MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cardprclem Structured version   Visualization version   GIF version

Theorem cardprclem 9998
Description: Lemma for cardprc 9999. (Contributed by Mario Carneiro, 22-Jan-2013.) (Revised by Mario Carneiro, 15-May-2015.)
Hypothesis
Ref Expression
cardprclem.1 𝐴 = {𝑥 ∣ (card‘𝑥) = 𝑥}
Assertion
Ref Expression
cardprclem ¬ 𝐴 ∈ V
Distinct variable group:   𝑥,𝐴

Proof of Theorem cardprclem
Dummy variables 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cardprclem.1 . . . . . . . . 9 𝐴 = {𝑥 ∣ (card‘𝑥) = 𝑥}
21eleq2i 2827 . . . . . . . 8 (𝑥𝐴𝑥 ∈ {𝑥 ∣ (card‘𝑥) = 𝑥})
3 abid 2718 . . . . . . . 8 (𝑥 ∈ {𝑥 ∣ (card‘𝑥) = 𝑥} ↔ (card‘𝑥) = 𝑥)
4 iscard 9994 . . . . . . . 8 ((card‘𝑥) = 𝑥 ↔ (𝑥 ∈ On ∧ ∀𝑦𝑥 𝑦𝑥))
52, 3, 43bitri 297 . . . . . . 7 (𝑥𝐴 ↔ (𝑥 ∈ On ∧ ∀𝑦𝑥 𝑦𝑥))
65simplbi 497 . . . . . 6 (𝑥𝐴𝑥 ∈ On)
76ssriv 3967 . . . . 5 𝐴 ⊆ On
8 ssonuni 7779 . . . . 5 (𝐴 ∈ V → (𝐴 ⊆ On → 𝐴 ∈ On))
97, 8mpi 20 . . . 4 (𝐴 ∈ V → 𝐴 ∈ On)
10 domrefg 9006 . . . . 5 ( 𝐴 ∈ On → 𝐴 𝐴)
119, 10syl 17 . . . 4 (𝐴 ∈ V → 𝐴 𝐴)
12 elharval 9580 . . . 4 ( 𝐴 ∈ (har‘ 𝐴) ↔ ( 𝐴 ∈ On ∧ 𝐴 𝐴))
139, 11, 12sylanbrc 583 . . 3 (𝐴 ∈ V → 𝐴 ∈ (har‘ 𝐴))
147sseli 3959 . . . . . . . 8 (𝑧𝐴𝑧 ∈ On)
15 domrefg 9006 . . . . . . . . . 10 (𝑧 ∈ On → 𝑧𝑧)
1615ancli 548 . . . . . . . . 9 (𝑧 ∈ On → (𝑧 ∈ On ∧ 𝑧𝑧))
17 elharval 9580 . . . . . . . . 9 (𝑧 ∈ (har‘𝑧) ↔ (𝑧 ∈ On ∧ 𝑧𝑧))
1816, 17sylibr 234 . . . . . . . 8 (𝑧 ∈ On → 𝑧 ∈ (har‘𝑧))
1914, 18syl 17 . . . . . . 7 (𝑧𝐴𝑧 ∈ (har‘𝑧))
20 harcard 9997 . . . . . . . 8 (card‘(har‘𝑧)) = (har‘𝑧)
21 fvex 6894 . . . . . . . . 9 (har‘𝑧) ∈ V
22 fveq2 6881 . . . . . . . . . 10 (𝑥 = (har‘𝑧) → (card‘𝑥) = (card‘(har‘𝑧)))
23 id 22 . . . . . . . . . 10 (𝑥 = (har‘𝑧) → 𝑥 = (har‘𝑧))
2422, 23eqeq12d 2752 . . . . . . . . 9 (𝑥 = (har‘𝑧) → ((card‘𝑥) = 𝑥 ↔ (card‘(har‘𝑧)) = (har‘𝑧)))
2521, 24, 1elab2 3666 . . . . . . . 8 ((har‘𝑧) ∈ 𝐴 ↔ (card‘(har‘𝑧)) = (har‘𝑧))
2620, 25mpbir 231 . . . . . . 7 (har‘𝑧) ∈ 𝐴
27 eleq2 2824 . . . . . . . . 9 (𝑤 = (har‘𝑧) → (𝑧𝑤𝑧 ∈ (har‘𝑧)))
28 eleq1 2823 . . . . . . . . 9 (𝑤 = (har‘𝑧) → (𝑤𝐴 ↔ (har‘𝑧) ∈ 𝐴))
2927, 28anbi12d 632 . . . . . . . 8 (𝑤 = (har‘𝑧) → ((𝑧𝑤𝑤𝐴) ↔ (𝑧 ∈ (har‘𝑧) ∧ (har‘𝑧) ∈ 𝐴)))
3021, 29spcev 3590 . . . . . . 7 ((𝑧 ∈ (har‘𝑧) ∧ (har‘𝑧) ∈ 𝐴) → ∃𝑤(𝑧𝑤𝑤𝐴))
3119, 26, 30sylancl 586 . . . . . 6 (𝑧𝐴 → ∃𝑤(𝑧𝑤𝑤𝐴))
32 eluni 4891 . . . . . 6 (𝑧 𝐴 ↔ ∃𝑤(𝑧𝑤𝑤𝐴))
3331, 32sylibr 234 . . . . 5 (𝑧𝐴𝑧 𝐴)
3433ssriv 3967 . . . 4 𝐴 𝐴
35 harcard 9997 . . . . 5 (card‘(har‘ 𝐴)) = (har‘ 𝐴)
36 fvex 6894 . . . . . 6 (har‘ 𝐴) ∈ V
37 fveq2 6881 . . . . . . 7 (𝑥 = (har‘ 𝐴) → (card‘𝑥) = (card‘(har‘ 𝐴)))
38 id 22 . . . . . . 7 (𝑥 = (har‘ 𝐴) → 𝑥 = (har‘ 𝐴))
3937, 38eqeq12d 2752 . . . . . 6 (𝑥 = (har‘ 𝐴) → ((card‘𝑥) = 𝑥 ↔ (card‘(har‘ 𝐴)) = (har‘ 𝐴)))
4036, 39, 1elab2 3666 . . . . 5 ((har‘ 𝐴) ∈ 𝐴 ↔ (card‘(har‘ 𝐴)) = (har‘ 𝐴))
4135, 40mpbir 231 . . . 4 (har‘ 𝐴) ∈ 𝐴
4234, 41sselii 3960 . . 3 (har‘ 𝐴) ∈ 𝐴
4313, 42jctir 520 . 2 (𝐴 ∈ V → ( 𝐴 ∈ (har‘ 𝐴) ∧ (har‘ 𝐴) ∈ 𝐴))
44 eloni 6367 . . 3 ( 𝐴 ∈ On → Ord 𝐴)
45 ordn2lp 6377 . . 3 (Ord 𝐴 → ¬ ( 𝐴 ∈ (har‘ 𝐴) ∧ (har‘ 𝐴) ∈ 𝐴))
469, 44, 453syl 18 . 2 (𝐴 ∈ V → ¬ ( 𝐴 ∈ (har‘ 𝐴) ∧ (har‘ 𝐴) ∈ 𝐴))
4743, 46pm2.65i 194 1 ¬ 𝐴 ∈ V
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 395   = wceq 1540  wex 1779  wcel 2109  {cab 2714  wral 3052  Vcvv 3464  wss 3931   cuni 4888   class class class wbr 5124  Ord word 6356  Oncon0 6357  cfv 6536  cdom 8962  csdm 8963  harchar 9575  cardccrd 9954
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-se 5612  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-isom 6545  df-riota 7367  df-ov 7413  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-er 8724  df-en 8965  df-dom 8966  df-sdom 8967  df-oi 9529  df-har 9576  df-card 9958
This theorem is referenced by:  cardprc  9999
  Copyright terms: Public domain W3C validator