Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pellfund14gap Structured version   Visualization version   GIF version

Theorem pellfund14gap 39660
Description: There are no solutions between 1 and the fundamental solution. (Contributed by Stefan O'Rear, 18-Sep-2014.)
Assertion
Ref Expression
pellfund14gap ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷) ∧ (1 ≤ 𝐴𝐴 < (PellFund‘𝐷))) → 𝐴 = 1)

Proof of Theorem pellfund14gap
StepHypRef Expression
1 simp3r 1199 . . . . 5 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷) ∧ (1 ≤ 𝐴𝐴 < (PellFund‘𝐷))) → 𝐴 < (PellFund‘𝐷))
2 pell14qrre 39630 . . . . . . 7 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → 𝐴 ∈ ℝ)
323adant3 1129 . . . . . 6 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷) ∧ (1 ≤ 𝐴𝐴 < (PellFund‘𝐷))) → 𝐴 ∈ ℝ)
4 pellfundre 39654 . . . . . . 7 (𝐷 ∈ (ℕ ∖ ◻NN) → (PellFund‘𝐷) ∈ ℝ)
543ad2ant1 1130 . . . . . 6 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷) ∧ (1 ≤ 𝐴𝐴 < (PellFund‘𝐷))) → (PellFund‘𝐷) ∈ ℝ)
63, 5ltnled 10772 . . . . 5 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷) ∧ (1 ≤ 𝐴𝐴 < (PellFund‘𝐷))) → (𝐴 < (PellFund‘𝐷) ↔ ¬ (PellFund‘𝐷) ≤ 𝐴))
71, 6mpbid 235 . . . 4 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷) ∧ (1 ≤ 𝐴𝐴 < (PellFund‘𝐷))) → ¬ (PellFund‘𝐷) ≤ 𝐴)
8 simpl1 1188 . . . . 5 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷) ∧ (1 ≤ 𝐴𝐴 < (PellFund‘𝐷))) ∧ 1 < 𝐴) → 𝐷 ∈ (ℕ ∖ ◻NN))
9 simpl2 1189 . . . . 5 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷) ∧ (1 ≤ 𝐴𝐴 < (PellFund‘𝐷))) ∧ 1 < 𝐴) → 𝐴 ∈ (Pell14QR‘𝐷))
10 simpr 488 . . . . 5 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷) ∧ (1 ≤ 𝐴𝐴 < (PellFund‘𝐷))) ∧ 1 < 𝐴) → 1 < 𝐴)
11 pellfundlb 39657 . . . . 5 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷) ∧ 1 < 𝐴) → (PellFund‘𝐷) ≤ 𝐴)
128, 9, 10, 11syl3anc 1368 . . . 4 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷) ∧ (1 ≤ 𝐴𝐴 < (PellFund‘𝐷))) ∧ 1 < 𝐴) → (PellFund‘𝐷) ≤ 𝐴)
137, 12mtand 815 . . 3 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷) ∧ (1 ≤ 𝐴𝐴 < (PellFund‘𝐷))) → ¬ 1 < 𝐴)
14 simp3l 1198 . . . 4 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷) ∧ (1 ≤ 𝐴𝐴 < (PellFund‘𝐷))) → 1 ≤ 𝐴)
15 1re 10626 . . . . 5 1 ∈ ℝ
16 leloe 10712 . . . . 5 ((1 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (1 ≤ 𝐴 ↔ (1 < 𝐴 ∨ 1 = 𝐴)))
1715, 3, 16sylancr 590 . . . 4 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷) ∧ (1 ≤ 𝐴𝐴 < (PellFund‘𝐷))) → (1 ≤ 𝐴 ↔ (1 < 𝐴 ∨ 1 = 𝐴)))
1814, 17mpbid 235 . . 3 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷) ∧ (1 ≤ 𝐴𝐴 < (PellFund‘𝐷))) → (1 < 𝐴 ∨ 1 = 𝐴))
19 orel1 886 . . 3 (¬ 1 < 𝐴 → ((1 < 𝐴 ∨ 1 = 𝐴) → 1 = 𝐴))
2013, 18, 19sylc 65 . 2 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷) ∧ (1 ≤ 𝐴𝐴 < (PellFund‘𝐷))) → 1 = 𝐴)
2120eqcomd 2830 1 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷) ∧ (1 ≤ 𝐴𝐴 < (PellFund‘𝐷))) → 𝐴 = 1)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  wo 844  w3a 1084   = wceq 1538  wcel 2115  cdif 3915   class class class wbr 5047  cfv 6336  cr 10521  1c1 10523   < clt 10660  cle 10661  cn 11623  NNcsquarenn 39609  Pell14QRcpell14qr 39612  PellFundcpellfund 39613
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-rep 5171  ax-sep 5184  ax-nul 5191  ax-pow 5247  ax-pr 5311  ax-un 7444  ax-inf2 9088  ax-cnex 10578  ax-resscn 10579  ax-1cn 10580  ax-icn 10581  ax-addcl 10582  ax-addrcl 10583  ax-mulcl 10584  ax-mulrcl 10585  ax-mulcom 10586  ax-addass 10587  ax-mulass 10588  ax-distr 10589  ax-i2m1 10590  ax-1ne0 10591  ax-1rid 10592  ax-rnegex 10593  ax-rrecex 10594  ax-cnre 10595  ax-pre-lttri 10596  ax-pre-lttrn 10597  ax-pre-ltadd 10598  ax-pre-mulgt0 10599  ax-pre-sup 10600
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3014  df-nel 3118  df-ral 3137  df-rex 3138  df-reu 3139  df-rmo 3140  df-rab 3141  df-v 3481  df-sbc 3758  df-csb 3866  df-dif 3921  df-un 3923  df-in 3925  df-ss 3935  df-pss 3937  df-nul 4275  df-if 4449  df-pw 4522  df-sn 4549  df-pr 4551  df-tp 4553  df-op 4555  df-uni 4820  df-int 4858  df-iun 4902  df-br 5048  df-opab 5110  df-mpt 5128  df-tr 5154  df-id 5441  df-eprel 5446  df-po 5455  df-so 5456  df-fr 5495  df-se 5496  df-we 5497  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-pred 6129  df-ord 6175  df-on 6176  df-lim 6177  df-suc 6178  df-iota 6295  df-fun 6338  df-fn 6339  df-f 6340  df-f1 6341  df-fo 6342  df-f1o 6343  df-fv 6344  df-isom 6345  df-riota 7096  df-ov 7141  df-oprab 7142  df-mpo 7143  df-om 7564  df-1st 7672  df-2nd 7673  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-oadd 8089  df-omul 8090  df-er 8272  df-map 8391  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-sup 8890  df-inf 8891  df-oi 8958  df-card 9352  df-acn 9355  df-pnf 10662  df-mnf 10663  df-xr 10664  df-ltxr 10665  df-le 10666  df-sub 10857  df-neg 10858  df-div 11283  df-nn 11624  df-2 11686  df-3 11687  df-n0 11884  df-xnn0 11954  df-z 11968  df-uz 12230  df-q 12335  df-rp 12376  df-ico 12730  df-fz 12884  df-fl 13155  df-mod 13231  df-seq 13363  df-exp 13424  df-hash 13685  df-cj 14447  df-re 14448  df-im 14449  df-sqrt 14583  df-abs 14584  df-dvds 15597  df-gcd 15831  df-numer 16062  df-denom 16063  df-squarenn 39614  df-pell1qr 39615  df-pell14qr 39616  df-pell1234qr 39617  df-pellfund 39618
This theorem is referenced by:  pellfund14  39671
  Copyright terms: Public domain W3C validator