Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  oege1 Structured version   Visualization version   GIF version

Theorem oege1 43409
Description: Any non-zero ordinal power is greater-than-or-equal to the term on the left. Lemma 3.19 of [Schloeder] p. 10. See oewordi 8506. (Contributed by RP, 29-Jan-2025.)
Assertion
Ref Expression
oege1 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐵 ≠ ∅) → 𝐴 ⊆ (𝐴o 𝐵))

Proof of Theorem oege1
StepHypRef Expression
1 id 22 . . . 4 (𝐴 = ∅ → 𝐴 = ∅)
2 0ss 4347 . . . 4 ∅ ⊆ (𝐴o 𝐵)
31, 2eqsstrdi 3974 . . 3 (𝐴 = ∅ → 𝐴 ⊆ (𝐴o 𝐵))
43a1i 11 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐵 ≠ ∅) → (𝐴 = ∅ → 𝐴 ⊆ (𝐴o 𝐵)))
5 simpl1 1192 . . . . 5 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐵 ≠ ∅) ∧ ∅ ∈ 𝐴) → 𝐴 ∈ On)
6 oe1 8459 . . . . 5 (𝐴 ∈ On → (𝐴o 1o) = 𝐴)
75, 6syl 17 . . . 4 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐵 ≠ ∅) ∧ ∅ ∈ 𝐴) → (𝐴o 1o) = 𝐴)
8 1on 8397 . . . . . . . 8 1o ∈ On
98a1i 11 . . . . . . 7 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐵 ≠ ∅) → 1o ∈ On)
10 simp2 1137 . . . . . . 7 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐵 ≠ ∅) → 𝐵 ∈ On)
11 simp1 1136 . . . . . . 7 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐵 ≠ ∅) → 𝐴 ∈ On)
129, 10, 113jca 1128 . . . . . 6 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐵 ≠ ∅) → (1o ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ∈ On))
1312anim1i 615 . . . . 5 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐵 ≠ ∅) ∧ ∅ ∈ 𝐴) → ((1o ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ∈ On) ∧ ∅ ∈ 𝐴))
14 eloni 6316 . . . . . . . 8 (𝐵 ∈ On → Ord 𝐵)
1510, 14syl 17 . . . . . . 7 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐵 ≠ ∅) → Ord 𝐵)
16 simp3 1138 . . . . . . 7 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐵 ≠ ∅) → 𝐵 ≠ ∅)
17 ordge1n0 8409 . . . . . . . 8 (Ord 𝐵 → (1o𝐵𝐵 ≠ ∅))
1817biimprd 248 . . . . . . 7 (Ord 𝐵 → (𝐵 ≠ ∅ → 1o𝐵))
1915, 16, 18sylc 65 . . . . . 6 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐵 ≠ ∅) → 1o𝐵)
2019adantr 480 . . . . 5 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐵 ≠ ∅) ∧ ∅ ∈ 𝐴) → 1o𝐵)
21 oewordi 8506 . . . . 5 (((1o ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ∈ On) ∧ ∅ ∈ 𝐴) → (1o𝐵 → (𝐴o 1o) ⊆ (𝐴o 𝐵)))
2213, 20, 21sylc 65 . . . 4 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐵 ≠ ∅) ∧ ∅ ∈ 𝐴) → (𝐴o 1o) ⊆ (𝐴o 𝐵))
237, 22eqsstrrd 3965 . . 3 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐵 ≠ ∅) ∧ ∅ ∈ 𝐴) → 𝐴 ⊆ (𝐴o 𝐵))
2423ex 412 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐵 ≠ ∅) → (∅ ∈ 𝐴𝐴 ⊆ (𝐴o 𝐵)))
25 on0eqel 6431 . . 3 (𝐴 ∈ On → (𝐴 = ∅ ∨ ∅ ∈ 𝐴))
2611, 25syl 17 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐵 ≠ ∅) → (𝐴 = ∅ ∨ ∅ ∈ 𝐴))
274, 24, 26mpjaod 860 1 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐵 ≠ ∅) → 𝐴 ⊆ (𝐴o 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847  w3a 1086   = wceq 1541  wcel 2111  wne 2928  wss 3897  c0 4280  Ord word 6305  Oncon0 6306  (class class class)co 7346  1oc1o 8378  o coe 8384
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-oadd 8389  df-omul 8390  df-oexp 8391
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator