Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  oege1 Structured version   Visualization version   GIF version

Theorem oege1 43283
Description: Any non-zero ordinal power is greater-than-or-equal to the term on the left. Lemma 3.19 of [Schloeder] p. 10. See oewordi 8509. (Contributed by RP, 29-Jan-2025.)
Assertion
Ref Expression
oege1 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐵 ≠ ∅) → 𝐴 ⊆ (𝐴o 𝐵))

Proof of Theorem oege1
StepHypRef Expression
1 id 22 . . . 4 (𝐴 = ∅ → 𝐴 = ∅)
2 0ss 4351 . . . 4 ∅ ⊆ (𝐴o 𝐵)
31, 2eqsstrdi 3980 . . 3 (𝐴 = ∅ → 𝐴 ⊆ (𝐴o 𝐵))
43a1i 11 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐵 ≠ ∅) → (𝐴 = ∅ → 𝐴 ⊆ (𝐴o 𝐵)))
5 simpl1 1192 . . . . 5 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐵 ≠ ∅) ∧ ∅ ∈ 𝐴) → 𝐴 ∈ On)
6 oe1 8462 . . . . 5 (𝐴 ∈ On → (𝐴o 1o) = 𝐴)
75, 6syl 17 . . . 4 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐵 ≠ ∅) ∧ ∅ ∈ 𝐴) → (𝐴o 1o) = 𝐴)
8 1on 8400 . . . . . . . 8 1o ∈ On
98a1i 11 . . . . . . 7 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐵 ≠ ∅) → 1o ∈ On)
10 simp2 1137 . . . . . . 7 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐵 ≠ ∅) → 𝐵 ∈ On)
11 simp1 1136 . . . . . . 7 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐵 ≠ ∅) → 𝐴 ∈ On)
129, 10, 113jca 1128 . . . . . 6 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐵 ≠ ∅) → (1o ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ∈ On))
1312anim1i 615 . . . . 5 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐵 ≠ ∅) ∧ ∅ ∈ 𝐴) → ((1o ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ∈ On) ∧ ∅ ∈ 𝐴))
14 eloni 6317 . . . . . . . 8 (𝐵 ∈ On → Ord 𝐵)
1510, 14syl 17 . . . . . . 7 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐵 ≠ ∅) → Ord 𝐵)
16 simp3 1138 . . . . . . 7 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐵 ≠ ∅) → 𝐵 ≠ ∅)
17 ordge1n0 8412 . . . . . . . 8 (Ord 𝐵 → (1o𝐵𝐵 ≠ ∅))
1817biimprd 248 . . . . . . 7 (Ord 𝐵 → (𝐵 ≠ ∅ → 1o𝐵))
1915, 16, 18sylc 65 . . . . . 6 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐵 ≠ ∅) → 1o𝐵)
2019adantr 480 . . . . 5 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐵 ≠ ∅) ∧ ∅ ∈ 𝐴) → 1o𝐵)
21 oewordi 8509 . . . . 5 (((1o ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ∈ On) ∧ ∅ ∈ 𝐴) → (1o𝐵 → (𝐴o 1o) ⊆ (𝐴o 𝐵)))
2213, 20, 21sylc 65 . . . 4 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐵 ≠ ∅) ∧ ∅ ∈ 𝐴) → (𝐴o 1o) ⊆ (𝐴o 𝐵))
237, 22eqsstrrd 3971 . . 3 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐵 ≠ ∅) ∧ ∅ ∈ 𝐴) → 𝐴 ⊆ (𝐴o 𝐵))
2423ex 412 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐵 ≠ ∅) → (∅ ∈ 𝐴𝐴 ⊆ (𝐴o 𝐵)))
25 on0eqel 6432 . . 3 (𝐴 ∈ On → (𝐴 = ∅ ∨ ∅ ∈ 𝐴))
2611, 25syl 17 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐵 ≠ ∅) → (𝐴 = ∅ ∨ ∅ ∈ 𝐴))
274, 24, 26mpjaod 860 1 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐵 ≠ ∅) → 𝐴 ⊆ (𝐴o 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wss 3903  c0 4284  Ord word 6306  Oncon0 6307  (class class class)co 7349  1oc1o 8381  o coe 8387
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-2o 8389  df-oadd 8392  df-omul 8393  df-oexp 8394
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator