 5, 6 | syl 17 | . . . 4 ⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐵 ≠ ∅) ∧ ∅ ∈ 𝐴) → (𝐴 ↑o 1o) = 𝐴) | 
| 8 | 1on 8519 | . . . . . . . 8 ⊢ 1o ∈ On | |
| 9 | 8 | a1i 11 | . . . . . . 7 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐵 ≠ ∅) → 1o ∈ On) | 
| 10 | simp2 1137 | . . . . . . 7 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐵 ≠ ∅) → 𝐵 ∈ On) | |
| 11 | simp1 1136 | . . . . . . 7 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐵 ≠ ∅) → 𝐴 ∈ On) | |
| 12 | 9, 10, 11 | 3jca 1128 | . . . . . 6 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐵 ≠ ∅) → (1o ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ∈ On)) | 
| 13 | 12 | anim1i 615 | . . . . 5 ⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐵 ≠ ∅) ∧ ∅ ∈ 𝐴) → ((1o ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ∈ On) ∧ ∅ ∈ 𝐴)) | 
| 14 | eloni 6393 | . . . . . . . 8 ⊢ (𝐵 ∈ On → Ord 𝐵) | |
| 15 | 10, 14 | syl 17 | . . . . . . 7 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐵 ≠ ∅) → Ord 𝐵) | 
| 16 | simp3 1138 | . . . . . . 7 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐵 ≠ ∅) → 𝐵 ≠ ∅) | |
| 17 | ordge1n0 8533 | . . . . . . . 8 ⊢ (Ord 𝐵 → (1o ⊆ 𝐵 ↔ 𝐵 ≠ ∅)) | |
| 18 | 17 | biimprd 248 | . . . . . . 7 ⊢ (Ord 𝐵 → (𝐵 ≠ ∅ → 1o ⊆ 𝐵)) | 
| 19 | 15, 16, 18 | sylc 65 | . . . . . 6 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐵 ≠ ∅) → 1o ⊆ 𝐵) | 
| 20 | 19 | adantr 480 | . . . . 5 ⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐵 ≠ ∅) ∧ ∅ ∈ 𝐴) → 1o ⊆ 𝐵) | 
| 21 | oewordi 8630 | . . . . 5 ⊢ (((1o ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ∈ On) ∧ ∅ ∈ 𝐴) → (1o ⊆ 𝐵 → (𝐴 ↑o 1o) ⊆ (𝐴 ↑o 𝐵))) | |
| 22 | 13, 20, 21 | sylc 65 | . . . 4 ⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐵 ≠ ∅) ∧ ∅ ∈ 𝐴) → (𝐴 ↑o 1o) ⊆ (𝐴 ↑o 𝐵)) | 
| 23 | 7, 22 | eqsstrrd 4018 | . . 3 ⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐵 ≠ ∅) ∧ ∅ ∈ 𝐴) → 𝐴 ⊆ (𝐴 ↑o 𝐵)) | 
| 24 | 23 | ex 412 | . 2 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐵 ≠ ∅) → (∅ ∈ 𝐴 → 𝐴 ⊆ (𝐴 ↑o 𝐵))) | 
| 25 | on0eqel 6507 | . . 3 ⊢ (𝐴 ∈ On → (𝐴 = ∅ ∨ ∅ ∈ 𝐴)) | |
| 26 | 11, 25 | syl 17 | . 2 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐵 ≠ ∅) → (𝐴 = ∅ ∨ ∅ ∈ 𝐴)) | 
| 27 | 4, 24, 26 | mpjaod 860 | 1 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐵 ≠ ∅) → 𝐴 ⊆ (𝐴 ↑o 𝐵)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∧ wa 395 ∨ wo 847 ∧ w3a 1086 = wceq 1539 ∈ wcel 2107 ≠ wne 2939 ⊆ wss 3950 ∅c0 4332 Ord word 6382 Oncon0 6383 (class class class)co 7432 1oc1o 8500 ↑o coe 8506 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-rep 5278 ax-sep 5295 ax-nul 5305 ax-pr 5431 ax-un 7756 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-ral 3061 df-rex 3070 df-reu 3380 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-pss 3970 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-iun 4992 df-br 5143 df-opab 5205 df-mpt 5225 df-tr 5259 df-id 5577 df-eprel 5583 df-po 5591 df-so 5592 df-fr 5636 df-we 5638 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-pred 6320 df-ord 6386 df-on 6387 df-lim 6388 df-suc 6389 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-f1 6565 df-fo 6566 df-f1o 6567 df-fv 6568 df-ov 7435 df-oprab 7436 df-mpo 7437 df-om 7889 df-2nd 8016 df-frecs 8307 df-wrecs 8338 df-recs 8412 df-rdg 8451 df-1o 8507 df-2o 8508 df-oadd 8511 df-omul 8512 df-oexp 8513 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |