Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  oege1 Structured version   Visualization version   GIF version

Theorem oege1 42519
Description: Any non-zero ordinal power is greater-than-or-equal to the term on the left. Lemma 3.19 of [Schloeder] p. 10. See oewordi 8597. (Contributed by RP, 29-Jan-2025.)
Assertion
Ref Expression
oege1 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐵 ≠ ∅) → 𝐴 ⊆ (𝐴o 𝐵))

Proof of Theorem oege1
StepHypRef Expression
1 id 22 . . . 4 (𝐴 = ∅ → 𝐴 = ∅)
2 0ss 4396 . . . 4 ∅ ⊆ (𝐴o 𝐵)
31, 2eqsstrdi 4036 . . 3 (𝐴 = ∅ → 𝐴 ⊆ (𝐴o 𝐵))
43a1i 11 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐵 ≠ ∅) → (𝐴 = ∅ → 𝐴 ⊆ (𝐴o 𝐵)))
5 simpl1 1190 . . . . 5 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐵 ≠ ∅) ∧ ∅ ∈ 𝐴) → 𝐴 ∈ On)
6 oe1 8550 . . . . 5 (𝐴 ∈ On → (𝐴o 1o) = 𝐴)
75, 6syl 17 . . . 4 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐵 ≠ ∅) ∧ ∅ ∈ 𝐴) → (𝐴o 1o) = 𝐴)
8 1on 8484 . . . . . . . 8 1o ∈ On
98a1i 11 . . . . . . 7 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐵 ≠ ∅) → 1o ∈ On)
10 simp2 1136 . . . . . . 7 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐵 ≠ ∅) → 𝐵 ∈ On)
11 simp1 1135 . . . . . . 7 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐵 ≠ ∅) → 𝐴 ∈ On)
129, 10, 113jca 1127 . . . . . 6 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐵 ≠ ∅) → (1o ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ∈ On))
1312anim1i 614 . . . . 5 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐵 ≠ ∅) ∧ ∅ ∈ 𝐴) → ((1o ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ∈ On) ∧ ∅ ∈ 𝐴))
14 eloni 6374 . . . . . . . 8 (𝐵 ∈ On → Ord 𝐵)
1510, 14syl 17 . . . . . . 7 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐵 ≠ ∅) → Ord 𝐵)
16 simp3 1137 . . . . . . 7 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐵 ≠ ∅) → 𝐵 ≠ ∅)
17 ordge1n0 8500 . . . . . . . 8 (Ord 𝐵 → (1o𝐵𝐵 ≠ ∅))
1817biimprd 247 . . . . . . 7 (Ord 𝐵 → (𝐵 ≠ ∅ → 1o𝐵))
1915, 16, 18sylc 65 . . . . . 6 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐵 ≠ ∅) → 1o𝐵)
2019adantr 480 . . . . 5 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐵 ≠ ∅) ∧ ∅ ∈ 𝐴) → 1o𝐵)
21 oewordi 8597 . . . . 5 (((1o ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ∈ On) ∧ ∅ ∈ 𝐴) → (1o𝐵 → (𝐴o 1o) ⊆ (𝐴o 𝐵)))
2213, 20, 21sylc 65 . . . 4 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐵 ≠ ∅) ∧ ∅ ∈ 𝐴) → (𝐴o 1o) ⊆ (𝐴o 𝐵))
237, 22eqsstrrd 4021 . . 3 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐵 ≠ ∅) ∧ ∅ ∈ 𝐴) → 𝐴 ⊆ (𝐴o 𝐵))
2423ex 412 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐵 ≠ ∅) → (∅ ∈ 𝐴𝐴 ⊆ (𝐴o 𝐵)))
25 on0eqel 6488 . . 3 (𝐴 ∈ On → (𝐴 = ∅ ∨ ∅ ∈ 𝐴))
2611, 25syl 17 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐵 ≠ ∅) → (𝐴 = ∅ ∨ ∅ ∈ 𝐴))
274, 24, 26mpjaod 857 1 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐵 ≠ ∅) → 𝐴 ⊆ (𝐴o 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 844  w3a 1086   = wceq 1540  wcel 2105  wne 2939  wss 3948  c0 4322  Ord word 6363  Oncon0 6364  (class class class)co 7412  1oc1o 8465  o coe 8471
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pr 5427  ax-un 7729
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-ov 7415  df-oprab 7416  df-mpo 7417  df-om 7860  df-2nd 7980  df-frecs 8272  df-wrecs 8303  df-recs 8377  df-rdg 8416  df-1o 8472  df-2o 8473  df-oadd 8476  df-omul 8477  df-oexp 8478
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator