Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eulerpartlemsv2 Structured version   Visualization version   GIF version

Theorem eulerpartlemsv2 34340
Description: Lemma for eulerpart 34364. Value of the sum of a finite partition 𝐴 (Contributed by Thierry Arnoux, 19-Aug-2018.)
Hypotheses
Ref Expression
eulerpartlems.r 𝑅 = {𝑓 ∣ (𝑓 “ ℕ) ∈ Fin}
eulerpartlems.s 𝑆 = (𝑓 ∈ ((ℕ0m ℕ) ∩ 𝑅) ↦ Σ𝑘 ∈ ℕ ((𝑓𝑘) · 𝑘))
Assertion
Ref Expression
eulerpartlemsv2 (𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) → (𝑆𝐴) = Σ𝑘 ∈ (𝐴 “ ℕ)((𝐴𝑘) · 𝑘))
Distinct variable groups:   𝑓,𝑘,𝐴   𝑅,𝑓,𝑘
Allowed substitution hints:   𝑆(𝑓,𝑘)

Proof of Theorem eulerpartlemsv2
StepHypRef Expression
1 eulerpartlems.r . . 3 𝑅 = {𝑓 ∣ (𝑓 “ ℕ) ∈ Fin}
2 eulerpartlems.s . . 3 𝑆 = (𝑓 ∈ ((ℕ0m ℕ) ∩ 𝑅) ↦ Σ𝑘 ∈ ℕ ((𝑓𝑘) · 𝑘))
31, 2eulerpartlemsv1 34338 . 2 (𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) → (𝑆𝐴) = Σ𝑘 ∈ ℕ ((𝐴𝑘) · 𝑘))
4 cnvimass 6102 . . . 4 (𝐴 “ ℕ) ⊆ dom 𝐴
51, 2eulerpartlemelr 34339 . . . . 5 (𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) → (𝐴:ℕ⟶ℕ0 ∧ (𝐴 “ ℕ) ∈ Fin))
65simpld 494 . . . 4 (𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) → 𝐴:ℕ⟶ℕ0)
74, 6fssdm 6756 . . 3 (𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) → (𝐴 “ ℕ) ⊆ ℕ)
86adantr 480 . . . . . 6 ((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ 𝑘 ∈ (𝐴 “ ℕ)) → 𝐴:ℕ⟶ℕ0)
97sselda 3995 . . . . . 6 ((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ 𝑘 ∈ (𝐴 “ ℕ)) → 𝑘 ∈ ℕ)
108, 9ffvelcdmd 7105 . . . . 5 ((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ 𝑘 ∈ (𝐴 “ ℕ)) → (𝐴𝑘) ∈ ℕ0)
119nnnn0d 12585 . . . . 5 ((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ 𝑘 ∈ (𝐴 “ ℕ)) → 𝑘 ∈ ℕ0)
1210, 11nn0mulcld 12590 . . . 4 ((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ 𝑘 ∈ (𝐴 “ ℕ)) → ((𝐴𝑘) · 𝑘) ∈ ℕ0)
1312nn0cnd 12587 . . 3 ((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ 𝑘 ∈ (𝐴 “ ℕ)) → ((𝐴𝑘) · 𝑘) ∈ ℂ)
14 simpr 484 . . . . . . . 8 ((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ 𝑘 ∈ (ℕ ∖ (𝐴 “ ℕ))) → 𝑘 ∈ (ℕ ∖ (𝐴 “ ℕ)))
1514eldifad 3975 . . . . . . 7 ((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ 𝑘 ∈ (ℕ ∖ (𝐴 “ ℕ))) → 𝑘 ∈ ℕ)
1614eldifbd 3976 . . . . . . . . 9 ((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ 𝑘 ∈ (ℕ ∖ (𝐴 “ ℕ))) → ¬ 𝑘 ∈ (𝐴 “ ℕ))
176adantr 480 . . . . . . . . . 10 ((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ 𝑘 ∈ (ℕ ∖ (𝐴 “ ℕ))) → 𝐴:ℕ⟶ℕ0)
18 ffn 6737 . . . . . . . . . 10 (𝐴:ℕ⟶ℕ0𝐴 Fn ℕ)
19 elpreima 7078 . . . . . . . . . 10 (𝐴 Fn ℕ → (𝑘 ∈ (𝐴 “ ℕ) ↔ (𝑘 ∈ ℕ ∧ (𝐴𝑘) ∈ ℕ)))
2017, 18, 193syl 18 . . . . . . . . 9 ((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ 𝑘 ∈ (ℕ ∖ (𝐴 “ ℕ))) → (𝑘 ∈ (𝐴 “ ℕ) ↔ (𝑘 ∈ ℕ ∧ (𝐴𝑘) ∈ ℕ)))
2116, 20mtbid 324 . . . . . . . 8 ((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ 𝑘 ∈ (ℕ ∖ (𝐴 “ ℕ))) → ¬ (𝑘 ∈ ℕ ∧ (𝐴𝑘) ∈ ℕ))
22 imnan 399 . . . . . . . 8 ((𝑘 ∈ ℕ → ¬ (𝐴𝑘) ∈ ℕ) ↔ ¬ (𝑘 ∈ ℕ ∧ (𝐴𝑘) ∈ ℕ))
2321, 22sylibr 234 . . . . . . 7 ((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ 𝑘 ∈ (ℕ ∖ (𝐴 “ ℕ))) → (𝑘 ∈ ℕ → ¬ (𝐴𝑘) ∈ ℕ))
2415, 23mpd 15 . . . . . 6 ((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ 𝑘 ∈ (ℕ ∖ (𝐴 “ ℕ))) → ¬ (𝐴𝑘) ∈ ℕ)
2517, 15ffvelcdmd 7105 . . . . . . 7 ((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ 𝑘 ∈ (ℕ ∖ (𝐴 “ ℕ))) → (𝐴𝑘) ∈ ℕ0)
26 elnn0 12526 . . . . . . 7 ((𝐴𝑘) ∈ ℕ0 ↔ ((𝐴𝑘) ∈ ℕ ∨ (𝐴𝑘) = 0))
2725, 26sylib 218 . . . . . 6 ((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ 𝑘 ∈ (ℕ ∖ (𝐴 “ ℕ))) → ((𝐴𝑘) ∈ ℕ ∨ (𝐴𝑘) = 0))
28 orel1 888 . . . . . 6 (¬ (𝐴𝑘) ∈ ℕ → (((𝐴𝑘) ∈ ℕ ∨ (𝐴𝑘) = 0) → (𝐴𝑘) = 0))
2924, 27, 28sylc 65 . . . . 5 ((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ 𝑘 ∈ (ℕ ∖ (𝐴 “ ℕ))) → (𝐴𝑘) = 0)
3029oveq1d 7446 . . . 4 ((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ 𝑘 ∈ (ℕ ∖ (𝐴 “ ℕ))) → ((𝐴𝑘) · 𝑘) = (0 · 𝑘))
3115nncnd 12280 . . . . 5 ((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ 𝑘 ∈ (ℕ ∖ (𝐴 “ ℕ))) → 𝑘 ∈ ℂ)
3231mul02d 11457 . . . 4 ((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ 𝑘 ∈ (ℕ ∖ (𝐴 “ ℕ))) → (0 · 𝑘) = 0)
3330, 32eqtrd 2775 . . 3 ((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ 𝑘 ∈ (ℕ ∖ (𝐴 “ ℕ))) → ((𝐴𝑘) · 𝑘) = 0)
34 nnuz 12919 . . . . 5 ℕ = (ℤ‘1)
3534eqimssi 4056 . . . 4 ℕ ⊆ (ℤ‘1)
3635a1i 11 . . 3 (𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) → ℕ ⊆ (ℤ‘1))
377, 13, 33, 36sumss 15757 . 2 (𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) → Σ𝑘 ∈ (𝐴 “ ℕ)((𝐴𝑘) · 𝑘) = Σ𝑘 ∈ ℕ ((𝐴𝑘) · 𝑘))
383, 37eqtr4d 2778 1 (𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) → (𝑆𝐴) = Σ𝑘 ∈ (𝐴 “ ℕ)((𝐴𝑘) · 𝑘))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1537  wcel 2106  {cab 2712  cdif 3960  cin 3962  wss 3963  cmpt 5231  ccnv 5688  cima 5692   Fn wfn 6558  wf 6559  cfv 6563  (class class class)co 7431  m cmap 8865  Fincfn 8984  0cc0 11153  1c1 11154   · cmul 11158  cn 12264  0cn0 12524  cuz 12876  Σcsu 15719
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-inf2 9679  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-se 5642  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-isom 6572  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-er 8744  df-map 8867  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-oi 9548  df-card 9977  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-n0 12525  df-z 12612  df-uz 12877  df-rp 13033  df-fz 13545  df-fzo 13692  df-seq 14040  df-exp 14100  df-hash 14367  df-cj 15135  df-re 15136  df-im 15137  df-sqrt 15271  df-abs 15272  df-clim 15521  df-sum 15720
This theorem is referenced by:  eulerpartlemsf  34341  eulerpartlemgs2  34362
  Copyright terms: Public domain W3C validator