MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cardprclem Structured version   Visualization version   GIF version

Theorem cardprclem 9872
Description: Lemma for cardprc 9873. (Contributed by Mario Carneiro, 22-Jan-2013.) (Revised by Mario Carneiro, 15-May-2015.)
Hypothesis
Ref Expression
cardprclem.1 𝐴 = {𝑥 ∣ (card‘𝑥) = 𝑥}
Assertion
Ref Expression
cardprclem ¬ 𝐴 ∈ V
Distinct variable group:   𝑥,𝐴

Proof of Theorem cardprclem
Dummy variables 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cardprclem.1 . . . . . . . . 9 𝐴 = {𝑥 ∣ (card‘𝑥) = 𝑥}
21eleq2i 2823 . . . . . . . 8 (𝑥𝐴𝑥 ∈ {𝑥 ∣ (card‘𝑥) = 𝑥})
3 abid 2713 . . . . . . . 8 (𝑥 ∈ {𝑥 ∣ (card‘𝑥) = 𝑥} ↔ (card‘𝑥) = 𝑥)
4 iscard 9868 . . . . . . . 8 ((card‘𝑥) = 𝑥 ↔ (𝑥 ∈ On ∧ ∀𝑦𝑥 𝑦𝑥))
52, 3, 43bitri 297 . . . . . . 7 (𝑥𝐴 ↔ (𝑥 ∈ On ∧ ∀𝑦𝑥 𝑦𝑥))
65simplbi 497 . . . . . 6 (𝑥𝐴𝑥 ∈ On)
76ssriv 3933 . . . . 5 𝐴 ⊆ On
8 ssonuni 7713 . . . . 5 (𝐴 ∈ V → (𝐴 ⊆ On → 𝐴 ∈ On))
97, 8mpi 20 . . . 4 (𝐴 ∈ V → 𝐴 ∈ On)
10 domrefg 8909 . . . . 5 ( 𝐴 ∈ On → 𝐴 𝐴)
119, 10syl 17 . . . 4 (𝐴 ∈ V → 𝐴 𝐴)
12 elharval 9447 . . . 4 ( 𝐴 ∈ (har‘ 𝐴) ↔ ( 𝐴 ∈ On ∧ 𝐴 𝐴))
139, 11, 12sylanbrc 583 . . 3 (𝐴 ∈ V → 𝐴 ∈ (har‘ 𝐴))
147sseli 3925 . . . . . . . 8 (𝑧𝐴𝑧 ∈ On)
15 domrefg 8909 . . . . . . . . . 10 (𝑧 ∈ On → 𝑧𝑧)
1615ancli 548 . . . . . . . . 9 (𝑧 ∈ On → (𝑧 ∈ On ∧ 𝑧𝑧))
17 elharval 9447 . . . . . . . . 9 (𝑧 ∈ (har‘𝑧) ↔ (𝑧 ∈ On ∧ 𝑧𝑧))
1816, 17sylibr 234 . . . . . . . 8 (𝑧 ∈ On → 𝑧 ∈ (har‘𝑧))
1914, 18syl 17 . . . . . . 7 (𝑧𝐴𝑧 ∈ (har‘𝑧))
20 harcard 9871 . . . . . . . 8 (card‘(har‘𝑧)) = (har‘𝑧)
21 fvex 6835 . . . . . . . . 9 (har‘𝑧) ∈ V
22 fveq2 6822 . . . . . . . . . 10 (𝑥 = (har‘𝑧) → (card‘𝑥) = (card‘(har‘𝑧)))
23 id 22 . . . . . . . . . 10 (𝑥 = (har‘𝑧) → 𝑥 = (har‘𝑧))
2422, 23eqeq12d 2747 . . . . . . . . 9 (𝑥 = (har‘𝑧) → ((card‘𝑥) = 𝑥 ↔ (card‘(har‘𝑧)) = (har‘𝑧)))
2521, 24, 1elab2 3633 . . . . . . . 8 ((har‘𝑧) ∈ 𝐴 ↔ (card‘(har‘𝑧)) = (har‘𝑧))
2620, 25mpbir 231 . . . . . . 7 (har‘𝑧) ∈ 𝐴
27 eleq2 2820 . . . . . . . . 9 (𝑤 = (har‘𝑧) → (𝑧𝑤𝑧 ∈ (har‘𝑧)))
28 eleq1 2819 . . . . . . . . 9 (𝑤 = (har‘𝑧) → (𝑤𝐴 ↔ (har‘𝑧) ∈ 𝐴))
2927, 28anbi12d 632 . . . . . . . 8 (𝑤 = (har‘𝑧) → ((𝑧𝑤𝑤𝐴) ↔ (𝑧 ∈ (har‘𝑧) ∧ (har‘𝑧) ∈ 𝐴)))
3021, 29spcev 3556 . . . . . . 7 ((𝑧 ∈ (har‘𝑧) ∧ (har‘𝑧) ∈ 𝐴) → ∃𝑤(𝑧𝑤𝑤𝐴))
3119, 26, 30sylancl 586 . . . . . 6 (𝑧𝐴 → ∃𝑤(𝑧𝑤𝑤𝐴))
32 eluni 4859 . . . . . 6 (𝑧 𝐴 ↔ ∃𝑤(𝑧𝑤𝑤𝐴))
3331, 32sylibr 234 . . . . 5 (𝑧𝐴𝑧 𝐴)
3433ssriv 3933 . . . 4 𝐴 𝐴
35 harcard 9871 . . . . 5 (card‘(har‘ 𝐴)) = (har‘ 𝐴)
36 fvex 6835 . . . . . 6 (har‘ 𝐴) ∈ V
37 fveq2 6822 . . . . . . 7 (𝑥 = (har‘ 𝐴) → (card‘𝑥) = (card‘(har‘ 𝐴)))
38 id 22 . . . . . . 7 (𝑥 = (har‘ 𝐴) → 𝑥 = (har‘ 𝐴))
3937, 38eqeq12d 2747 . . . . . 6 (𝑥 = (har‘ 𝐴) → ((card‘𝑥) = 𝑥 ↔ (card‘(har‘ 𝐴)) = (har‘ 𝐴)))
4036, 39, 1elab2 3633 . . . . 5 ((har‘ 𝐴) ∈ 𝐴 ↔ (card‘(har‘ 𝐴)) = (har‘ 𝐴))
4135, 40mpbir 231 . . . 4 (har‘ 𝐴) ∈ 𝐴
4234, 41sselii 3926 . . 3 (har‘ 𝐴) ∈ 𝐴
4313, 42jctir 520 . 2 (𝐴 ∈ V → ( 𝐴 ∈ (har‘ 𝐴) ∧ (har‘ 𝐴) ∈ 𝐴))
44 eloni 6316 . . 3 ( 𝐴 ∈ On → Ord 𝐴)
45 ordn2lp 6326 . . 3 (Ord 𝐴 → ¬ ( 𝐴 ∈ (har‘ 𝐴) ∧ (har‘ 𝐴) ∈ 𝐴))
469, 44, 453syl 18 . 2 (𝐴 ∈ V → ¬ ( 𝐴 ∈ (har‘ 𝐴) ∧ (har‘ 𝐴) ∈ 𝐴))
4743, 46pm2.65i 194 1 ¬ 𝐴 ∈ V
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 395   = wceq 1541  wex 1780  wcel 2111  {cab 2709  wral 3047  Vcvv 3436  wss 3897   cuni 4856   class class class wbr 5089  Ord word 6305  Oncon0 6306  cfv 6481  cdom 8867  csdm 8868  harchar 9442  cardccrd 9828
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-oi 9396  df-har 9443  df-card 9832
This theorem is referenced by:  cardprc  9873
  Copyright terms: Public domain W3C validator