| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > oege1 | Structured version Visualization version GIF version | ||
| Description: Any non-zero ordinal power is greater-than-or-equal to the term on the left. Lemma 3.19 of [Schloeder] p. 10. See oewordi 8555. (Contributed by RP, 29-Jan-2025.) |
| Ref | Expression |
|---|---|
| oege1 | ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐵 ≠ ∅) → 𝐴 ⊆ (𝐴 ↑o 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . . . 4 ⊢ (𝐴 = ∅ → 𝐴 = ∅) | |
| 2 | 0ss 4363 | . . . 4 ⊢ ∅ ⊆ (𝐴 ↑o 𝐵) | |
| 3 | 1, 2 | eqsstrdi 3991 | . . 3 ⊢ (𝐴 = ∅ → 𝐴 ⊆ (𝐴 ↑o 𝐵)) |
| 4 | 3 | a1i 11 | . 2 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐵 ≠ ∅) → (𝐴 = ∅ → 𝐴 ⊆ (𝐴 ↑o 𝐵))) |
| 5 | simpl1 1192 | . . . . 5 ⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐵 ≠ ∅) ∧ ∅ ∈ 𝐴) → 𝐴 ∈ On) | |
| 6 | oe1 8508 | . . . . 5 ⊢ (𝐴 ∈ On → (𝐴 ↑o 1o) = 𝐴) | |
| 7 | 5, 6 | syl 17 | . . . 4 ⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐵 ≠ ∅) ∧ ∅ ∈ 𝐴) → (𝐴 ↑o 1o) = 𝐴) |
| 8 | 1on 8446 | . . . . . . . 8 ⊢ 1o ∈ On | |
| 9 | 8 | a1i 11 | . . . . . . 7 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐵 ≠ ∅) → 1o ∈ On) |
| 10 | simp2 1137 | . . . . . . 7 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐵 ≠ ∅) → 𝐵 ∈ On) | |
| 11 | simp1 1136 | . . . . . . 7 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐵 ≠ ∅) → 𝐴 ∈ On) | |
| 12 | 9, 10, 11 | 3jca 1128 | . . . . . 6 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐵 ≠ ∅) → (1o ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ∈ On)) |
| 13 | 12 | anim1i 615 | . . . . 5 ⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐵 ≠ ∅) ∧ ∅ ∈ 𝐴) → ((1o ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ∈ On) ∧ ∅ ∈ 𝐴)) |
| 14 | eloni 6342 | . . . . . . . 8 ⊢ (𝐵 ∈ On → Ord 𝐵) | |
| 15 | 10, 14 | syl 17 | . . . . . . 7 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐵 ≠ ∅) → Ord 𝐵) |
| 16 | simp3 1138 | . . . . . . 7 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐵 ≠ ∅) → 𝐵 ≠ ∅) | |
| 17 | ordge1n0 8458 | . . . . . . . 8 ⊢ (Ord 𝐵 → (1o ⊆ 𝐵 ↔ 𝐵 ≠ ∅)) | |
| 18 | 17 | biimprd 248 | . . . . . . 7 ⊢ (Ord 𝐵 → (𝐵 ≠ ∅ → 1o ⊆ 𝐵)) |
| 19 | 15, 16, 18 | sylc 65 | . . . . . 6 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐵 ≠ ∅) → 1o ⊆ 𝐵) |
| 20 | 19 | adantr 480 | . . . . 5 ⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐵 ≠ ∅) ∧ ∅ ∈ 𝐴) → 1o ⊆ 𝐵) |
| 21 | oewordi 8555 | . . . . 5 ⊢ (((1o ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ∈ On) ∧ ∅ ∈ 𝐴) → (1o ⊆ 𝐵 → (𝐴 ↑o 1o) ⊆ (𝐴 ↑o 𝐵))) | |
| 22 | 13, 20, 21 | sylc 65 | . . . 4 ⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐵 ≠ ∅) ∧ ∅ ∈ 𝐴) → (𝐴 ↑o 1o) ⊆ (𝐴 ↑o 𝐵)) |
| 23 | 7, 22 | eqsstrrd 3982 | . . 3 ⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐵 ≠ ∅) ∧ ∅ ∈ 𝐴) → 𝐴 ⊆ (𝐴 ↑o 𝐵)) |
| 24 | 23 | ex 412 | . 2 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐵 ≠ ∅) → (∅ ∈ 𝐴 → 𝐴 ⊆ (𝐴 ↑o 𝐵))) |
| 25 | on0eqel 6458 | . . 3 ⊢ (𝐴 ∈ On → (𝐴 = ∅ ∨ ∅ ∈ 𝐴)) | |
| 26 | 11, 25 | syl 17 | . 2 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐵 ≠ ∅) → (𝐴 = ∅ ∨ ∅ ∈ 𝐴)) |
| 27 | 4, 24, 26 | mpjaod 860 | 1 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐵 ≠ ∅) → 𝐴 ⊆ (𝐴 ↑o 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∨ wo 847 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ⊆ wss 3914 ∅c0 4296 Ord word 6331 Oncon0 6332 (class class class)co 7387 1oc1o 8427 ↑o coe 8433 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-2o 8435 df-oadd 8438 df-omul 8439 df-oexp 8440 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |