Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pellfund14gap Structured version   Visualization version   GIF version

Theorem pellfund14gap 40732
Description: There are no solutions between 1 and the fundamental solution. (Contributed by Stefan O'Rear, 18-Sep-2014.)
Assertion
Ref Expression
pellfund14gap ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷) ∧ (1 ≤ 𝐴𝐴 < (PellFund‘𝐷))) → 𝐴 = 1)

Proof of Theorem pellfund14gap
StepHypRef Expression
1 simp3r 1200 . . . . 5 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷) ∧ (1 ≤ 𝐴𝐴 < (PellFund‘𝐷))) → 𝐴 < (PellFund‘𝐷))
2 pell14qrre 40702 . . . . . . 7 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → 𝐴 ∈ ℝ)
323adant3 1130 . . . . . 6 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷) ∧ (1 ≤ 𝐴𝐴 < (PellFund‘𝐷))) → 𝐴 ∈ ℝ)
4 pellfundre 40726 . . . . . . 7 (𝐷 ∈ (ℕ ∖ ◻NN) → (PellFund‘𝐷) ∈ ℝ)
543ad2ant1 1131 . . . . . 6 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷) ∧ (1 ≤ 𝐴𝐴 < (PellFund‘𝐷))) → (PellFund‘𝐷) ∈ ℝ)
63, 5ltnled 11150 . . . . 5 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷) ∧ (1 ≤ 𝐴𝐴 < (PellFund‘𝐷))) → (𝐴 < (PellFund‘𝐷) ↔ ¬ (PellFund‘𝐷) ≤ 𝐴))
71, 6mpbid 231 . . . 4 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷) ∧ (1 ≤ 𝐴𝐴 < (PellFund‘𝐷))) → ¬ (PellFund‘𝐷) ≤ 𝐴)
8 simpl1 1189 . . . . 5 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷) ∧ (1 ≤ 𝐴𝐴 < (PellFund‘𝐷))) ∧ 1 < 𝐴) → 𝐷 ∈ (ℕ ∖ ◻NN))
9 simpl2 1190 . . . . 5 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷) ∧ (1 ≤ 𝐴𝐴 < (PellFund‘𝐷))) ∧ 1 < 𝐴) → 𝐴 ∈ (Pell14QR‘𝐷))
10 simpr 484 . . . . 5 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷) ∧ (1 ≤ 𝐴𝐴 < (PellFund‘𝐷))) ∧ 1 < 𝐴) → 1 < 𝐴)
11 pellfundlb 40729 . . . . 5 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷) ∧ 1 < 𝐴) → (PellFund‘𝐷) ≤ 𝐴)
128, 9, 10, 11syl3anc 1369 . . . 4 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷) ∧ (1 ≤ 𝐴𝐴 < (PellFund‘𝐷))) ∧ 1 < 𝐴) → (PellFund‘𝐷) ≤ 𝐴)
137, 12mtand 812 . . 3 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷) ∧ (1 ≤ 𝐴𝐴 < (PellFund‘𝐷))) → ¬ 1 < 𝐴)
14 simp3l 1199 . . . 4 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷) ∧ (1 ≤ 𝐴𝐴 < (PellFund‘𝐷))) → 1 ≤ 𝐴)
15 1re 11003 . . . . 5 1 ∈ ℝ
16 leloe 11089 . . . . 5 ((1 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (1 ≤ 𝐴 ↔ (1 < 𝐴 ∨ 1 = 𝐴)))
1715, 3, 16sylancr 586 . . . 4 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷) ∧ (1 ≤ 𝐴𝐴 < (PellFund‘𝐷))) → (1 ≤ 𝐴 ↔ (1 < 𝐴 ∨ 1 = 𝐴)))
1814, 17mpbid 231 . . 3 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷) ∧ (1 ≤ 𝐴𝐴 < (PellFund‘𝐷))) → (1 < 𝐴 ∨ 1 = 𝐴))
19 orel1 885 . . 3 (¬ 1 < 𝐴 → ((1 < 𝐴 ∨ 1 = 𝐴) → 1 = 𝐴))
2013, 18, 19sylc 65 . 2 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷) ∧ (1 ≤ 𝐴𝐴 < (PellFund‘𝐷))) → 1 = 𝐴)
2120eqcomd 2739 1 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷) ∧ (1 ≤ 𝐴𝐴 < (PellFund‘𝐷))) → 𝐴 = 1)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  wo 843  w3a 1085   = wceq 1537  wcel 2101  cdif 3886   class class class wbr 5077  cfv 6447  cr 10898  1c1 10900   < clt 11037  cle 11038  cn 12001  NNcsquarenn 40681  Pell14QRcpell14qr 40684  PellFundcpellfund 40685
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2103  ax-9 2111  ax-10 2132  ax-11 2149  ax-12 2166  ax-ext 2704  ax-rep 5212  ax-sep 5226  ax-nul 5233  ax-pow 5291  ax-pr 5355  ax-un 7608  ax-inf2 9427  ax-cnex 10955  ax-resscn 10956  ax-1cn 10957  ax-icn 10958  ax-addcl 10959  ax-addrcl 10960  ax-mulcl 10961  ax-mulrcl 10962  ax-mulcom 10963  ax-addass 10964  ax-mulass 10965  ax-distr 10966  ax-i2m1 10967  ax-1ne0 10968  ax-1rid 10969  ax-rnegex 10970  ax-rrecex 10971  ax-cnre 10972  ax-pre-lttri 10973  ax-pre-lttrn 10974  ax-pre-ltadd 10975  ax-pre-mulgt0 10976  ax-pre-sup 10977
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2063  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2884  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3222  df-reu 3223  df-rab 3224  df-v 3436  df-sbc 3719  df-csb 3835  df-dif 3892  df-un 3894  df-in 3896  df-ss 3906  df-pss 3908  df-nul 4260  df-if 4463  df-pw 4538  df-sn 4565  df-pr 4567  df-op 4571  df-uni 4842  df-int 4883  df-iun 4929  df-br 5078  df-opab 5140  df-mpt 5161  df-tr 5195  df-id 5491  df-eprel 5497  df-po 5505  df-so 5506  df-fr 5546  df-se 5547  df-we 5548  df-xp 5597  df-rel 5598  df-cnv 5599  df-co 5600  df-dm 5601  df-rn 5602  df-res 5603  df-ima 5604  df-pred 6206  df-ord 6273  df-on 6274  df-lim 6275  df-suc 6276  df-iota 6399  df-fun 6449  df-fn 6450  df-f 6451  df-f1 6452  df-fo 6453  df-f1o 6454  df-fv 6455  df-isom 6456  df-riota 7252  df-ov 7298  df-oprab 7299  df-mpo 7300  df-om 7733  df-1st 7851  df-2nd 7852  df-frecs 8117  df-wrecs 8148  df-recs 8222  df-rdg 8261  df-1o 8317  df-oadd 8321  df-omul 8322  df-er 8518  df-map 8637  df-en 8754  df-dom 8755  df-sdom 8756  df-fin 8757  df-sup 9229  df-inf 9230  df-oi 9297  df-card 9725  df-acn 9728  df-pnf 11039  df-mnf 11040  df-xr 11041  df-ltxr 11042  df-le 11043  df-sub 11235  df-neg 11236  df-div 11661  df-nn 12002  df-2 12064  df-3 12065  df-n0 12262  df-xnn0 12334  df-z 12348  df-uz 12611  df-q 12717  df-rp 12759  df-ico 13113  df-fz 13268  df-fl 13540  df-mod 13618  df-seq 13750  df-exp 13811  df-hash 14073  df-cj 14838  df-re 14839  df-im 14840  df-sqrt 14974  df-abs 14975  df-dvds 15992  df-gcd 16230  df-numer 16467  df-denom 16468  df-squarenn 40686  df-pell1qr 40687  df-pell14qr 40688  df-pell1234qr 40689  df-pellfund 40690
This theorem is referenced by:  pellfund14  40743
  Copyright terms: Public domain W3C validator