![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > oege1 | Structured version Visualization version GIF version |
Description: Any non-zero ordinal power is greater-than-or-equal to the term on the left. Lemma 3.19 of [Schloeder] p. 10. See oewordi 8576. (Contributed by RP, 29-Jan-2025.) |
Ref | Expression |
---|---|
oege1 | ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐵 ≠ ∅) → 𝐴 ⊆ (𝐴 ↑o 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . . . 4 ⊢ (𝐴 = ∅ → 𝐴 = ∅) | |
2 | 0ss 4393 | . . . 4 ⊢ ∅ ⊆ (𝐴 ↑o 𝐵) | |
3 | 1, 2 | eqsstrdi 4033 | . . 3 ⊢ (𝐴 = ∅ → 𝐴 ⊆ (𝐴 ↑o 𝐵)) |
4 | 3 | a1i 11 | . 2 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐵 ≠ ∅) → (𝐴 = ∅ → 𝐴 ⊆ (𝐴 ↑o 𝐵))) |
5 | simpl1 1191 | . . . . 5 ⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐵 ≠ ∅) ∧ ∅ ∈ 𝐴) → 𝐴 ∈ On) | |
6 | oe1 8529 | . . . . 5 ⊢ (𝐴 ∈ On → (𝐴 ↑o 1o) = 𝐴) | |
7 | 5, 6 | syl 17 | . . . 4 ⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐵 ≠ ∅) ∧ ∅ ∈ 𝐴) → (𝐴 ↑o 1o) = 𝐴) |
8 | 1on 8462 | . . . . . . . 8 ⊢ 1o ∈ On | |
9 | 8 | a1i 11 | . . . . . . 7 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐵 ≠ ∅) → 1o ∈ On) |
10 | simp2 1137 | . . . . . . 7 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐵 ≠ ∅) → 𝐵 ∈ On) | |
11 | simp1 1136 | . . . . . . 7 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐵 ≠ ∅) → 𝐴 ∈ On) | |
12 | 9, 10, 11 | 3jca 1128 | . . . . . 6 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐵 ≠ ∅) → (1o ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ∈ On)) |
13 | 12 | anim1i 615 | . . . . 5 ⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐵 ≠ ∅) ∧ ∅ ∈ 𝐴) → ((1o ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ∈ On) ∧ ∅ ∈ 𝐴)) |
14 | eloni 6364 | . . . . . . . 8 ⊢ (𝐵 ∈ On → Ord 𝐵) | |
15 | 10, 14 | syl 17 | . . . . . . 7 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐵 ≠ ∅) → Ord 𝐵) |
16 | simp3 1138 | . . . . . . 7 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐵 ≠ ∅) → 𝐵 ≠ ∅) | |
17 | ordge1n0 8478 | . . . . . . . 8 ⊢ (Ord 𝐵 → (1o ⊆ 𝐵 ↔ 𝐵 ≠ ∅)) | |
18 | 17 | biimprd 247 | . . . . . . 7 ⊢ (Ord 𝐵 → (𝐵 ≠ ∅ → 1o ⊆ 𝐵)) |
19 | 15, 16, 18 | sylc 65 | . . . . . 6 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐵 ≠ ∅) → 1o ⊆ 𝐵) |
20 | 19 | adantr 481 | . . . . 5 ⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐵 ≠ ∅) ∧ ∅ ∈ 𝐴) → 1o ⊆ 𝐵) |
21 | oewordi 8576 | . . . . 5 ⊢ (((1o ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ∈ On) ∧ ∅ ∈ 𝐴) → (1o ⊆ 𝐵 → (𝐴 ↑o 1o) ⊆ (𝐴 ↑o 𝐵))) | |
22 | 13, 20, 21 | sylc 65 | . . . 4 ⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐵 ≠ ∅) ∧ ∅ ∈ 𝐴) → (𝐴 ↑o 1o) ⊆ (𝐴 ↑o 𝐵)) |
23 | 7, 22 | eqsstrrd 4018 | . . 3 ⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐵 ≠ ∅) ∧ ∅ ∈ 𝐴) → 𝐴 ⊆ (𝐴 ↑o 𝐵)) |
24 | 23 | ex 413 | . 2 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐵 ≠ ∅) → (∅ ∈ 𝐴 → 𝐴 ⊆ (𝐴 ↑o 𝐵))) |
25 | on0eqel 6478 | . . 3 ⊢ (𝐴 ∈ On → (𝐴 = ∅ ∨ ∅ ∈ 𝐴)) | |
26 | 11, 25 | syl 17 | . 2 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐵 ≠ ∅) → (𝐴 = ∅ ∨ ∅ ∈ 𝐴)) |
27 | 4, 24, 26 | mpjaod 858 | 1 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐵 ≠ ∅) → 𝐴 ⊆ (𝐴 ↑o 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∨ wo 845 ∧ w3a 1087 = wceq 1541 ∈ wcel 2106 ≠ wne 2940 ⊆ wss 3945 ∅c0 4319 Ord word 6353 Oncon0 6354 (class class class)co 7394 1oc1o 8443 ↑o coe 8449 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5279 ax-sep 5293 ax-nul 5300 ax-pr 5421 ax-un 7709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3775 df-csb 3891 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-pss 3964 df-nul 4320 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-iun 4993 df-br 5143 df-opab 5205 df-mpt 5226 df-tr 5260 df-id 5568 df-eprel 5574 df-po 5582 df-so 5583 df-fr 5625 df-we 5627 df-xp 5676 df-rel 5677 df-cnv 5678 df-co 5679 df-dm 5680 df-rn 5681 df-res 5682 df-ima 5683 df-pred 6290 df-ord 6357 df-on 6358 df-lim 6359 df-suc 6360 df-iota 6485 df-fun 6535 df-fn 6536 df-f 6537 df-f1 6538 df-fo 6539 df-f1o 6540 df-fv 6541 df-ov 7397 df-oprab 7398 df-mpo 7399 df-om 7840 df-2nd 7960 df-frecs 8250 df-wrecs 8281 df-recs 8355 df-rdg 8394 df-1o 8450 df-2o 8451 df-oadd 8454 df-omul 8455 df-oexp 8456 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |