MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cardprclem Structured version   Visualization version   GIF version

Theorem cardprclem 9908
Description: Lemma for cardprc 9909. (Contributed by Mario Carneiro, 22-Jan-2013.) (Revised by Mario Carneiro, 15-May-2015.)
Hypothesis
Ref Expression
cardprclem.1 𝐴 = {𝑥 ∣ (card‘𝑥) = 𝑥}
Assertion
Ref Expression
cardprclem ¬ 𝐴 ∈ V
Distinct variable group:   𝑥,𝐴

Proof of Theorem cardprclem
Dummy variables 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cardprclem.1 . . . . . . . . 9 𝐴 = {𝑥 ∣ (card‘𝑥) = 𝑥}
21eleq2i 2820 . . . . . . . 8 (𝑥𝐴𝑥 ∈ {𝑥 ∣ (card‘𝑥) = 𝑥})
3 abid 2711 . . . . . . . 8 (𝑥 ∈ {𝑥 ∣ (card‘𝑥) = 𝑥} ↔ (card‘𝑥) = 𝑥)
4 iscard 9904 . . . . . . . 8 ((card‘𝑥) = 𝑥 ↔ (𝑥 ∈ On ∧ ∀𝑦𝑥 𝑦𝑥))
52, 3, 43bitri 297 . . . . . . 7 (𝑥𝐴 ↔ (𝑥 ∈ On ∧ ∀𝑦𝑥 𝑦𝑥))
65simplbi 497 . . . . . 6 (𝑥𝐴𝑥 ∈ On)
76ssriv 3947 . . . . 5 𝐴 ⊆ On
8 ssonuni 7736 . . . . 5 (𝐴 ∈ V → (𝐴 ⊆ On → 𝐴 ∈ On))
97, 8mpi 20 . . . 4 (𝐴 ∈ V → 𝐴 ∈ On)
10 domrefg 8935 . . . . 5 ( 𝐴 ∈ On → 𝐴 𝐴)
119, 10syl 17 . . . 4 (𝐴 ∈ V → 𝐴 𝐴)
12 elharval 9490 . . . 4 ( 𝐴 ∈ (har‘ 𝐴) ↔ ( 𝐴 ∈ On ∧ 𝐴 𝐴))
139, 11, 12sylanbrc 583 . . 3 (𝐴 ∈ V → 𝐴 ∈ (har‘ 𝐴))
147sseli 3939 . . . . . . . 8 (𝑧𝐴𝑧 ∈ On)
15 domrefg 8935 . . . . . . . . . 10 (𝑧 ∈ On → 𝑧𝑧)
1615ancli 548 . . . . . . . . 9 (𝑧 ∈ On → (𝑧 ∈ On ∧ 𝑧𝑧))
17 elharval 9490 . . . . . . . . 9 (𝑧 ∈ (har‘𝑧) ↔ (𝑧 ∈ On ∧ 𝑧𝑧))
1816, 17sylibr 234 . . . . . . . 8 (𝑧 ∈ On → 𝑧 ∈ (har‘𝑧))
1914, 18syl 17 . . . . . . 7 (𝑧𝐴𝑧 ∈ (har‘𝑧))
20 harcard 9907 . . . . . . . 8 (card‘(har‘𝑧)) = (har‘𝑧)
21 fvex 6853 . . . . . . . . 9 (har‘𝑧) ∈ V
22 fveq2 6840 . . . . . . . . . 10 (𝑥 = (har‘𝑧) → (card‘𝑥) = (card‘(har‘𝑧)))
23 id 22 . . . . . . . . . 10 (𝑥 = (har‘𝑧) → 𝑥 = (har‘𝑧))
2422, 23eqeq12d 2745 . . . . . . . . 9 (𝑥 = (har‘𝑧) → ((card‘𝑥) = 𝑥 ↔ (card‘(har‘𝑧)) = (har‘𝑧)))
2521, 24, 1elab2 3646 . . . . . . . 8 ((har‘𝑧) ∈ 𝐴 ↔ (card‘(har‘𝑧)) = (har‘𝑧))
2620, 25mpbir 231 . . . . . . 7 (har‘𝑧) ∈ 𝐴
27 eleq2 2817 . . . . . . . . 9 (𝑤 = (har‘𝑧) → (𝑧𝑤𝑧 ∈ (har‘𝑧)))
28 eleq1 2816 . . . . . . . . 9 (𝑤 = (har‘𝑧) → (𝑤𝐴 ↔ (har‘𝑧) ∈ 𝐴))
2927, 28anbi12d 632 . . . . . . . 8 (𝑤 = (har‘𝑧) → ((𝑧𝑤𝑤𝐴) ↔ (𝑧 ∈ (har‘𝑧) ∧ (har‘𝑧) ∈ 𝐴)))
3021, 29spcev 3569 . . . . . . 7 ((𝑧 ∈ (har‘𝑧) ∧ (har‘𝑧) ∈ 𝐴) → ∃𝑤(𝑧𝑤𝑤𝐴))
3119, 26, 30sylancl 586 . . . . . 6 (𝑧𝐴 → ∃𝑤(𝑧𝑤𝑤𝐴))
32 eluni 4870 . . . . . 6 (𝑧 𝐴 ↔ ∃𝑤(𝑧𝑤𝑤𝐴))
3331, 32sylibr 234 . . . . 5 (𝑧𝐴𝑧 𝐴)
3433ssriv 3947 . . . 4 𝐴 𝐴
35 harcard 9907 . . . . 5 (card‘(har‘ 𝐴)) = (har‘ 𝐴)
36 fvex 6853 . . . . . 6 (har‘ 𝐴) ∈ V
37 fveq2 6840 . . . . . . 7 (𝑥 = (har‘ 𝐴) → (card‘𝑥) = (card‘(har‘ 𝐴)))
38 id 22 . . . . . . 7 (𝑥 = (har‘ 𝐴) → 𝑥 = (har‘ 𝐴))
3937, 38eqeq12d 2745 . . . . . 6 (𝑥 = (har‘ 𝐴) → ((card‘𝑥) = 𝑥 ↔ (card‘(har‘ 𝐴)) = (har‘ 𝐴)))
4036, 39, 1elab2 3646 . . . . 5 ((har‘ 𝐴) ∈ 𝐴 ↔ (card‘(har‘ 𝐴)) = (har‘ 𝐴))
4135, 40mpbir 231 . . . 4 (har‘ 𝐴) ∈ 𝐴
4234, 41sselii 3940 . . 3 (har‘ 𝐴) ∈ 𝐴
4313, 42jctir 520 . 2 (𝐴 ∈ V → ( 𝐴 ∈ (har‘ 𝐴) ∧ (har‘ 𝐴) ∈ 𝐴))
44 eloni 6330 . . 3 ( 𝐴 ∈ On → Ord 𝐴)
45 ordn2lp 6340 . . 3 (Ord 𝐴 → ¬ ( 𝐴 ∈ (har‘ 𝐴) ∧ (har‘ 𝐴) ∈ 𝐴))
469, 44, 453syl 18 . 2 (𝐴 ∈ V → ¬ ( 𝐴 ∈ (har‘ 𝐴) ∧ (har‘ 𝐴) ∈ 𝐴))
4743, 46pm2.65i 194 1 ¬ 𝐴 ∈ V
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 395   = wceq 1540  wex 1779  wcel 2109  {cab 2707  wral 3044  Vcvv 3444  wss 3911   cuni 4867   class class class wbr 5102  Ord word 6319  Oncon0 6320  cfv 6499  cdom 8893  csdm 8894  harchar 9485  cardccrd 9864
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-oi 9439  df-har 9486  df-card 9868
This theorem is referenced by:  cardprc  9909
  Copyright terms: Public domain W3C validator