MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cardprclem Structured version   Visualization version   GIF version

Theorem cardprclem 9384
Description: Lemma for cardprc 9385. (Contributed by Mario Carneiro, 22-Jan-2013.) (Revised by Mario Carneiro, 15-May-2015.)
Hypothesis
Ref Expression
cardprclem.1 𝐴 = {𝑥 ∣ (card‘𝑥) = 𝑥}
Assertion
Ref Expression
cardprclem ¬ 𝐴 ∈ V
Distinct variable group:   𝑥,𝐴

Proof of Theorem cardprclem
Dummy variables 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cardprclem.1 . . . . . . . . 9 𝐴 = {𝑥 ∣ (card‘𝑥) = 𝑥}
21eleq2i 2903 . . . . . . . 8 (𝑥𝐴𝑥 ∈ {𝑥 ∣ (card‘𝑥) = 𝑥})
3 abid 2803 . . . . . . . 8 (𝑥 ∈ {𝑥 ∣ (card‘𝑥) = 𝑥} ↔ (card‘𝑥) = 𝑥)
4 iscard 9380 . . . . . . . 8 ((card‘𝑥) = 𝑥 ↔ (𝑥 ∈ On ∧ ∀𝑦𝑥 𝑦𝑥))
52, 3, 43bitri 300 . . . . . . 7 (𝑥𝐴 ↔ (𝑥 ∈ On ∧ ∀𝑦𝑥 𝑦𝑥))
65simplbi 501 . . . . . 6 (𝑥𝐴𝑥 ∈ On)
76ssriv 3947 . . . . 5 𝐴 ⊆ On
8 ssonuni 7476 . . . . 5 (𝐴 ∈ V → (𝐴 ⊆ On → 𝐴 ∈ On))
97, 8mpi 20 . . . 4 (𝐴 ∈ V → 𝐴 ∈ On)
10 domrefg 8519 . . . . 5 ( 𝐴 ∈ On → 𝐴 𝐴)
119, 10syl 17 . . . 4 (𝐴 ∈ V → 𝐴 𝐴)
12 elharval 9001 . . . 4 ( 𝐴 ∈ (har‘ 𝐴) ↔ ( 𝐴 ∈ On ∧ 𝐴 𝐴))
139, 11, 12sylanbrc 586 . . 3 (𝐴 ∈ V → 𝐴 ∈ (har‘ 𝐴))
147sseli 3939 . . . . . . . 8 (𝑧𝐴𝑧 ∈ On)
15 domrefg 8519 . . . . . . . . . 10 (𝑧 ∈ On → 𝑧𝑧)
1615ancli 552 . . . . . . . . 9 (𝑧 ∈ On → (𝑧 ∈ On ∧ 𝑧𝑧))
17 elharval 9001 . . . . . . . . 9 (𝑧 ∈ (har‘𝑧) ↔ (𝑧 ∈ On ∧ 𝑧𝑧))
1816, 17sylibr 237 . . . . . . . 8 (𝑧 ∈ On → 𝑧 ∈ (har‘𝑧))
1914, 18syl 17 . . . . . . 7 (𝑧𝐴𝑧 ∈ (har‘𝑧))
20 harcard 9383 . . . . . . . 8 (card‘(har‘𝑧)) = (har‘𝑧)
21 fvex 6656 . . . . . . . . 9 (har‘𝑧) ∈ V
22 fveq2 6643 . . . . . . . . . 10 (𝑥 = (har‘𝑧) → (card‘𝑥) = (card‘(har‘𝑧)))
23 id 22 . . . . . . . . . 10 (𝑥 = (har‘𝑧) → 𝑥 = (har‘𝑧))
2422, 23eqeq12d 2837 . . . . . . . . 9 (𝑥 = (har‘𝑧) → ((card‘𝑥) = 𝑥 ↔ (card‘(har‘𝑧)) = (har‘𝑧)))
2521, 24, 1elab2 3647 . . . . . . . 8 ((har‘𝑧) ∈ 𝐴 ↔ (card‘(har‘𝑧)) = (har‘𝑧))
2620, 25mpbir 234 . . . . . . 7 (har‘𝑧) ∈ 𝐴
27 eleq2 2900 . . . . . . . . 9 (𝑤 = (har‘𝑧) → (𝑧𝑤𝑧 ∈ (har‘𝑧)))
28 eleq1 2899 . . . . . . . . 9 (𝑤 = (har‘𝑧) → (𝑤𝐴 ↔ (har‘𝑧) ∈ 𝐴))
2927, 28anbi12d 633 . . . . . . . 8 (𝑤 = (har‘𝑧) → ((𝑧𝑤𝑤𝐴) ↔ (𝑧 ∈ (har‘𝑧) ∧ (har‘𝑧) ∈ 𝐴)))
3021, 29spcev 3584 . . . . . . 7 ((𝑧 ∈ (har‘𝑧) ∧ (har‘𝑧) ∈ 𝐴) → ∃𝑤(𝑧𝑤𝑤𝐴))
3119, 26, 30sylancl 589 . . . . . 6 (𝑧𝐴 → ∃𝑤(𝑧𝑤𝑤𝐴))
32 eluni 4814 . . . . . 6 (𝑧 𝐴 ↔ ∃𝑤(𝑧𝑤𝑤𝐴))
3331, 32sylibr 237 . . . . 5 (𝑧𝐴𝑧 𝐴)
3433ssriv 3947 . . . 4 𝐴 𝐴
35 harcard 9383 . . . . 5 (card‘(har‘ 𝐴)) = (har‘ 𝐴)
36 fvex 6656 . . . . . 6 (har‘ 𝐴) ∈ V
37 fveq2 6643 . . . . . . 7 (𝑥 = (har‘ 𝐴) → (card‘𝑥) = (card‘(har‘ 𝐴)))
38 id 22 . . . . . . 7 (𝑥 = (har‘ 𝐴) → 𝑥 = (har‘ 𝐴))
3937, 38eqeq12d 2837 . . . . . 6 (𝑥 = (har‘ 𝐴) → ((card‘𝑥) = 𝑥 ↔ (card‘(har‘ 𝐴)) = (har‘ 𝐴)))
4036, 39, 1elab2 3647 . . . . 5 ((har‘ 𝐴) ∈ 𝐴 ↔ (card‘(har‘ 𝐴)) = (har‘ 𝐴))
4135, 40mpbir 234 . . . 4 (har‘ 𝐴) ∈ 𝐴
4234, 41sselii 3940 . . 3 (har‘ 𝐴) ∈ 𝐴
4313, 42jctir 524 . 2 (𝐴 ∈ V → ( 𝐴 ∈ (har‘ 𝐴) ∧ (har‘ 𝐴) ∈ 𝐴))
44 eloni 6174 . . 3 ( 𝐴 ∈ On → Ord 𝐴)
45 ordn2lp 6184 . . 3 (Ord 𝐴 → ¬ ( 𝐴 ∈ (har‘ 𝐴) ∧ (har‘ 𝐴) ∈ 𝐴))
469, 44, 453syl 18 . 2 (𝐴 ∈ V → ¬ ( 𝐴 ∈ (har‘ 𝐴) ∧ (har‘ 𝐴) ∈ 𝐴))
4743, 46pm2.65i 197 1 ¬ 𝐴 ∈ V
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 399   = wceq 1538  wex 1781  wcel 2115  {cab 2799  wral 3126  Vcvv 3471  wss 3910   cuni 4811   class class class wbr 5039  Ord word 6163  Oncon0 6164  cfv 6328  cdom 8482  csdm 8483  harchar 8996  cardccrd 9340
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2178  ax-ext 2793  ax-rep 5163  ax-sep 5176  ax-nul 5183  ax-pow 5239  ax-pr 5303  ax-un 7436
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2623  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2892  df-nfc 2960  df-ne 3008  df-ral 3131  df-rex 3132  df-reu 3133  df-rmo 3134  df-rab 3135  df-v 3473  df-sbc 3750  df-csb 3858  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4267  df-if 4441  df-pw 4514  df-sn 4541  df-pr 4543  df-tp 4545  df-op 4547  df-uni 4812  df-int 4850  df-iun 4894  df-br 5040  df-opab 5102  df-mpt 5120  df-tr 5146  df-id 5433  df-eprel 5438  df-po 5447  df-so 5448  df-fr 5487  df-se 5488  df-we 5489  df-xp 5534  df-rel 5535  df-cnv 5536  df-co 5537  df-dm 5538  df-rn 5539  df-res 5540  df-ima 5541  df-pred 6121  df-ord 6167  df-on 6168  df-lim 6169  df-suc 6170  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-isom 6337  df-riota 7088  df-wrecs 7922  df-recs 7983  df-er 8264  df-en 8485  df-dom 8486  df-sdom 8487  df-oi 8950  df-har 8997  df-card 9344
This theorem is referenced by:  cardprc  9385
  Copyright terms: Public domain W3C validator