| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > oege1 | Structured version Visualization version GIF version | ||
| Description: Any non-zero ordinal power is greater-than-or-equal to the term on the left. Lemma 3.19 of [Schloeder] p. 10. See oewordi 8608. (Contributed by RP, 29-Jan-2025.) |
| Ref | Expression |
|---|---|
| oege1 | ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐵 ≠ ∅) → 𝐴 ⊆ (𝐴 ↑o 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . . . 4 ⊢ (𝐴 = ∅ → 𝐴 = ∅) | |
| 2 | 0ss 4380 | . . . 4 ⊢ ∅ ⊆ (𝐴 ↑o 𝐵) | |
| 3 | 1, 2 | eqsstrdi 4008 | . . 3 ⊢ (𝐴 = ∅ → 𝐴 ⊆ (𝐴 ↑o 𝐵)) |
| 4 | 3 | a1i 11 | . 2 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐵 ≠ ∅) → (𝐴 = ∅ → 𝐴 ⊆ (𝐴 ↑o 𝐵))) |
| 5 | simpl1 1192 | . . . . 5 ⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐵 ≠ ∅) ∧ ∅ ∈ 𝐴) → 𝐴 ∈ On) | |
| 6 | oe1 8561 | . . . . 5 ⊢ (𝐴 ∈ On → (𝐴 ↑o 1o) = 𝐴) | |
| 7 | 5, 6 | syl 17 | . . . 4 ⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐵 ≠ ∅) ∧ ∅ ∈ 𝐴) → (𝐴 ↑o 1o) = 𝐴) |
| 8 | 1on 8497 | . . . . . . . 8 ⊢ 1o ∈ On | |
| 9 | 8 | a1i 11 | . . . . . . 7 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐵 ≠ ∅) → 1o ∈ On) |
| 10 | simp2 1137 | . . . . . . 7 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐵 ≠ ∅) → 𝐵 ∈ On) | |
| 11 | simp1 1136 | . . . . . . 7 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐵 ≠ ∅) → 𝐴 ∈ On) | |
| 12 | 9, 10, 11 | 3jca 1128 | . . . . . 6 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐵 ≠ ∅) → (1o ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ∈ On)) |
| 13 | 12 | anim1i 615 | . . . . 5 ⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐵 ≠ ∅) ∧ ∅ ∈ 𝐴) → ((1o ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ∈ On) ∧ ∅ ∈ 𝐴)) |
| 14 | eloni 6367 | . . . . . . . 8 ⊢ (𝐵 ∈ On → Ord 𝐵) | |
| 15 | 10, 14 | syl 17 | . . . . . . 7 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐵 ≠ ∅) → Ord 𝐵) |
| 16 | simp3 1138 | . . . . . . 7 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐵 ≠ ∅) → 𝐵 ≠ ∅) | |
| 17 | ordge1n0 8511 | . . . . . . . 8 ⊢ (Ord 𝐵 → (1o ⊆ 𝐵 ↔ 𝐵 ≠ ∅)) | |
| 18 | 17 | biimprd 248 | . . . . . . 7 ⊢ (Ord 𝐵 → (𝐵 ≠ ∅ → 1o ⊆ 𝐵)) |
| 19 | 15, 16, 18 | sylc 65 | . . . . . 6 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐵 ≠ ∅) → 1o ⊆ 𝐵) |
| 20 | 19 | adantr 480 | . . . . 5 ⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐵 ≠ ∅) ∧ ∅ ∈ 𝐴) → 1o ⊆ 𝐵) |
| 21 | oewordi 8608 | . . . . 5 ⊢ (((1o ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ∈ On) ∧ ∅ ∈ 𝐴) → (1o ⊆ 𝐵 → (𝐴 ↑o 1o) ⊆ (𝐴 ↑o 𝐵))) | |
| 22 | 13, 20, 21 | sylc 65 | . . . 4 ⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐵 ≠ ∅) ∧ ∅ ∈ 𝐴) → (𝐴 ↑o 1o) ⊆ (𝐴 ↑o 𝐵)) |
| 23 | 7, 22 | eqsstrrd 3999 | . . 3 ⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐵 ≠ ∅) ∧ ∅ ∈ 𝐴) → 𝐴 ⊆ (𝐴 ↑o 𝐵)) |
| 24 | 23 | ex 412 | . 2 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐵 ≠ ∅) → (∅ ∈ 𝐴 → 𝐴 ⊆ (𝐴 ↑o 𝐵))) |
| 25 | on0eqel 6483 | . . 3 ⊢ (𝐴 ∈ On → (𝐴 = ∅ ∨ ∅ ∈ 𝐴)) | |
| 26 | 11, 25 | syl 17 | . 2 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐵 ≠ ∅) → (𝐴 = ∅ ∨ ∅ ∈ 𝐴)) |
| 27 | 4, 24, 26 | mpjaod 860 | 1 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐵 ≠ ∅) → 𝐴 ⊆ (𝐴 ↑o 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∨ wo 847 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2933 ⊆ wss 3931 ∅c0 4313 Ord word 6356 Oncon0 6357 (class class class)co 7410 1oc1o 8478 ↑o coe 8484 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pr 5407 ax-un 7734 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-ov 7413 df-oprab 7414 df-mpo 7415 df-om 7867 df-2nd 7994 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-1o 8485 df-2o 8486 df-oadd 8489 df-omul 8490 df-oexp 8491 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |