![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > oege1 | Structured version Visualization version GIF version |
Description: Any non-zero ordinal power is greater-than-or-equal to the term on the left. Lemma 3.19 of [Schloeder] p. 10. See oewordi 8597. (Contributed by RP, 29-Jan-2025.) |
Ref | Expression |
---|---|
oege1 | ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐵 ≠ ∅) → 𝐴 ⊆ (𝐴 ↑o 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . . . 4 ⊢ (𝐴 = ∅ → 𝐴 = ∅) | |
2 | 0ss 4396 | . . . 4 ⊢ ∅ ⊆ (𝐴 ↑o 𝐵) | |
3 | 1, 2 | eqsstrdi 4036 | . . 3 ⊢ (𝐴 = ∅ → 𝐴 ⊆ (𝐴 ↑o 𝐵)) |
4 | 3 | a1i 11 | . 2 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐵 ≠ ∅) → (𝐴 = ∅ → 𝐴 ⊆ (𝐴 ↑o 𝐵))) |
5 | simpl1 1190 | . . . . 5 ⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐵 ≠ ∅) ∧ ∅ ∈ 𝐴) → 𝐴 ∈ On) | |
6 | oe1 8550 | . . . . 5 ⊢ (𝐴 ∈ On → (𝐴 ↑o 1o) = 𝐴) | |
7 | 5, 6 | syl 17 | . . . 4 ⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐵 ≠ ∅) ∧ ∅ ∈ 𝐴) → (𝐴 ↑o 1o) = 𝐴) |
8 | 1on 8484 | . . . . . . . 8 ⊢ 1o ∈ On | |
9 | 8 | a1i 11 | . . . . . . 7 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐵 ≠ ∅) → 1o ∈ On) |
10 | simp2 1136 | . . . . . . 7 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐵 ≠ ∅) → 𝐵 ∈ On) | |
11 | simp1 1135 | . . . . . . 7 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐵 ≠ ∅) → 𝐴 ∈ On) | |
12 | 9, 10, 11 | 3jca 1127 | . . . . . 6 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐵 ≠ ∅) → (1o ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ∈ On)) |
13 | 12 | anim1i 614 | . . . . 5 ⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐵 ≠ ∅) ∧ ∅ ∈ 𝐴) → ((1o ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ∈ On) ∧ ∅ ∈ 𝐴)) |
14 | eloni 6374 | . . . . . . . 8 ⊢ (𝐵 ∈ On → Ord 𝐵) | |
15 | 10, 14 | syl 17 | . . . . . . 7 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐵 ≠ ∅) → Ord 𝐵) |
16 | simp3 1137 | . . . . . . 7 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐵 ≠ ∅) → 𝐵 ≠ ∅) | |
17 | ordge1n0 8500 | . . . . . . . 8 ⊢ (Ord 𝐵 → (1o ⊆ 𝐵 ↔ 𝐵 ≠ ∅)) | |
18 | 17 | biimprd 247 | . . . . . . 7 ⊢ (Ord 𝐵 → (𝐵 ≠ ∅ → 1o ⊆ 𝐵)) |
19 | 15, 16, 18 | sylc 65 | . . . . . 6 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐵 ≠ ∅) → 1o ⊆ 𝐵) |
20 | 19 | adantr 480 | . . . . 5 ⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐵 ≠ ∅) ∧ ∅ ∈ 𝐴) → 1o ⊆ 𝐵) |
21 | oewordi 8597 | . . . . 5 ⊢ (((1o ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ∈ On) ∧ ∅ ∈ 𝐴) → (1o ⊆ 𝐵 → (𝐴 ↑o 1o) ⊆ (𝐴 ↑o 𝐵))) | |
22 | 13, 20, 21 | sylc 65 | . . . 4 ⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐵 ≠ ∅) ∧ ∅ ∈ 𝐴) → (𝐴 ↑o 1o) ⊆ (𝐴 ↑o 𝐵)) |
23 | 7, 22 | eqsstrrd 4021 | . . 3 ⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐵 ≠ ∅) ∧ ∅ ∈ 𝐴) → 𝐴 ⊆ (𝐴 ↑o 𝐵)) |
24 | 23 | ex 412 | . 2 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐵 ≠ ∅) → (∅ ∈ 𝐴 → 𝐴 ⊆ (𝐴 ↑o 𝐵))) |
25 | on0eqel 6488 | . . 3 ⊢ (𝐴 ∈ On → (𝐴 = ∅ ∨ ∅ ∈ 𝐴)) | |
26 | 11, 25 | syl 17 | . 2 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐵 ≠ ∅) → (𝐴 = ∅ ∨ ∅ ∈ 𝐴)) |
27 | 4, 24, 26 | mpjaod 857 | 1 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐵 ≠ ∅) → 𝐴 ⊆ (𝐴 ↑o 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∨ wo 844 ∧ w3a 1086 = wceq 1540 ∈ wcel 2105 ≠ wne 2939 ⊆ wss 3948 ∅c0 4322 Ord word 6363 Oncon0 6364 (class class class)co 7412 1oc1o 8465 ↑o coe 8471 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pr 5427 ax-un 7729 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7860 df-2nd 7980 df-frecs 8272 df-wrecs 8303 df-recs 8377 df-rdg 8416 df-1o 8472 df-2o 8473 df-oadd 8476 df-omul 8477 df-oexp 8478 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |