| Step | Hyp | Ref
| Expression |
| 1 | | etransclem24.d |
. . . . . . . 8
⊢ (𝜑 → 𝐷 ∈ (𝐶‘𝐼)) |
| 2 | | etransclem24.c |
. . . . . . . . 9
⊢ 𝐶 = (𝑛 ∈ ℕ0 ↦ {𝑐 ∈ ((0...𝑛) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐‘𝑗) = 𝑛}) |
| 3 | | etransclem24.i |
. . . . . . . . 9
⊢ (𝜑 → 𝐼 ∈
ℕ0) |
| 4 | 2, 3 | etransclem12 46261 |
. . . . . . . 8
⊢ (𝜑 → (𝐶‘𝐼) = {𝑐 ∈ ((0...𝐼) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐‘𝑗) = 𝐼}) |
| 5 | 1, 4 | eleqtrd 2843 |
. . . . . . 7
⊢ (𝜑 → 𝐷 ∈ {𝑐 ∈ ((0...𝐼) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐‘𝑗) = 𝐼}) |
| 6 | | fveq1 6905 |
. . . . . . . . . 10
⊢ (𝑐 = 𝐷 → (𝑐‘𝑗) = (𝐷‘𝑗)) |
| 7 | 6 | sumeq2sdv 15739 |
. . . . . . . . 9
⊢ (𝑐 = 𝐷 → Σ𝑗 ∈ (0...𝑀)(𝑐‘𝑗) = Σ𝑗 ∈ (0...𝑀)(𝐷‘𝑗)) |
| 8 | 7 | eqeq1d 2739 |
. . . . . . . 8
⊢ (𝑐 = 𝐷 → (Σ𝑗 ∈ (0...𝑀)(𝑐‘𝑗) = 𝐼 ↔ Σ𝑗 ∈ (0...𝑀)(𝐷‘𝑗) = 𝐼)) |
| 9 | 8 | elrab 3692 |
. . . . . . 7
⊢ (𝐷 ∈ {𝑐 ∈ ((0...𝐼) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐‘𝑗) = 𝐼} ↔ (𝐷 ∈ ((0...𝐼) ↑m (0...𝑀)) ∧ Σ𝑗 ∈ (0...𝑀)(𝐷‘𝑗) = 𝐼)) |
| 10 | 5, 9 | sylib 218 |
. . . . . 6
⊢ (𝜑 → (𝐷 ∈ ((0...𝐼) ↑m (0...𝑀)) ∧ Σ𝑗 ∈ (0...𝑀)(𝐷‘𝑗) = 𝐼)) |
| 11 | 10 | simprd 495 |
. . . . 5
⊢ (𝜑 → Σ𝑗 ∈ (0...𝑀)(𝐷‘𝑗) = 𝐼) |
| 12 | 11 | ad2antrr 726 |
. . . 4
⊢ (((𝜑 ∧ (𝐷‘0) = (𝑃 − 1)) ∧ ¬ ∃𝑘 ∈ (1...𝑀)(𝐷‘𝑘) ∈ ℕ) → Σ𝑗 ∈ (0...𝑀)(𝐷‘𝑗) = 𝐼) |
| 13 | | ralnex 3072 |
. . . . 5
⊢
(∀𝑘 ∈
(1...𝑀) ¬ (𝐷‘𝑘) ∈ ℕ ↔ ¬ ∃𝑘 ∈ (1...𝑀)(𝐷‘𝑘) ∈ ℕ) |
| 14 | | etransclem24.m |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑀 ∈
ℕ0) |
| 15 | | nn0uz 12920 |
. . . . . . . . . . 11
⊢
ℕ0 = (ℤ≥‘0) |
| 16 | 14, 15 | eleqtrdi 2851 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑀 ∈
(ℤ≥‘0)) |
| 17 | 16 | ad2antrr 726 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝐷‘0) = (𝑃 − 1)) ∧ ∀𝑘 ∈ (1...𝑀) ¬ (𝐷‘𝑘) ∈ ℕ) → 𝑀 ∈
(ℤ≥‘0)) |
| 18 | | fzsscn 45323 |
. . . . . . . . . . 11
⊢
(0...𝐼) ⊆
ℂ |
| 19 | | ssrab2 4080 |
. . . . . . . . . . . . . . 15
⊢ {𝑐 ∈ ((0...𝐼) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐‘𝑗) = 𝐼} ⊆ ((0...𝐼) ↑m (0...𝑀)) |
| 20 | 4, 19 | eqsstrdi 4028 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝐶‘𝐼) ⊆ ((0...𝐼) ↑m (0...𝑀))) |
| 21 | 20, 1 | sseldd 3984 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐷 ∈ ((0...𝐼) ↑m (0...𝑀))) |
| 22 | | elmapi 8889 |
. . . . . . . . . . . . 13
⊢ (𝐷 ∈ ((0...𝐼) ↑m (0...𝑀)) → 𝐷:(0...𝑀)⟶(0...𝐼)) |
| 23 | 21, 22 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐷:(0...𝑀)⟶(0...𝐼)) |
| 24 | 23 | ffvelcdmda 7104 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑀)) → (𝐷‘𝑗) ∈ (0...𝐼)) |
| 25 | 18, 24 | sselid 3981 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑀)) → (𝐷‘𝑗) ∈ ℂ) |
| 26 | 25 | ad4ant14 752 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ (𝐷‘0) = (𝑃 − 1)) ∧ ∀𝑘 ∈ (1...𝑀) ¬ (𝐷‘𝑘) ∈ ℕ) ∧ 𝑗 ∈ (0...𝑀)) → (𝐷‘𝑗) ∈ ℂ) |
| 27 | | fveq2 6906 |
. . . . . . . . 9
⊢ (𝑗 = 0 → (𝐷‘𝑗) = (𝐷‘0)) |
| 28 | 17, 26, 27 | fsum1p 15789 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝐷‘0) = (𝑃 − 1)) ∧ ∀𝑘 ∈ (1...𝑀) ¬ (𝐷‘𝑘) ∈ ℕ) → Σ𝑗 ∈ (0...𝑀)(𝐷‘𝑗) = ((𝐷‘0) + Σ𝑗 ∈ ((0 + 1)...𝑀)(𝐷‘𝑗))) |
| 29 | | simplr 769 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝐷‘0) = (𝑃 − 1)) ∧ ∀𝑘 ∈ (1...𝑀) ¬ (𝐷‘𝑘) ∈ ℕ) → (𝐷‘0) = (𝑃 − 1)) |
| 30 | | 0p1e1 12388 |
. . . . . . . . . . . . . 14
⊢ (0 + 1) =
1 |
| 31 | 30 | oveq1i 7441 |
. . . . . . . . . . . . 13
⊢ ((0 +
1)...𝑀) = (1...𝑀) |
| 32 | 31 | sumeq1i 15733 |
. . . . . . . . . . . 12
⊢
Σ𝑗 ∈ ((0
+ 1)...𝑀)(𝐷‘𝑗) = Σ𝑗 ∈ (1...𝑀)(𝐷‘𝑗) |
| 33 | 32 | a1i 11 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ ∀𝑘 ∈ (1...𝑀) ¬ (𝐷‘𝑘) ∈ ℕ) → Σ𝑗 ∈ ((0 + 1)...𝑀)(𝐷‘𝑗) = Σ𝑗 ∈ (1...𝑀)(𝐷‘𝑗)) |
| 34 | | fveq2 6906 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑘 = 𝑗 → (𝐷‘𝑘) = (𝐷‘𝑗)) |
| 35 | 34 | eleq1d 2826 |
. . . . . . . . . . . . . . . 16
⊢ (𝑘 = 𝑗 → ((𝐷‘𝑘) ∈ ℕ ↔ (𝐷‘𝑗) ∈ ℕ)) |
| 36 | 35 | notbid 318 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 = 𝑗 → (¬ (𝐷‘𝑘) ∈ ℕ ↔ ¬ (𝐷‘𝑗) ∈ ℕ)) |
| 37 | 36 | rspccva 3621 |
. . . . . . . . . . . . . 14
⊢
((∀𝑘 ∈
(1...𝑀) ¬ (𝐷‘𝑘) ∈ ℕ ∧ 𝑗 ∈ (1...𝑀)) → ¬ (𝐷‘𝑗) ∈ ℕ) |
| 38 | 37 | adantll 714 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ ∀𝑘 ∈ (1...𝑀) ¬ (𝐷‘𝑘) ∈ ℕ) ∧ 𝑗 ∈ (1...𝑀)) → ¬ (𝐷‘𝑗) ∈ ℕ) |
| 39 | | fzssnn0 45329 |
. . . . . . . . . . . . . . . 16
⊢
(0...𝐼) ⊆
ℕ0 |
| 40 | | fz1ssfz0 13663 |
. . . . . . . . . . . . . . . . . 18
⊢
(1...𝑀) ⊆
(0...𝑀) |
| 41 | 40 | sseli 3979 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑗 ∈ (1...𝑀) → 𝑗 ∈ (0...𝑀)) |
| 42 | 41, 24 | sylan2 593 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑗 ∈ (1...𝑀)) → (𝐷‘𝑗) ∈ (0...𝐼)) |
| 43 | 39, 42 | sselid 3981 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑗 ∈ (1...𝑀)) → (𝐷‘𝑗) ∈
ℕ0) |
| 44 | | elnn0 12528 |
. . . . . . . . . . . . . . 15
⊢ ((𝐷‘𝑗) ∈ ℕ0 ↔ ((𝐷‘𝑗) ∈ ℕ ∨ (𝐷‘𝑗) = 0)) |
| 45 | 43, 44 | sylib 218 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑗 ∈ (1...𝑀)) → ((𝐷‘𝑗) ∈ ℕ ∨ (𝐷‘𝑗) = 0)) |
| 46 | 45 | adantlr 715 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ ∀𝑘 ∈ (1...𝑀) ¬ (𝐷‘𝑘) ∈ ℕ) ∧ 𝑗 ∈ (1...𝑀)) → ((𝐷‘𝑗) ∈ ℕ ∨ (𝐷‘𝑗) = 0)) |
| 47 | | orel1 889 |
. . . . . . . . . . . . 13
⊢ (¬
(𝐷‘𝑗) ∈ ℕ → (((𝐷‘𝑗) ∈ ℕ ∨ (𝐷‘𝑗) = 0) → (𝐷‘𝑗) = 0)) |
| 48 | 38, 46, 47 | sylc 65 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ ∀𝑘 ∈ (1...𝑀) ¬ (𝐷‘𝑘) ∈ ℕ) ∧ 𝑗 ∈ (1...𝑀)) → (𝐷‘𝑗) = 0) |
| 49 | 48 | sumeq2dv 15738 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ ∀𝑘 ∈ (1...𝑀) ¬ (𝐷‘𝑘) ∈ ℕ) → Σ𝑗 ∈ (1...𝑀)(𝐷‘𝑗) = Σ𝑗 ∈ (1...𝑀)0) |
| 50 | | fzfi 14013 |
. . . . . . . . . . . . 13
⊢
(1...𝑀) ∈
Fin |
| 51 | 50 | olci 867 |
. . . . . . . . . . . 12
⊢
((1...𝑀) ⊆
(ℤ≥‘𝐴) ∨ (1...𝑀) ∈ Fin) |
| 52 | | sumz 15758 |
. . . . . . . . . . . 12
⊢
(((1...𝑀) ⊆
(ℤ≥‘𝐴) ∨ (1...𝑀) ∈ Fin) → Σ𝑗 ∈ (1...𝑀)0 = 0) |
| 53 | 51, 52 | mp1i 13 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ ∀𝑘 ∈ (1...𝑀) ¬ (𝐷‘𝑘) ∈ ℕ) → Σ𝑗 ∈ (1...𝑀)0 = 0) |
| 54 | 33, 49, 53 | 3eqtrd 2781 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ ∀𝑘 ∈ (1...𝑀) ¬ (𝐷‘𝑘) ∈ ℕ) → Σ𝑗 ∈ ((0 + 1)...𝑀)(𝐷‘𝑗) = 0) |
| 55 | 54 | adantlr 715 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝐷‘0) = (𝑃 − 1)) ∧ ∀𝑘 ∈ (1...𝑀) ¬ (𝐷‘𝑘) ∈ ℕ) → Σ𝑗 ∈ ((0 + 1)...𝑀)(𝐷‘𝑗) = 0) |
| 56 | 29, 55 | oveq12d 7449 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝐷‘0) = (𝑃 − 1)) ∧ ∀𝑘 ∈ (1...𝑀) ¬ (𝐷‘𝑘) ∈ ℕ) → ((𝐷‘0) + Σ𝑗 ∈ ((0 + 1)...𝑀)(𝐷‘𝑗)) = ((𝑃 − 1) + 0)) |
| 57 | | etransclem24.p |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑃 ∈ ℕ) |
| 58 | | nnm1nn0 12567 |
. . . . . . . . . . . . 13
⊢ (𝑃 ∈ ℕ → (𝑃 − 1) ∈
ℕ0) |
| 59 | 57, 58 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑃 − 1) ∈
ℕ0) |
| 60 | 59 | nn0red 12588 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑃 − 1) ∈ ℝ) |
| 61 | 60 | recnd 11289 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑃 − 1) ∈ ℂ) |
| 62 | 61 | addridd 11461 |
. . . . . . . . 9
⊢ (𝜑 → ((𝑃 − 1) + 0) = (𝑃 − 1)) |
| 63 | 62 | ad2antrr 726 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝐷‘0) = (𝑃 − 1)) ∧ ∀𝑘 ∈ (1...𝑀) ¬ (𝐷‘𝑘) ∈ ℕ) → ((𝑃 − 1) + 0) = (𝑃 − 1)) |
| 64 | 28, 56, 63 | 3eqtrd 2781 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝐷‘0) = (𝑃 − 1)) ∧ ∀𝑘 ∈ (1...𝑀) ¬ (𝐷‘𝑘) ∈ ℕ) → Σ𝑗 ∈ (0...𝑀)(𝐷‘𝑗) = (𝑃 − 1)) |
| 65 | | etransclem24.ip |
. . . . . . . . 9
⊢ (𝜑 → 𝐼 ≠ (𝑃 − 1)) |
| 66 | 65 | necomd 2996 |
. . . . . . . 8
⊢ (𝜑 → (𝑃 − 1) ≠ 𝐼) |
| 67 | 66 | ad2antrr 726 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝐷‘0) = (𝑃 − 1)) ∧ ∀𝑘 ∈ (1...𝑀) ¬ (𝐷‘𝑘) ∈ ℕ) → (𝑃 − 1) ≠ 𝐼) |
| 68 | 64, 67 | eqnetrd 3008 |
. . . . . 6
⊢ (((𝜑 ∧ (𝐷‘0) = (𝑃 − 1)) ∧ ∀𝑘 ∈ (1...𝑀) ¬ (𝐷‘𝑘) ∈ ℕ) → Σ𝑗 ∈ (0...𝑀)(𝐷‘𝑗) ≠ 𝐼) |
| 69 | 68 | neneqd 2945 |
. . . . 5
⊢ (((𝜑 ∧ (𝐷‘0) = (𝑃 − 1)) ∧ ∀𝑘 ∈ (1...𝑀) ¬ (𝐷‘𝑘) ∈ ℕ) → ¬ Σ𝑗 ∈ (0...𝑀)(𝐷‘𝑗) = 𝐼) |
| 70 | 13, 69 | sylan2br 595 |
. . . 4
⊢ (((𝜑 ∧ (𝐷‘0) = (𝑃 − 1)) ∧ ¬ ∃𝑘 ∈ (1...𝑀)(𝐷‘𝑘) ∈ ℕ) → ¬ Σ𝑗 ∈ (0...𝑀)(𝐷‘𝑗) = 𝐼) |
| 71 | 12, 70 | condan 818 |
. . 3
⊢ ((𝜑 ∧ (𝐷‘0) = (𝑃 − 1)) → ∃𝑘 ∈ (1...𝑀)(𝐷‘𝑘) ∈ ℕ) |
| 72 | 57 | nnzd 12640 |
. . . . . . . . 9
⊢ (𝜑 → 𝑃 ∈ ℤ) |
| 73 | 11 | eqcomd 2743 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐼 = Σ𝑗 ∈ (0...𝑀)(𝐷‘𝑗)) |
| 74 | 73 | fveq2d 6910 |
. . . . . . . . . . . 12
⊢ (𝜑 → (!‘𝐼) = (!‘Σ𝑗 ∈ (0...𝑀)(𝐷‘𝑗))) |
| 75 | 74 | oveq1d 7446 |
. . . . . . . . . . 11
⊢ (𝜑 → ((!‘𝐼) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐷‘𝑗))) = ((!‘Σ𝑗 ∈ (0...𝑀)(𝐷‘𝑗)) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐷‘𝑗)))) |
| 76 | | nfcv 2905 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑗𝐷 |
| 77 | | fzfid 14014 |
. . . . . . . . . . . 12
⊢ (𝜑 → (0...𝑀) ∈ Fin) |
| 78 | | nn0ex 12532 |
. . . . . . . . . . . . . 14
⊢
ℕ0 ∈ V |
| 79 | | mapss 8929 |
. . . . . . . . . . . . . 14
⊢
((ℕ0 ∈ V ∧ (0...𝐼) ⊆ ℕ0) →
((0...𝐼) ↑m
(0...𝑀)) ⊆
(ℕ0 ↑m (0...𝑀))) |
| 80 | 78, 39, 79 | mp2an 692 |
. . . . . . . . . . . . 13
⊢
((0...𝐼)
↑m (0...𝑀))
⊆ (ℕ0 ↑m (0...𝑀)) |
| 81 | 80, 21 | sselid 3981 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐷 ∈ (ℕ0
↑m (0...𝑀))) |
| 82 | 76, 77, 81 | mccl 45613 |
. . . . . . . . . . 11
⊢ (𝜑 → ((!‘Σ𝑗 ∈ (0...𝑀)(𝐷‘𝑗)) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐷‘𝑗))) ∈ ℕ) |
| 83 | 75, 82 | eqeltrd 2841 |
. . . . . . . . . 10
⊢ (𝜑 → ((!‘𝐼) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐷‘𝑗))) ∈ ℕ) |
| 84 | 83 | nnzd 12640 |
. . . . . . . . 9
⊢ (𝜑 → ((!‘𝐼) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐷‘𝑗))) ∈ ℤ) |
| 85 | | fzfid 14014 |
. . . . . . . . . 10
⊢ (𝜑 → (1...𝑀) ∈ Fin) |
| 86 | 57 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ (1...𝑀)) → 𝑃 ∈ ℕ) |
| 87 | 23 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ (1...𝑀)) → 𝐷:(0...𝑀)⟶(0...𝐼)) |
| 88 | 41 | adantl 481 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ (1...𝑀)) → 𝑗 ∈ (0...𝑀)) |
| 89 | | etransclem24.j |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐽 = 0) |
| 90 | | 0zd 12625 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 0 ∈
ℤ) |
| 91 | 89, 90 | eqeltrd 2841 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐽 ∈ ℤ) |
| 92 | 91 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ (1...𝑀)) → 𝐽 ∈ ℤ) |
| 93 | 86, 87, 88, 92 | etransclem3 46252 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ (1...𝑀)) → if(𝑃 < (𝐷‘𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐷‘𝑗)))) · ((𝐽 − 𝑗)↑(𝑃 − (𝐷‘𝑗))))) ∈ ℤ) |
| 94 | 85, 93 | fprodzcl 15990 |
. . . . . . . . 9
⊢ (𝜑 → ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐷‘𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐷‘𝑗)))) · ((𝐽 − 𝑗)↑(𝑃 − (𝐷‘𝑗))))) ∈ ℤ) |
| 95 | 72, 84, 94 | 3jca 1129 |
. . . . . . . 8
⊢ (𝜑 → (𝑃 ∈ ℤ ∧ ((!‘𝐼) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐷‘𝑗))) ∈ ℤ ∧ ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐷‘𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐷‘𝑗)))) · ((𝐽 − 𝑗)↑(𝑃 − (𝐷‘𝑗))))) ∈ ℤ)) |
| 96 | 95 | 3ad2ant1 1134 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ (1...𝑀) ∧ (𝐷‘𝑘) ∈ ℕ) → (𝑃 ∈ ℤ ∧ ((!‘𝐼) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐷‘𝑗))) ∈ ℤ ∧ ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐷‘𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐷‘𝑗)))) · ((𝐽 − 𝑗)↑(𝑃 − (𝐷‘𝑗))))) ∈ ℤ)) |
| 97 | 72 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ (1...𝑀)) → 𝑃 ∈ ℤ) |
| 98 | 57 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑘 ∈ (1...𝑀)) → 𝑃 ∈ ℕ) |
| 99 | 23 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑘 ∈ (1...𝑀)) → 𝐷:(0...𝑀)⟶(0...𝐼)) |
| 100 | 40 | sseli 3979 |
. . . . . . . . . . . . 13
⊢ (𝑘 ∈ (1...𝑀) → 𝑘 ∈ (0...𝑀)) |
| 101 | 100 | adantl 481 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑘 ∈ (1...𝑀)) → 𝑘 ∈ (0...𝑀)) |
| 102 | 91 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑘 ∈ (1...𝑀)) → 𝐽 ∈ ℤ) |
| 103 | 98, 99, 101, 102 | etransclem3 46252 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ (1...𝑀)) → if(𝑃 < (𝐷‘𝑘), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐷‘𝑘)))) · ((𝐽 − 𝑘)↑(𝑃 − (𝐷‘𝑘))))) ∈ ℤ) |
| 104 | | difss 4136 |
. . . . . . . . . . . . . . 15
⊢
((1...𝑀) ∖
{𝑘}) ⊆ (1...𝑀) |
| 105 | | ssfi 9213 |
. . . . . . . . . . . . . . 15
⊢
(((1...𝑀) ∈ Fin
∧ ((1...𝑀) ∖
{𝑘}) ⊆ (1...𝑀)) → ((1...𝑀) ∖ {𝑘}) ∈ Fin) |
| 106 | 50, 104, 105 | mp2an 692 |
. . . . . . . . . . . . . 14
⊢
((1...𝑀) ∖
{𝑘}) ∈
Fin |
| 107 | 106 | a1i 11 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ((1...𝑀) ∖ {𝑘}) ∈ Fin) |
| 108 | 57 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑗 ∈ ((1...𝑀) ∖ {𝑘})) → 𝑃 ∈ ℕ) |
| 109 | 23 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑗 ∈ ((1...𝑀) ∖ {𝑘})) → 𝐷:(0...𝑀)⟶(0...𝐼)) |
| 110 | 104, 40 | sstri 3993 |
. . . . . . . . . . . . . . . 16
⊢
((1...𝑀) ∖
{𝑘}) ⊆ (0...𝑀) |
| 111 | 110 | sseli 3979 |
. . . . . . . . . . . . . . 15
⊢ (𝑗 ∈ ((1...𝑀) ∖ {𝑘}) → 𝑗 ∈ (0...𝑀)) |
| 112 | 111 | adantl 481 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑗 ∈ ((1...𝑀) ∖ {𝑘})) → 𝑗 ∈ (0...𝑀)) |
| 113 | 91 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑗 ∈ ((1...𝑀) ∖ {𝑘})) → 𝐽 ∈ ℤ) |
| 114 | 108, 109,
112, 113 | etransclem3 46252 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑗 ∈ ((1...𝑀) ∖ {𝑘})) → if(𝑃 < (𝐷‘𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐷‘𝑗)))) · ((𝐽 − 𝑗)↑(𝑃 − (𝐷‘𝑗))))) ∈ ℤ) |
| 115 | 107, 114 | fprodzcl 15990 |
. . . . . . . . . . . 12
⊢ (𝜑 → ∏𝑗 ∈ ((1...𝑀) ∖ {𝑘})if(𝑃 < (𝐷‘𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐷‘𝑗)))) · ((𝐽 − 𝑗)↑(𝑃 − (𝐷‘𝑗))))) ∈ ℤ) |
| 116 | 115 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ (1...𝑀)) → ∏𝑗 ∈ ((1...𝑀) ∖ {𝑘})if(𝑃 < (𝐷‘𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐷‘𝑗)))) · ((𝐽 − 𝑗)↑(𝑃 − (𝐷‘𝑗))))) ∈ ℤ) |
| 117 | 97, 103, 116 | 3jca 1129 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ (1...𝑀)) → (𝑃 ∈ ℤ ∧ if(𝑃 < (𝐷‘𝑘), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐷‘𝑘)))) · ((𝐽 − 𝑘)↑(𝑃 − (𝐷‘𝑘))))) ∈ ℤ ∧ ∏𝑗 ∈ ((1...𝑀) ∖ {𝑘})if(𝑃 < (𝐷‘𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐷‘𝑗)))) · ((𝐽 − 𝑗)↑(𝑃 − (𝐷‘𝑗))))) ∈ ℤ)) |
| 118 | 117 | 3adant3 1133 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ (1...𝑀) ∧ (𝐷‘𝑘) ∈ ℕ) → (𝑃 ∈ ℤ ∧ if(𝑃 < (𝐷‘𝑘), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐷‘𝑘)))) · ((𝐽 − 𝑘)↑(𝑃 − (𝐷‘𝑘))))) ∈ ℤ ∧ ∏𝑗 ∈ ((1...𝑀) ∖ {𝑘})if(𝑃 < (𝐷‘𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐷‘𝑗)))) · ((𝐽 − 𝑗)↑(𝑃 − (𝐷‘𝑗))))) ∈ ℤ)) |
| 119 | | dvds0 16309 |
. . . . . . . . . . . . . 14
⊢ (𝑃 ∈ ℤ → 𝑃 ∥ 0) |
| 120 | 72, 119 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑃 ∥ 0) |
| 121 | 120 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑃 < (𝐷‘𝑘)) → 𝑃 ∥ 0) |
| 122 | 121 | 3ad2antl1 1186 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑘 ∈ (1...𝑀) ∧ (𝐷‘𝑘) ∈ ℕ) ∧ 𝑃 < (𝐷‘𝑘)) → 𝑃 ∥ 0) |
| 123 | | iftrue 4531 |
. . . . . . . . . . . . 13
⊢ (𝑃 < (𝐷‘𝑘) → if(𝑃 < (𝐷‘𝑘), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐷‘𝑘)))) · ((𝐽 − 𝑘)↑(𝑃 − (𝐷‘𝑘))))) = 0) |
| 124 | 123 | eqcomd 2743 |
. . . . . . . . . . . 12
⊢ (𝑃 < (𝐷‘𝑘) → 0 = if(𝑃 < (𝐷‘𝑘), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐷‘𝑘)))) · ((𝐽 − 𝑘)↑(𝑃 − (𝐷‘𝑘)))))) |
| 125 | 124 | adantl 481 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑘 ∈ (1...𝑀) ∧ (𝐷‘𝑘) ∈ ℕ) ∧ 𝑃 < (𝐷‘𝑘)) → 0 = if(𝑃 < (𝐷‘𝑘), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐷‘𝑘)))) · ((𝐽 − 𝑘)↑(𝑃 − (𝐷‘𝑘)))))) |
| 126 | 122, 125 | breqtrd 5169 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑘 ∈ (1...𝑀) ∧ (𝐷‘𝑘) ∈ ℕ) ∧ 𝑃 < (𝐷‘𝑘)) → 𝑃 ∥ if(𝑃 < (𝐷‘𝑘), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐷‘𝑘)))) · ((𝐽 − 𝑘)↑(𝑃 − (𝐷‘𝑘)))))) |
| 127 | 97 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑘 ∈ (1...𝑀)) ∧ ¬ 𝑃 < (𝐷‘𝑘)) → 𝑃 ∈ ℤ) |
| 128 | | 0zd 12625 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑘 ∈ (1...𝑀)) → 0 ∈ ℤ) |
| 129 | 99, 101 | ffvelcdmd 7105 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ 𝑘 ∈ (1...𝑀)) → (𝐷‘𝑘) ∈ (0...𝐼)) |
| 130 | 129 | elfzelzd 13565 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑘 ∈ (1...𝑀)) → (𝐷‘𝑘) ∈ ℤ) |
| 131 | 97, 130 | zsubcld 12727 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑘 ∈ (1...𝑀)) → (𝑃 − (𝐷‘𝑘)) ∈ ℤ) |
| 132 | 128, 97, 131 | 3jca 1129 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑘 ∈ (1...𝑀)) → (0 ∈ ℤ ∧ 𝑃 ∈ ℤ ∧ (𝑃 − (𝐷‘𝑘)) ∈ ℤ)) |
| 133 | 132 | adantr 480 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑘 ∈ (1...𝑀)) ∧ ¬ 𝑃 < (𝐷‘𝑘)) → (0 ∈ ℤ ∧ 𝑃 ∈ ℤ ∧ (𝑃 − (𝐷‘𝑘)) ∈ ℤ)) |
| 134 | | fzssre 45326 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(0...𝐼) ⊆
ℝ |
| 135 | 134, 129 | sselid 3981 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑘 ∈ (1...𝑀)) → (𝐷‘𝑘) ∈ ℝ) |
| 136 | 135 | adantr 480 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑘 ∈ (1...𝑀)) ∧ ¬ 𝑃 < (𝐷‘𝑘)) → (𝐷‘𝑘) ∈ ℝ) |
| 137 | 127 | zred 12722 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑘 ∈ (1...𝑀)) ∧ ¬ 𝑃 < (𝐷‘𝑘)) → 𝑃 ∈ ℝ) |
| 138 | | simpr 484 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑘 ∈ (1...𝑀)) ∧ ¬ 𝑃 < (𝐷‘𝑘)) → ¬ 𝑃 < (𝐷‘𝑘)) |
| 139 | 136, 137,
138 | nltled 11411 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑘 ∈ (1...𝑀)) ∧ ¬ 𝑃 < (𝐷‘𝑘)) → (𝐷‘𝑘) ≤ 𝑃) |
| 140 | 137, 136 | subge0d 11853 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑘 ∈ (1...𝑀)) ∧ ¬ 𝑃 < (𝐷‘𝑘)) → (0 ≤ (𝑃 − (𝐷‘𝑘)) ↔ (𝐷‘𝑘) ≤ 𝑃)) |
| 141 | 139, 140 | mpbird 257 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑘 ∈ (1...𝑀)) ∧ ¬ 𝑃 < (𝐷‘𝑘)) → 0 ≤ (𝑃 − (𝐷‘𝑘))) |
| 142 | | elfzle1 13567 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝐷‘𝑘) ∈ (0...𝐼) → 0 ≤ (𝐷‘𝑘)) |
| 143 | 129, 142 | syl 17 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑘 ∈ (1...𝑀)) → 0 ≤ (𝐷‘𝑘)) |
| 144 | 143 | adantr 480 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑘 ∈ (1...𝑀)) ∧ ¬ 𝑃 < (𝐷‘𝑘)) → 0 ≤ (𝐷‘𝑘)) |
| 145 | 137, 136 | subge02d 11855 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑘 ∈ (1...𝑀)) ∧ ¬ 𝑃 < (𝐷‘𝑘)) → (0 ≤ (𝐷‘𝑘) ↔ (𝑃 − (𝐷‘𝑘)) ≤ 𝑃)) |
| 146 | 144, 145 | mpbid 232 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑘 ∈ (1...𝑀)) ∧ ¬ 𝑃 < (𝐷‘𝑘)) → (𝑃 − (𝐷‘𝑘)) ≤ 𝑃) |
| 147 | 133, 141,
146 | jca32 515 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑘 ∈ (1...𝑀)) ∧ ¬ 𝑃 < (𝐷‘𝑘)) → ((0 ∈ ℤ ∧ 𝑃 ∈ ℤ ∧ (𝑃 − (𝐷‘𝑘)) ∈ ℤ) ∧ (0 ≤ (𝑃 − (𝐷‘𝑘)) ∧ (𝑃 − (𝐷‘𝑘)) ≤ 𝑃))) |
| 148 | | elfz2 13554 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑃 − (𝐷‘𝑘)) ∈ (0...𝑃) ↔ ((0 ∈ ℤ ∧ 𝑃 ∈ ℤ ∧ (𝑃 − (𝐷‘𝑘)) ∈ ℤ) ∧ (0 ≤ (𝑃 − (𝐷‘𝑘)) ∧ (𝑃 − (𝐷‘𝑘)) ≤ 𝑃))) |
| 149 | 147, 148 | sylibr 234 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑘 ∈ (1...𝑀)) ∧ ¬ 𝑃 < (𝐷‘𝑘)) → (𝑃 − (𝐷‘𝑘)) ∈ (0...𝑃)) |
| 150 | | permnn 14365 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑃 − (𝐷‘𝑘)) ∈ (0...𝑃) → ((!‘𝑃) / (!‘(𝑃 − (𝐷‘𝑘)))) ∈ ℕ) |
| 151 | 149, 150 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑘 ∈ (1...𝑀)) ∧ ¬ 𝑃 < (𝐷‘𝑘)) → ((!‘𝑃) / (!‘(𝑃 − (𝐷‘𝑘)))) ∈ ℕ) |
| 152 | 151 | nnzd 12640 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑘 ∈ (1...𝑀)) ∧ ¬ 𝑃 < (𝐷‘𝑘)) → ((!‘𝑃) / (!‘(𝑃 − (𝐷‘𝑘)))) ∈ ℤ) |
| 153 | 101 | elfzelzd 13565 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑘 ∈ (1...𝑀)) → 𝑘 ∈ ℤ) |
| 154 | 102, 153 | zsubcld 12727 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑘 ∈ (1...𝑀)) → (𝐽 − 𝑘) ∈ ℤ) |
| 155 | 154 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑘 ∈ (1...𝑀)) ∧ ¬ 𝑃 < (𝐷‘𝑘)) → (𝐽 − 𝑘) ∈ ℤ) |
| 156 | 131 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑘 ∈ (1...𝑀)) ∧ ¬ 𝑃 < (𝐷‘𝑘)) → (𝑃 − (𝐷‘𝑘)) ∈ ℤ) |
| 157 | | elnn0z 12626 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑃 − (𝐷‘𝑘)) ∈ ℕ0 ↔ ((𝑃 − (𝐷‘𝑘)) ∈ ℤ ∧ 0 ≤ (𝑃 − (𝐷‘𝑘)))) |
| 158 | 156, 141,
157 | sylanbrc 583 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑘 ∈ (1...𝑀)) ∧ ¬ 𝑃 < (𝐷‘𝑘)) → (𝑃 − (𝐷‘𝑘)) ∈
ℕ0) |
| 159 | | zexpcl 14117 |
. . . . . . . . . . . . . . 15
⊢ (((𝐽 − 𝑘) ∈ ℤ ∧ (𝑃 − (𝐷‘𝑘)) ∈ ℕ0) → ((𝐽 − 𝑘)↑(𝑃 − (𝐷‘𝑘))) ∈ ℤ) |
| 160 | 155, 158,
159 | syl2anc 584 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑘 ∈ (1...𝑀)) ∧ ¬ 𝑃 < (𝐷‘𝑘)) → ((𝐽 − 𝑘)↑(𝑃 − (𝐷‘𝑘))) ∈ ℤ) |
| 161 | 127, 152,
160 | 3jca 1129 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑘 ∈ (1...𝑀)) ∧ ¬ 𝑃 < (𝐷‘𝑘)) → (𝑃 ∈ ℤ ∧ ((!‘𝑃) / (!‘(𝑃 − (𝐷‘𝑘)))) ∈ ℤ ∧ ((𝐽 − 𝑘)↑(𝑃 − (𝐷‘𝑘))) ∈ ℤ)) |
| 162 | 161 | 3adantl3 1169 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑘 ∈ (1...𝑀) ∧ (𝐷‘𝑘) ∈ ℕ) ∧ ¬ 𝑃 < (𝐷‘𝑘)) → (𝑃 ∈ ℤ ∧ ((!‘𝑃) / (!‘(𝑃 − (𝐷‘𝑘)))) ∈ ℤ ∧ ((𝐽 − 𝑘)↑(𝑃 − (𝐷‘𝑘))) ∈ ℤ)) |
| 163 | 127 | 3adantl3 1169 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑘 ∈ (1...𝑀) ∧ (𝐷‘𝑘) ∈ ℕ) ∧ ¬ 𝑃 < (𝐷‘𝑘)) → 𝑃 ∈ ℤ) |
| 164 | 59 | nn0zd 12639 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 → (𝑃 − 1) ∈ ℤ) |
| 165 | 164 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑘 ∈ (1...𝑀)) → (𝑃 − 1) ∈ ℤ) |
| 166 | 128, 165,
131 | 3jca 1129 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑘 ∈ (1...𝑀)) → (0 ∈ ℤ ∧ (𝑃 − 1) ∈ ℤ ∧
(𝑃 − (𝐷‘𝑘)) ∈ ℤ)) |
| 167 | 166 | 3adant3 1133 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑘 ∈ (1...𝑀) ∧ (𝐷‘𝑘) ∈ ℕ) → (0 ∈ ℤ
∧ (𝑃 − 1) ∈
ℤ ∧ (𝑃 −
(𝐷‘𝑘)) ∈ ℤ)) |
| 168 | 167 | adantr 480 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑘 ∈ (1...𝑀) ∧ (𝐷‘𝑘) ∈ ℕ) ∧ ¬ 𝑃 < (𝐷‘𝑘)) → (0 ∈ ℤ ∧ (𝑃 − 1) ∈ ℤ ∧
(𝑃 − (𝐷‘𝑘)) ∈ ℤ)) |
| 169 | 141 | 3adantl3 1169 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑘 ∈ (1...𝑀) ∧ (𝐷‘𝑘) ∈ ℕ) ∧ ¬ 𝑃 < (𝐷‘𝑘)) → 0 ≤ (𝑃 − (𝐷‘𝑘))) |
| 170 | | 1red 11262 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ (𝐷‘𝑘) ∈ ℕ) → 1 ∈
ℝ) |
| 171 | | nnre 12273 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝐷‘𝑘) ∈ ℕ → (𝐷‘𝑘) ∈ ℝ) |
| 172 | 171 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ (𝐷‘𝑘) ∈ ℕ) → (𝐷‘𝑘) ∈ ℝ) |
| 173 | 57 | nnred 12281 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 → 𝑃 ∈ ℝ) |
| 174 | 173 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ (𝐷‘𝑘) ∈ ℕ) → 𝑃 ∈ ℝ) |
| 175 | | nnge1 12294 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝐷‘𝑘) ∈ ℕ → 1 ≤ (𝐷‘𝑘)) |
| 176 | 175 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ (𝐷‘𝑘) ∈ ℕ) → 1 ≤ (𝐷‘𝑘)) |
| 177 | 170, 172,
174, 176 | lesub2dd 11880 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ (𝐷‘𝑘) ∈ ℕ) → (𝑃 − (𝐷‘𝑘)) ≤ (𝑃 − 1)) |
| 178 | 177 | 3adant2 1132 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑘 ∈ (1...𝑀) ∧ (𝐷‘𝑘) ∈ ℕ) → (𝑃 − (𝐷‘𝑘)) ≤ (𝑃 − 1)) |
| 179 | 178 | adantr 480 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑘 ∈ (1...𝑀) ∧ (𝐷‘𝑘) ∈ ℕ) ∧ ¬ 𝑃 < (𝐷‘𝑘)) → (𝑃 − (𝐷‘𝑘)) ≤ (𝑃 − 1)) |
| 180 | 168, 169,
179 | jca32 515 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑘 ∈ (1...𝑀) ∧ (𝐷‘𝑘) ∈ ℕ) ∧ ¬ 𝑃 < (𝐷‘𝑘)) → ((0 ∈ ℤ ∧ (𝑃 − 1) ∈ ℤ ∧
(𝑃 − (𝐷‘𝑘)) ∈ ℤ) ∧ (0 ≤ (𝑃 − (𝐷‘𝑘)) ∧ (𝑃 − (𝐷‘𝑘)) ≤ (𝑃 − 1)))) |
| 181 | | elfz2 13554 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑃 − (𝐷‘𝑘)) ∈ (0...(𝑃 − 1)) ↔ ((0 ∈ ℤ ∧
(𝑃 − 1) ∈
ℤ ∧ (𝑃 −
(𝐷‘𝑘)) ∈ ℤ) ∧ (0 ≤ (𝑃 − (𝐷‘𝑘)) ∧ (𝑃 − (𝐷‘𝑘)) ≤ (𝑃 − 1)))) |
| 182 | 180, 181 | sylibr 234 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑘 ∈ (1...𝑀) ∧ (𝐷‘𝑘) ∈ ℕ) ∧ ¬ 𝑃 < (𝐷‘𝑘)) → (𝑃 − (𝐷‘𝑘)) ∈ (0...(𝑃 − 1))) |
| 183 | | permnn 14365 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑃 − (𝐷‘𝑘)) ∈ (0...(𝑃 − 1)) → ((!‘(𝑃 − 1)) / (!‘(𝑃 − (𝐷‘𝑘)))) ∈ ℕ) |
| 184 | 182, 183 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑘 ∈ (1...𝑀) ∧ (𝐷‘𝑘) ∈ ℕ) ∧ ¬ 𝑃 < (𝐷‘𝑘)) → ((!‘(𝑃 − 1)) / (!‘(𝑃 − (𝐷‘𝑘)))) ∈ ℕ) |
| 185 | 184 | nnzd 12640 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑘 ∈ (1...𝑀) ∧ (𝐷‘𝑘) ∈ ℕ) ∧ ¬ 𝑃 < (𝐷‘𝑘)) → ((!‘(𝑃 − 1)) / (!‘(𝑃 − (𝐷‘𝑘)))) ∈ ℤ) |
| 186 | | dvdsmul1 16315 |
. . . . . . . . . . . . . 14
⊢ ((𝑃 ∈ ℤ ∧
((!‘(𝑃 − 1)) /
(!‘(𝑃 − (𝐷‘𝑘)))) ∈ ℤ) → 𝑃 ∥ (𝑃 · ((!‘(𝑃 − 1)) / (!‘(𝑃 − (𝐷‘𝑘)))))) |
| 187 | 163, 185,
186 | syl2anc 584 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑘 ∈ (1...𝑀) ∧ (𝐷‘𝑘) ∈ ℕ) ∧ ¬ 𝑃 < (𝐷‘𝑘)) → 𝑃 ∥ (𝑃 · ((!‘(𝑃 − 1)) / (!‘(𝑃 − (𝐷‘𝑘)))))) |
| 188 | 57 | nncnd 12282 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → 𝑃 ∈ ℂ) |
| 189 | | 1cnd 11256 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → 1 ∈
ℂ) |
| 190 | 188, 189 | npcand 11624 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → ((𝑃 − 1) + 1) = 𝑃) |
| 191 | 190 | eqcomd 2743 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → 𝑃 = ((𝑃 − 1) + 1)) |
| 192 | 191 | fveq2d 6910 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → (!‘𝑃) = (!‘((𝑃 − 1) + 1))) |
| 193 | | facp1 14317 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑃 − 1) ∈
ℕ0 → (!‘((𝑃 − 1) + 1)) = ((!‘(𝑃 − 1)) · ((𝑃 − 1) +
1))) |
| 194 | 59, 193 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → (!‘((𝑃 − 1) + 1)) =
((!‘(𝑃 − 1))
· ((𝑃 − 1) +
1))) |
| 195 | 190 | oveq2d 7447 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → ((!‘(𝑃 − 1)) · ((𝑃 − 1) + 1)) =
((!‘(𝑃 − 1))
· 𝑃)) |
| 196 | 59 | faccld 14323 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → (!‘(𝑃 − 1)) ∈
ℕ) |
| 197 | 196 | nncnd 12282 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → (!‘(𝑃 − 1)) ∈
ℂ) |
| 198 | 197, 188 | mulcomd 11282 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → ((!‘(𝑃 − 1)) · 𝑃) = (𝑃 · (!‘(𝑃 − 1)))) |
| 199 | 195, 198 | eqtrd 2777 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → ((!‘(𝑃 − 1)) · ((𝑃 − 1) + 1)) = (𝑃 · (!‘(𝑃 − 1)))) |
| 200 | 192, 194,
199 | 3eqtrd 2781 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (!‘𝑃) = (𝑃 · (!‘(𝑃 − 1)))) |
| 201 | 200 | oveq1d 7446 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → ((!‘𝑃) / (!‘(𝑃 − (𝐷‘𝑘)))) = ((𝑃 · (!‘(𝑃 − 1))) / (!‘(𝑃 − (𝐷‘𝑘))))) |
| 202 | 201 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ ¬ 𝑃 < (𝐷‘𝑘)) → ((!‘𝑃) / (!‘(𝑃 − (𝐷‘𝑘)))) = ((𝑃 · (!‘(𝑃 − 1))) / (!‘(𝑃 − (𝐷‘𝑘))))) |
| 203 | 202 | 3ad2antl1 1186 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑘 ∈ (1...𝑀) ∧ (𝐷‘𝑘) ∈ ℕ) ∧ ¬ 𝑃 < (𝐷‘𝑘)) → ((!‘𝑃) / (!‘(𝑃 − (𝐷‘𝑘)))) = ((𝑃 · (!‘(𝑃 − 1))) / (!‘(𝑃 − (𝐷‘𝑘))))) |
| 204 | 188 | ad2antrr 726 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑘 ∈ (1...𝑀)) ∧ ¬ 𝑃 < (𝐷‘𝑘)) → 𝑃 ∈ ℂ) |
| 205 | 197 | ad2antrr 726 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑘 ∈ (1...𝑀)) ∧ ¬ 𝑃 < (𝐷‘𝑘)) → (!‘(𝑃 − 1)) ∈
ℂ) |
| 206 | 158 | faccld 14323 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑘 ∈ (1...𝑀)) ∧ ¬ 𝑃 < (𝐷‘𝑘)) → (!‘(𝑃 − (𝐷‘𝑘))) ∈ ℕ) |
| 207 | 206 | nncnd 12282 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑘 ∈ (1...𝑀)) ∧ ¬ 𝑃 < (𝐷‘𝑘)) → (!‘(𝑃 − (𝐷‘𝑘))) ∈ ℂ) |
| 208 | 206 | nnne0d 12316 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑘 ∈ (1...𝑀)) ∧ ¬ 𝑃 < (𝐷‘𝑘)) → (!‘(𝑃 − (𝐷‘𝑘))) ≠ 0) |
| 209 | 204, 205,
207, 208 | divassd 12078 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑘 ∈ (1...𝑀)) ∧ ¬ 𝑃 < (𝐷‘𝑘)) → ((𝑃 · (!‘(𝑃 − 1))) / (!‘(𝑃 − (𝐷‘𝑘)))) = (𝑃 · ((!‘(𝑃 − 1)) / (!‘(𝑃 − (𝐷‘𝑘)))))) |
| 210 | 209 | 3adantl3 1169 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑘 ∈ (1...𝑀) ∧ (𝐷‘𝑘) ∈ ℕ) ∧ ¬ 𝑃 < (𝐷‘𝑘)) → ((𝑃 · (!‘(𝑃 − 1))) / (!‘(𝑃 − (𝐷‘𝑘)))) = (𝑃 · ((!‘(𝑃 − 1)) / (!‘(𝑃 − (𝐷‘𝑘)))))) |
| 211 | 203, 210 | eqtr2d 2778 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑘 ∈ (1...𝑀) ∧ (𝐷‘𝑘) ∈ ℕ) ∧ ¬ 𝑃 < (𝐷‘𝑘)) → (𝑃 · ((!‘(𝑃 − 1)) / (!‘(𝑃 − (𝐷‘𝑘))))) = ((!‘𝑃) / (!‘(𝑃 − (𝐷‘𝑘))))) |
| 212 | 187, 211 | breqtrd 5169 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑘 ∈ (1...𝑀) ∧ (𝐷‘𝑘) ∈ ℕ) ∧ ¬ 𝑃 < (𝐷‘𝑘)) → 𝑃 ∥ ((!‘𝑃) / (!‘(𝑃 − (𝐷‘𝑘))))) |
| 213 | | dvdsmultr1 16333 |
. . . . . . . . . . . 12
⊢ ((𝑃 ∈ ℤ ∧
((!‘𝑃) /
(!‘(𝑃 − (𝐷‘𝑘)))) ∈ ℤ ∧ ((𝐽 − 𝑘)↑(𝑃 − (𝐷‘𝑘))) ∈ ℤ) → (𝑃 ∥ ((!‘𝑃) / (!‘(𝑃 − (𝐷‘𝑘)))) → 𝑃 ∥ (((!‘𝑃) / (!‘(𝑃 − (𝐷‘𝑘)))) · ((𝐽 − 𝑘)↑(𝑃 − (𝐷‘𝑘)))))) |
| 214 | 162, 212,
213 | sylc 65 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑘 ∈ (1...𝑀) ∧ (𝐷‘𝑘) ∈ ℕ) ∧ ¬ 𝑃 < (𝐷‘𝑘)) → 𝑃 ∥ (((!‘𝑃) / (!‘(𝑃 − (𝐷‘𝑘)))) · ((𝐽 − 𝑘)↑(𝑃 − (𝐷‘𝑘))))) |
| 215 | | iffalse 4534 |
. . . . . . . . . . . 12
⊢ (¬
𝑃 < (𝐷‘𝑘) → if(𝑃 < (𝐷‘𝑘), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐷‘𝑘)))) · ((𝐽 − 𝑘)↑(𝑃 − (𝐷‘𝑘))))) = (((!‘𝑃) / (!‘(𝑃 − (𝐷‘𝑘)))) · ((𝐽 − 𝑘)↑(𝑃 − (𝐷‘𝑘))))) |
| 216 | 215 | adantl 481 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑘 ∈ (1...𝑀) ∧ (𝐷‘𝑘) ∈ ℕ) ∧ ¬ 𝑃 < (𝐷‘𝑘)) → if(𝑃 < (𝐷‘𝑘), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐷‘𝑘)))) · ((𝐽 − 𝑘)↑(𝑃 − (𝐷‘𝑘))))) = (((!‘𝑃) / (!‘(𝑃 − (𝐷‘𝑘)))) · ((𝐽 − 𝑘)↑(𝑃 − (𝐷‘𝑘))))) |
| 217 | 214, 216 | breqtrrd 5171 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑘 ∈ (1...𝑀) ∧ (𝐷‘𝑘) ∈ ℕ) ∧ ¬ 𝑃 < (𝐷‘𝑘)) → 𝑃 ∥ if(𝑃 < (𝐷‘𝑘), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐷‘𝑘)))) · ((𝐽 − 𝑘)↑(𝑃 − (𝐷‘𝑘)))))) |
| 218 | 126, 217 | pm2.61dan 813 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ (1...𝑀) ∧ (𝐷‘𝑘) ∈ ℕ) → 𝑃 ∥ if(𝑃 < (𝐷‘𝑘), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐷‘𝑘)))) · ((𝐽 − 𝑘)↑(𝑃 − (𝐷‘𝑘)))))) |
| 219 | | dvdsmultr1 16333 |
. . . . . . . . 9
⊢ ((𝑃 ∈ ℤ ∧ if(𝑃 < (𝐷‘𝑘), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐷‘𝑘)))) · ((𝐽 − 𝑘)↑(𝑃 − (𝐷‘𝑘))))) ∈ ℤ ∧ ∏𝑗 ∈ ((1...𝑀) ∖ {𝑘})if(𝑃 < (𝐷‘𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐷‘𝑗)))) · ((𝐽 − 𝑗)↑(𝑃 − (𝐷‘𝑗))))) ∈ ℤ) → (𝑃 ∥ if(𝑃 < (𝐷‘𝑘), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐷‘𝑘)))) · ((𝐽 − 𝑘)↑(𝑃 − (𝐷‘𝑘))))) → 𝑃 ∥ (if(𝑃 < (𝐷‘𝑘), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐷‘𝑘)))) · ((𝐽 − 𝑘)↑(𝑃 − (𝐷‘𝑘))))) · ∏𝑗 ∈ ((1...𝑀) ∖ {𝑘})if(𝑃 < (𝐷‘𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐷‘𝑗)))) · ((𝐽 − 𝑗)↑(𝑃 − (𝐷‘𝑗)))))))) |
| 220 | 118, 218,
219 | sylc 65 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ (1...𝑀) ∧ (𝐷‘𝑘) ∈ ℕ) → 𝑃 ∥ (if(𝑃 < (𝐷‘𝑘), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐷‘𝑘)))) · ((𝐽 − 𝑘)↑(𝑃 − (𝐷‘𝑘))))) · ∏𝑗 ∈ ((1...𝑀) ∖ {𝑘})if(𝑃 < (𝐷‘𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐷‘𝑗)))) · ((𝐽 − 𝑗)↑(𝑃 − (𝐷‘𝑗))))))) |
| 221 | | fzfid 14014 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ (1...𝑀) ∧ (𝐷‘𝑘) ∈ ℕ) → (1...𝑀) ∈ Fin) |
| 222 | 93 | zcnd 12723 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ (1...𝑀)) → if(𝑃 < (𝐷‘𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐷‘𝑗)))) · ((𝐽 − 𝑗)↑(𝑃 − (𝐷‘𝑗))))) ∈ ℂ) |
| 223 | 222 | 3ad2antl1 1186 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑘 ∈ (1...𝑀) ∧ (𝐷‘𝑘) ∈ ℕ) ∧ 𝑗 ∈ (1...𝑀)) → if(𝑃 < (𝐷‘𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐷‘𝑗)))) · ((𝐽 − 𝑗)↑(𝑃 − (𝐷‘𝑗))))) ∈ ℂ) |
| 224 | | simp2 1138 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ (1...𝑀) ∧ (𝐷‘𝑘) ∈ ℕ) → 𝑘 ∈ (1...𝑀)) |
| 225 | | fveq2 6906 |
. . . . . . . . . . . 12
⊢ (𝑗 = 𝑘 → (𝐷‘𝑗) = (𝐷‘𝑘)) |
| 226 | 225 | breq2d 5155 |
. . . . . . . . . . 11
⊢ (𝑗 = 𝑘 → (𝑃 < (𝐷‘𝑗) ↔ 𝑃 < (𝐷‘𝑘))) |
| 227 | 225 | oveq2d 7447 |
. . . . . . . . . . . . . 14
⊢ (𝑗 = 𝑘 → (𝑃 − (𝐷‘𝑗)) = (𝑃 − (𝐷‘𝑘))) |
| 228 | 227 | fveq2d 6910 |
. . . . . . . . . . . . 13
⊢ (𝑗 = 𝑘 → (!‘(𝑃 − (𝐷‘𝑗))) = (!‘(𝑃 − (𝐷‘𝑘)))) |
| 229 | 228 | oveq2d 7447 |
. . . . . . . . . . . 12
⊢ (𝑗 = 𝑘 → ((!‘𝑃) / (!‘(𝑃 − (𝐷‘𝑗)))) = ((!‘𝑃) / (!‘(𝑃 − (𝐷‘𝑘))))) |
| 230 | | oveq2 7439 |
. . . . . . . . . . . . 13
⊢ (𝑗 = 𝑘 → (𝐽 − 𝑗) = (𝐽 − 𝑘)) |
| 231 | 230, 227 | oveq12d 7449 |
. . . . . . . . . . . 12
⊢ (𝑗 = 𝑘 → ((𝐽 − 𝑗)↑(𝑃 − (𝐷‘𝑗))) = ((𝐽 − 𝑘)↑(𝑃 − (𝐷‘𝑘)))) |
| 232 | 229, 231 | oveq12d 7449 |
. . . . . . . . . . 11
⊢ (𝑗 = 𝑘 → (((!‘𝑃) / (!‘(𝑃 − (𝐷‘𝑗)))) · ((𝐽 − 𝑗)↑(𝑃 − (𝐷‘𝑗)))) = (((!‘𝑃) / (!‘(𝑃 − (𝐷‘𝑘)))) · ((𝐽 − 𝑘)↑(𝑃 − (𝐷‘𝑘))))) |
| 233 | 226, 232 | ifbieq2d 4552 |
. . . . . . . . . 10
⊢ (𝑗 = 𝑘 → if(𝑃 < (𝐷‘𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐷‘𝑗)))) · ((𝐽 − 𝑗)↑(𝑃 − (𝐷‘𝑗))))) = if(𝑃 < (𝐷‘𝑘), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐷‘𝑘)))) · ((𝐽 − 𝑘)↑(𝑃 − (𝐷‘𝑘)))))) |
| 234 | 233 | adantl 481 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑘 ∈ (1...𝑀) ∧ (𝐷‘𝑘) ∈ ℕ) ∧ 𝑗 = 𝑘) → if(𝑃 < (𝐷‘𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐷‘𝑗)))) · ((𝐽 − 𝑗)↑(𝑃 − (𝐷‘𝑗))))) = if(𝑃 < (𝐷‘𝑘), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐷‘𝑘)))) · ((𝐽 − 𝑘)↑(𝑃 − (𝐷‘𝑘)))))) |
| 235 | 221, 223,
224, 234 | fprodsplit1 45608 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ (1...𝑀) ∧ (𝐷‘𝑘) ∈ ℕ) → ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐷‘𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐷‘𝑗)))) · ((𝐽 − 𝑗)↑(𝑃 − (𝐷‘𝑗))))) = (if(𝑃 < (𝐷‘𝑘), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐷‘𝑘)))) · ((𝐽 − 𝑘)↑(𝑃 − (𝐷‘𝑘))))) · ∏𝑗 ∈ ((1...𝑀) ∖ {𝑘})if(𝑃 < (𝐷‘𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐷‘𝑗)))) · ((𝐽 − 𝑗)↑(𝑃 − (𝐷‘𝑗))))))) |
| 236 | 220, 235 | breqtrrd 5171 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ (1...𝑀) ∧ (𝐷‘𝑘) ∈ ℕ) → 𝑃 ∥ ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐷‘𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐷‘𝑗)))) · ((𝐽 − 𝑗)↑(𝑃 − (𝐷‘𝑗)))))) |
| 237 | | dvdsmultr2 16335 |
. . . . . . 7
⊢ ((𝑃 ∈ ℤ ∧
((!‘𝐼) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐷‘𝑗))) ∈ ℤ ∧ ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐷‘𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐷‘𝑗)))) · ((𝐽 − 𝑗)↑(𝑃 − (𝐷‘𝑗))))) ∈ ℤ) → (𝑃 ∥ ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐷‘𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐷‘𝑗)))) · ((𝐽 − 𝑗)↑(𝑃 − (𝐷‘𝑗))))) → 𝑃 ∥ (((!‘𝐼) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐷‘𝑗))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐷‘𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐷‘𝑗)))) · ((𝐽 − 𝑗)↑(𝑃 − (𝐷‘𝑗)))))))) |
| 238 | 96, 236, 237 | sylc 65 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ (1...𝑀) ∧ (𝐷‘𝑘) ∈ ℕ) → 𝑃 ∥ (((!‘𝐼) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐷‘𝑗))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐷‘𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐷‘𝑗)))) · ((𝐽 − 𝑗)↑(𝑃 − (𝐷‘𝑗))))))) |
| 239 | 238 | 3adant1r 1178 |
. . . . 5
⊢ (((𝜑 ∧ (𝐷‘0) = (𝑃 − 1)) ∧ 𝑘 ∈ (1...𝑀) ∧ (𝐷‘𝑘) ∈ ℕ) → 𝑃 ∥ (((!‘𝐼) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐷‘𝑗))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐷‘𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐷‘𝑗)))) · ((𝐽 − 𝑗)↑(𝑃 − (𝐷‘𝑗))))))) |
| 240 | | simpr 484 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝐷‘0) = (𝑃 − 1)) → (𝐷‘0) = (𝑃 − 1)) |
| 241 | | eluzfz1 13571 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑀 ∈
(ℤ≥‘0) → 0 ∈ (0...𝑀)) |
| 242 | 16, 241 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → 0 ∈ (0...𝑀)) |
| 243 | 23, 242 | ffvelcdmd 7105 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (𝐷‘0) ∈ (0...𝐼)) |
| 244 | 134, 243 | sselid 3981 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (𝐷‘0) ∈ ℝ) |
| 245 | 244 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝐷‘0) = (𝑃 − 1)) → (𝐷‘0) ∈ ℝ) |
| 246 | 60 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝐷‘0) = (𝑃 − 1)) → (𝑃 − 1) ∈ ℝ) |
| 247 | 245, 246 | lttri3d 11401 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝐷‘0) = (𝑃 − 1)) → ((𝐷‘0) = (𝑃 − 1) ↔ (¬ (𝐷‘0) < (𝑃 − 1) ∧ ¬ (𝑃 − 1) < (𝐷‘0)))) |
| 248 | 240, 247 | mpbid 232 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝐷‘0) = (𝑃 − 1)) → (¬ (𝐷‘0) < (𝑃 − 1) ∧ ¬ (𝑃 − 1) < (𝐷‘0))) |
| 249 | 248 | simprd 495 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝐷‘0) = (𝑃 − 1)) → ¬ (𝑃 − 1) < (𝐷‘0)) |
| 250 | 249 | iffalsed 4536 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝐷‘0) = (𝑃 − 1)) → if((𝑃 − 1) < (𝐷‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐷‘0)))) · (𝐽↑((𝑃 − 1) − (𝐷‘0))))) = (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐷‘0)))) · (𝐽↑((𝑃 − 1) − (𝐷‘0))))) |
| 251 | | oveq2 7439 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐷‘0) = (𝑃 − 1) → ((𝑃 − 1) − (𝐷‘0)) = ((𝑃 − 1) − (𝑃 − 1))) |
| 252 | 61 | subidd 11608 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → ((𝑃 − 1) − (𝑃 − 1)) = 0) |
| 253 | 251, 252 | sylan9eqr 2799 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ (𝐷‘0) = (𝑃 − 1)) → ((𝑃 − 1) − (𝐷‘0)) = 0) |
| 254 | 253 | fveq2d 6910 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝐷‘0) = (𝑃 − 1)) → (!‘((𝑃 − 1) − (𝐷‘0))) =
(!‘0)) |
| 255 | | fac0 14315 |
. . . . . . . . . . . . . . 15
⊢
(!‘0) = 1 |
| 256 | 254, 255 | eqtrdi 2793 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝐷‘0) = (𝑃 − 1)) → (!‘((𝑃 − 1) − (𝐷‘0))) =
1) |
| 257 | 256 | oveq2d 7447 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝐷‘0) = (𝑃 − 1)) → ((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐷‘0)))) = ((!‘(𝑃 − 1)) /
1)) |
| 258 | 197 | div1d 12035 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → ((!‘(𝑃 − 1)) / 1) =
(!‘(𝑃 −
1))) |
| 259 | 258 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝐷‘0) = (𝑃 − 1)) → ((!‘(𝑃 − 1)) / 1) =
(!‘(𝑃 −
1))) |
| 260 | 257, 259 | eqtrd 2777 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝐷‘0) = (𝑃 − 1)) → ((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐷‘0)))) = (!‘(𝑃 − 1))) |
| 261 | 253 | oveq2d 7447 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝐷‘0) = (𝑃 − 1)) → (𝐽↑((𝑃 − 1) − (𝐷‘0))) = (𝐽↑0)) |
| 262 | 91 | zcnd 12723 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝐽 ∈ ℂ) |
| 263 | 262 | exp0d 14180 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝐽↑0) = 1) |
| 264 | 263 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝐷‘0) = (𝑃 − 1)) → (𝐽↑0) = 1) |
| 265 | 261, 264 | eqtrd 2777 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝐷‘0) = (𝑃 − 1)) → (𝐽↑((𝑃 − 1) − (𝐷‘0))) = 1) |
| 266 | 260, 265 | oveq12d 7449 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝐷‘0) = (𝑃 − 1)) → (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐷‘0)))) · (𝐽↑((𝑃 − 1) − (𝐷‘0)))) = ((!‘(𝑃 − 1)) · 1)) |
| 267 | 197 | mulridd 11278 |
. . . . . . . . . . . 12
⊢ (𝜑 → ((!‘(𝑃 − 1)) · 1) =
(!‘(𝑃 −
1))) |
| 268 | 267 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝐷‘0) = (𝑃 − 1)) → ((!‘(𝑃 − 1)) · 1) =
(!‘(𝑃 −
1))) |
| 269 | 250, 266,
268 | 3eqtrd 2781 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝐷‘0) = (𝑃 − 1)) → if((𝑃 − 1) < (𝐷‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐷‘0)))) · (𝐽↑((𝑃 − 1) − (𝐷‘0))))) = (!‘(𝑃 − 1))) |
| 270 | 269 | oveq1d 7446 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝐷‘0) = (𝑃 − 1)) → (if((𝑃 − 1) < (𝐷‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐷‘0)))) · (𝐽↑((𝑃 − 1) − (𝐷‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐷‘𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐷‘𝑗)))) · ((𝐽 − 𝑗)↑(𝑃 − (𝐷‘𝑗)))))) = ((!‘(𝑃 − 1)) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐷‘𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐷‘𝑗)))) · ((𝐽 − 𝑗)↑(𝑃 − (𝐷‘𝑗))))))) |
| 271 | 270 | oveq2d 7447 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝐷‘0) = (𝑃 − 1)) → (((!‘𝐼) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐷‘𝑗))) · (if((𝑃 − 1) < (𝐷‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐷‘0)))) · (𝐽↑((𝑃 − 1) − (𝐷‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐷‘𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐷‘𝑗)))) · ((𝐽 − 𝑗)↑(𝑃 − (𝐷‘𝑗))))))) = (((!‘𝐼) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐷‘𝑗))) · ((!‘(𝑃 − 1)) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐷‘𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐷‘𝑗)))) · ((𝐽 − 𝑗)↑(𝑃 − (𝐷‘𝑗)))))))) |
| 272 | 271 | oveq1d 7446 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝐷‘0) = (𝑃 − 1)) → ((((!‘𝐼) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐷‘𝑗))) · (if((𝑃 − 1) < (𝐷‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐷‘0)))) · (𝐽↑((𝑃 − 1) − (𝐷‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐷‘𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐷‘𝑗)))) · ((𝐽 − 𝑗)↑(𝑃 − (𝐷‘𝑗))))))) / (!‘(𝑃 − 1))) = ((((!‘𝐼) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐷‘𝑗))) · ((!‘(𝑃 − 1)) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐷‘𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐷‘𝑗)))) · ((𝐽 − 𝑗)↑(𝑃 − (𝐷‘𝑗))))))) / (!‘(𝑃 − 1)))) |
| 273 | 83 | nncnd 12282 |
. . . . . . . . 9
⊢ (𝜑 → ((!‘𝐼) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐷‘𝑗))) ∈ ℂ) |
| 274 | 94 | zcnd 12723 |
. . . . . . . . . 10
⊢ (𝜑 → ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐷‘𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐷‘𝑗)))) · ((𝐽 − 𝑗)↑(𝑃 − (𝐷‘𝑗))))) ∈ ℂ) |
| 275 | 197, 274 | mulcld 11281 |
. . . . . . . . 9
⊢ (𝜑 → ((!‘(𝑃 − 1)) ·
∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐷‘𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐷‘𝑗)))) · ((𝐽 − 𝑗)↑(𝑃 − (𝐷‘𝑗)))))) ∈ ℂ) |
| 276 | 196 | nnne0d 12316 |
. . . . . . . . 9
⊢ (𝜑 → (!‘(𝑃 − 1)) ≠
0) |
| 277 | 273, 275,
197, 276 | divassd 12078 |
. . . . . . . 8
⊢ (𝜑 → ((((!‘𝐼) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐷‘𝑗))) · ((!‘(𝑃 − 1)) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐷‘𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐷‘𝑗)))) · ((𝐽 − 𝑗)↑(𝑃 − (𝐷‘𝑗))))))) / (!‘(𝑃 − 1))) = (((!‘𝐼) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐷‘𝑗))) · (((!‘(𝑃 − 1)) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐷‘𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐷‘𝑗)))) · ((𝐽 − 𝑗)↑(𝑃 − (𝐷‘𝑗)))))) / (!‘(𝑃 − 1))))) |
| 278 | 277 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝐷‘0) = (𝑃 − 1)) → ((((!‘𝐼) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐷‘𝑗))) · ((!‘(𝑃 − 1)) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐷‘𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐷‘𝑗)))) · ((𝐽 − 𝑗)↑(𝑃 − (𝐷‘𝑗))))))) / (!‘(𝑃 − 1))) = (((!‘𝐼) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐷‘𝑗))) · (((!‘(𝑃 − 1)) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐷‘𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐷‘𝑗)))) · ((𝐽 − 𝑗)↑(𝑃 − (𝐷‘𝑗)))))) / (!‘(𝑃 − 1))))) |
| 279 | 274, 197,
276 | divcan3d 12048 |
. . . . . . . . 9
⊢ (𝜑 → (((!‘(𝑃 − 1)) ·
∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐷‘𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐷‘𝑗)))) · ((𝐽 − 𝑗)↑(𝑃 − (𝐷‘𝑗)))))) / (!‘(𝑃 − 1))) = ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐷‘𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐷‘𝑗)))) · ((𝐽 − 𝑗)↑(𝑃 − (𝐷‘𝑗)))))) |
| 280 | 279 | oveq2d 7447 |
. . . . . . . 8
⊢ (𝜑 → (((!‘𝐼) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐷‘𝑗))) · (((!‘(𝑃 − 1)) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐷‘𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐷‘𝑗)))) · ((𝐽 − 𝑗)↑(𝑃 − (𝐷‘𝑗)))))) / (!‘(𝑃 − 1)))) = (((!‘𝐼) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐷‘𝑗))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐷‘𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐷‘𝑗)))) · ((𝐽 − 𝑗)↑(𝑃 − (𝐷‘𝑗))))))) |
| 281 | 280 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝐷‘0) = (𝑃 − 1)) → (((!‘𝐼) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐷‘𝑗))) · (((!‘(𝑃 − 1)) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐷‘𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐷‘𝑗)))) · ((𝐽 − 𝑗)↑(𝑃 − (𝐷‘𝑗)))))) / (!‘(𝑃 − 1)))) = (((!‘𝐼) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐷‘𝑗))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐷‘𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐷‘𝑗)))) · ((𝐽 − 𝑗)↑(𝑃 − (𝐷‘𝑗))))))) |
| 282 | 272, 278,
281 | 3eqtrd 2781 |
. . . . . 6
⊢ ((𝜑 ∧ (𝐷‘0) = (𝑃 − 1)) → ((((!‘𝐼) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐷‘𝑗))) · (if((𝑃 − 1) < (𝐷‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐷‘0)))) · (𝐽↑((𝑃 − 1) − (𝐷‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐷‘𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐷‘𝑗)))) · ((𝐽 − 𝑗)↑(𝑃 − (𝐷‘𝑗))))))) / (!‘(𝑃 − 1))) = (((!‘𝐼) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐷‘𝑗))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐷‘𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐷‘𝑗)))) · ((𝐽 − 𝑗)↑(𝑃 − (𝐷‘𝑗))))))) |
| 283 | 282 | 3ad2ant1 1134 |
. . . . 5
⊢ (((𝜑 ∧ (𝐷‘0) = (𝑃 − 1)) ∧ 𝑘 ∈ (1...𝑀) ∧ (𝐷‘𝑘) ∈ ℕ) → ((((!‘𝐼) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐷‘𝑗))) · (if((𝑃 − 1) < (𝐷‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐷‘0)))) · (𝐽↑((𝑃 − 1) − (𝐷‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐷‘𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐷‘𝑗)))) · ((𝐽 − 𝑗)↑(𝑃 − (𝐷‘𝑗))))))) / (!‘(𝑃 − 1))) = (((!‘𝐼) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐷‘𝑗))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐷‘𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐷‘𝑗)))) · ((𝐽 − 𝑗)↑(𝑃 − (𝐷‘𝑗))))))) |
| 284 | 239, 283 | breqtrrd 5171 |
. . . 4
⊢ (((𝜑 ∧ (𝐷‘0) = (𝑃 − 1)) ∧ 𝑘 ∈ (1...𝑀) ∧ (𝐷‘𝑘) ∈ ℕ) → 𝑃 ∥ ((((!‘𝐼) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐷‘𝑗))) · (if((𝑃 − 1) < (𝐷‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐷‘0)))) · (𝐽↑((𝑃 − 1) − (𝐷‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐷‘𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐷‘𝑗)))) · ((𝐽 − 𝑗)↑(𝑃 − (𝐷‘𝑗))))))) / (!‘(𝑃 − 1)))) |
| 285 | 284 | rexlimdv3a 3159 |
. . 3
⊢ ((𝜑 ∧ (𝐷‘0) = (𝑃 − 1)) → (∃𝑘 ∈ (1...𝑀)(𝐷‘𝑘) ∈ ℕ → 𝑃 ∥ ((((!‘𝐼) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐷‘𝑗))) · (if((𝑃 − 1) < (𝐷‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐷‘0)))) · (𝐽↑((𝑃 − 1) − (𝐷‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐷‘𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐷‘𝑗)))) · ((𝐽 − 𝑗)↑(𝑃 − (𝐷‘𝑗))))))) / (!‘(𝑃 − 1))))) |
| 286 | 71, 285 | mpd 15 |
. 2
⊢ ((𝜑 ∧ (𝐷‘0) = (𝑃 − 1)) → 𝑃 ∥ ((((!‘𝐼) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐷‘𝑗))) · (if((𝑃 − 1) < (𝐷‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐷‘0)))) · (𝐽↑((𝑃 − 1) − (𝐷‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐷‘𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐷‘𝑗)))) · ((𝐽 − 𝑗)↑(𝑃 − (𝐷‘𝑗))))))) / (!‘(𝑃 − 1)))) |
| 287 | 120 | adantr 480 |
. . 3
⊢ ((𝜑 ∧ (𝐷‘0) ≠ (𝑃 − 1)) → 𝑃 ∥ 0) |
| 288 | | simpr 484 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝐷‘0) ≠ (𝑃 − 1)) ∧ (𝑃 − 1) < (𝐷‘0)) → (𝑃 − 1) < (𝐷‘0)) |
| 289 | 288 | iftrued 4533 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝐷‘0) ≠ (𝑃 − 1)) ∧ (𝑃 − 1) < (𝐷‘0)) → if((𝑃 − 1) < (𝐷‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐷‘0)))) · (𝐽↑((𝑃 − 1) − (𝐷‘0))))) = 0) |
| 290 | | simpr 484 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝐷‘0) ≠ (𝑃 − 1)) ∧ ¬ (𝑃 − 1) < (𝐷‘0)) → ¬ (𝑃 − 1) < (𝐷‘0)) |
| 291 | 290 | iffalsed 4536 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝐷‘0) ≠ (𝑃 − 1)) ∧ ¬ (𝑃 − 1) < (𝐷‘0)) → if((𝑃 − 1) < (𝐷‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐷‘0)))) · (𝐽↑((𝑃 − 1) − (𝐷‘0))))) = (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐷‘0)))) · (𝐽↑((𝑃 − 1) − (𝐷‘0))))) |
| 292 | | simpll 767 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝐷‘0) ≠ (𝑃 − 1)) ∧ ¬ (𝑃 − 1) < (𝐷‘0)) → 𝜑) |
| 293 | 244 | ad2antrr 726 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝐷‘0) ≠ (𝑃 − 1)) ∧ ¬ (𝑃 − 1) < (𝐷‘0)) → (𝐷‘0) ∈ ℝ) |
| 294 | 60 | ad2antrr 726 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝐷‘0) ≠ (𝑃 − 1)) ∧ ¬ (𝑃 − 1) < (𝐷‘0)) → (𝑃 − 1) ∈ ℝ) |
| 295 | 293, 294,
290 | nltled 11411 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝐷‘0) ≠ (𝑃 − 1)) ∧ ¬ (𝑃 − 1) < (𝐷‘0)) → (𝐷‘0) ≤ (𝑃 − 1)) |
| 296 | | id 22 |
. . . . . . . . . . . . . . 15
⊢ ((𝐷‘0) ≠ (𝑃 − 1) → (𝐷‘0) ≠ (𝑃 − 1)) |
| 297 | 296 | necomd 2996 |
. . . . . . . . . . . . . 14
⊢ ((𝐷‘0) ≠ (𝑃 − 1) → (𝑃 − 1) ≠ (𝐷‘0)) |
| 298 | 297 | ad2antlr 727 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝐷‘0) ≠ (𝑃 − 1)) ∧ ¬ (𝑃 − 1) < (𝐷‘0)) → (𝑃 − 1) ≠ (𝐷‘0)) |
| 299 | 293, 294,
295, 298 | leneltd 11415 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝐷‘0) ≠ (𝑃 − 1)) ∧ ¬ (𝑃 − 1) < (𝐷‘0)) → (𝐷‘0) < (𝑃 − 1)) |
| 300 | 89 | oveq1d 7446 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (𝐽↑((𝑃 − 1) − (𝐷‘0))) = (0↑((𝑃 − 1) − (𝐷‘0)))) |
| 301 | 300 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝐷‘0) < (𝑃 − 1)) → (𝐽↑((𝑃 − 1) − (𝐷‘0))) = (0↑((𝑃 − 1) − (𝐷‘0)))) |
| 302 | 243 | elfzelzd 13565 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → (𝐷‘0) ∈ ℤ) |
| 303 | 164, 302 | zsubcld 12727 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → ((𝑃 − 1) − (𝐷‘0)) ∈ ℤ) |
| 304 | 303 | adantr 480 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ (𝐷‘0) < (𝑃 − 1)) → ((𝑃 − 1) − (𝐷‘0)) ∈ ℤ) |
| 305 | | simpr 484 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ (𝐷‘0) < (𝑃 − 1)) → (𝐷‘0) < (𝑃 − 1)) |
| 306 | 244 | adantr 480 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ (𝐷‘0) < (𝑃 − 1)) → (𝐷‘0) ∈ ℝ) |
| 307 | 60 | adantr 480 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ (𝐷‘0) < (𝑃 − 1)) → (𝑃 − 1) ∈ ℝ) |
| 308 | 306, 307 | posdifd 11850 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ (𝐷‘0) < (𝑃 − 1)) → ((𝐷‘0) < (𝑃 − 1) ↔ 0 < ((𝑃 − 1) − (𝐷‘0)))) |
| 309 | 305, 308 | mpbid 232 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ (𝐷‘0) < (𝑃 − 1)) → 0 < ((𝑃 − 1) − (𝐷‘0))) |
| 310 | | elnnz 12623 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑃 − 1) − (𝐷‘0)) ∈ ℕ ↔
(((𝑃 − 1) −
(𝐷‘0)) ∈ ℤ
∧ 0 < ((𝑃 − 1)
− (𝐷‘0)))) |
| 311 | 304, 309,
310 | sylanbrc 583 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ (𝐷‘0) < (𝑃 − 1)) → ((𝑃 − 1) − (𝐷‘0)) ∈ ℕ) |
| 312 | 311 | 0expd 14179 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝐷‘0) < (𝑃 − 1)) → (0↑((𝑃 − 1) − (𝐷‘0))) =
0) |
| 313 | 301, 312 | eqtrd 2777 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝐷‘0) < (𝑃 − 1)) → (𝐽↑((𝑃 − 1) − (𝐷‘0))) = 0) |
| 314 | 313 | oveq2d 7447 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝐷‘0) < (𝑃 − 1)) → (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐷‘0)))) · (𝐽↑((𝑃 − 1) − (𝐷‘0)))) = (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐷‘0)))) · 0)) |
| 315 | 197 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝐷‘0) < (𝑃 − 1)) → (!‘(𝑃 − 1)) ∈
ℂ) |
| 316 | 311 | nnnn0d 12587 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ (𝐷‘0) < (𝑃 − 1)) → ((𝑃 − 1) − (𝐷‘0)) ∈
ℕ0) |
| 317 | 316 | faccld 14323 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ (𝐷‘0) < (𝑃 − 1)) → (!‘((𝑃 − 1) − (𝐷‘0))) ∈
ℕ) |
| 318 | 317 | nncnd 12282 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝐷‘0) < (𝑃 − 1)) → (!‘((𝑃 − 1) − (𝐷‘0))) ∈
ℂ) |
| 319 | 317 | nnne0d 12316 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝐷‘0) < (𝑃 − 1)) → (!‘((𝑃 − 1) − (𝐷‘0))) ≠
0) |
| 320 | 315, 318,
319 | divcld 12043 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝐷‘0) < (𝑃 − 1)) → ((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐷‘0)))) ∈
ℂ) |
| 321 | 320 | mul01d 11460 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝐷‘0) < (𝑃 − 1)) → (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐷‘0)))) · 0) =
0) |
| 322 | 314, 321 | eqtrd 2777 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝐷‘0) < (𝑃 − 1)) → (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐷‘0)))) · (𝐽↑((𝑃 − 1) − (𝐷‘0)))) = 0) |
| 323 | 292, 299,
322 | syl2anc 584 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝐷‘0) ≠ (𝑃 − 1)) ∧ ¬ (𝑃 − 1) < (𝐷‘0)) → (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐷‘0)))) · (𝐽↑((𝑃 − 1) − (𝐷‘0)))) = 0) |
| 324 | 291, 323 | eqtrd 2777 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝐷‘0) ≠ (𝑃 − 1)) ∧ ¬ (𝑃 − 1) < (𝐷‘0)) → if((𝑃 − 1) < (𝐷‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐷‘0)))) · (𝐽↑((𝑃 − 1) − (𝐷‘0))))) = 0) |
| 325 | 289, 324 | pm2.61dan 813 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝐷‘0) ≠ (𝑃 − 1)) → if((𝑃 − 1) < (𝐷‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐷‘0)))) · (𝐽↑((𝑃 − 1) − (𝐷‘0))))) = 0) |
| 326 | 325 | oveq1d 7446 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝐷‘0) ≠ (𝑃 − 1)) → (if((𝑃 − 1) < (𝐷‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐷‘0)))) · (𝐽↑((𝑃 − 1) − (𝐷‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐷‘𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐷‘𝑗)))) · ((𝐽 − 𝑗)↑(𝑃 − (𝐷‘𝑗)))))) = (0 · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐷‘𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐷‘𝑗)))) · ((𝐽 − 𝑗)↑(𝑃 − (𝐷‘𝑗))))))) |
| 327 | 274 | mul02d 11459 |
. . . . . . . . 9
⊢ (𝜑 → (0 · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐷‘𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐷‘𝑗)))) · ((𝐽 − 𝑗)↑(𝑃 − (𝐷‘𝑗)))))) = 0) |
| 328 | 327 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝐷‘0) ≠ (𝑃 − 1)) → (0 · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐷‘𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐷‘𝑗)))) · ((𝐽 − 𝑗)↑(𝑃 − (𝐷‘𝑗)))))) = 0) |
| 329 | 326, 328 | eqtrd 2777 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝐷‘0) ≠ (𝑃 − 1)) → (if((𝑃 − 1) < (𝐷‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐷‘0)))) · (𝐽↑((𝑃 − 1) − (𝐷‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐷‘𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐷‘𝑗)))) · ((𝐽 − 𝑗)↑(𝑃 − (𝐷‘𝑗)))))) = 0) |
| 330 | 329 | oveq2d 7447 |
. . . . . 6
⊢ ((𝜑 ∧ (𝐷‘0) ≠ (𝑃 − 1)) → (((!‘𝐼) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐷‘𝑗))) · (if((𝑃 − 1) < (𝐷‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐷‘0)))) · (𝐽↑((𝑃 − 1) − (𝐷‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐷‘𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐷‘𝑗)))) · ((𝐽 − 𝑗)↑(𝑃 − (𝐷‘𝑗))))))) = (((!‘𝐼) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐷‘𝑗))) · 0)) |
| 331 | 273 | mul01d 11460 |
. . . . . . 7
⊢ (𝜑 → (((!‘𝐼) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐷‘𝑗))) · 0) = 0) |
| 332 | 331 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ (𝐷‘0) ≠ (𝑃 − 1)) → (((!‘𝐼) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐷‘𝑗))) · 0) = 0) |
| 333 | 330, 332 | eqtrd 2777 |
. . . . 5
⊢ ((𝜑 ∧ (𝐷‘0) ≠ (𝑃 − 1)) → (((!‘𝐼) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐷‘𝑗))) · (if((𝑃 − 1) < (𝐷‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐷‘0)))) · (𝐽↑((𝑃 − 1) − (𝐷‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐷‘𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐷‘𝑗)))) · ((𝐽 − 𝑗)↑(𝑃 − (𝐷‘𝑗))))))) = 0) |
| 334 | 333 | oveq1d 7446 |
. . . 4
⊢ ((𝜑 ∧ (𝐷‘0) ≠ (𝑃 − 1)) → ((((!‘𝐼) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐷‘𝑗))) · (if((𝑃 − 1) < (𝐷‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐷‘0)))) · (𝐽↑((𝑃 − 1) − (𝐷‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐷‘𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐷‘𝑗)))) · ((𝐽 − 𝑗)↑(𝑃 − (𝐷‘𝑗))))))) / (!‘(𝑃 − 1))) = (0 / (!‘(𝑃 − 1)))) |
| 335 | 197, 276 | div0d 12042 |
. . . . 5
⊢ (𝜑 → (0 / (!‘(𝑃 − 1))) =
0) |
| 336 | 335 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ (𝐷‘0) ≠ (𝑃 − 1)) → (0 / (!‘(𝑃 − 1))) =
0) |
| 337 | 334, 336 | eqtrd 2777 |
. . 3
⊢ ((𝜑 ∧ (𝐷‘0) ≠ (𝑃 − 1)) → ((((!‘𝐼) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐷‘𝑗))) · (if((𝑃 − 1) < (𝐷‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐷‘0)))) · (𝐽↑((𝑃 − 1) − (𝐷‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐷‘𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐷‘𝑗)))) · ((𝐽 − 𝑗)↑(𝑃 − (𝐷‘𝑗))))))) / (!‘(𝑃 − 1))) = 0) |
| 338 | 287, 337 | breqtrrd 5171 |
. 2
⊢ ((𝜑 ∧ (𝐷‘0) ≠ (𝑃 − 1)) → 𝑃 ∥ ((((!‘𝐼) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐷‘𝑗))) · (if((𝑃 − 1) < (𝐷‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐷‘0)))) · (𝐽↑((𝑃 − 1) − (𝐷‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐷‘𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐷‘𝑗)))) · ((𝐽 − 𝑗)↑(𝑃 − (𝐷‘𝑗))))))) / (!‘(𝑃 − 1)))) |
| 339 | 286, 338 | pm2.61dane 3029 |
1
⊢ (𝜑 → 𝑃 ∥ ((((!‘𝐼) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐷‘𝑗))) · (if((𝑃 − 1) < (𝐷‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐷‘0)))) · (𝐽↑((𝑃 − 1) − (𝐷‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐷‘𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐷‘𝑗)))) · ((𝐽 − 𝑗)↑(𝑃 − (𝐷‘𝑗))))))) / (!‘(𝑃 − 1)))) |