Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eulerpartlemsv2 Structured version   Visualization version   GIF version

Theorem eulerpartlemsv2 34355
Description: Lemma for eulerpart 34379. Value of the sum of a finite partition 𝐴 (Contributed by Thierry Arnoux, 19-Aug-2018.)
Hypotheses
Ref Expression
eulerpartlems.r 𝑅 = {𝑓 ∣ (𝑓 “ ℕ) ∈ Fin}
eulerpartlems.s 𝑆 = (𝑓 ∈ ((ℕ0m ℕ) ∩ 𝑅) ↦ Σ𝑘 ∈ ℕ ((𝑓𝑘) · 𝑘))
Assertion
Ref Expression
eulerpartlemsv2 (𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) → (𝑆𝐴) = Σ𝑘 ∈ (𝐴 “ ℕ)((𝐴𝑘) · 𝑘))
Distinct variable groups:   𝑓,𝑘,𝐴   𝑅,𝑓,𝑘
Allowed substitution hints:   𝑆(𝑓,𝑘)

Proof of Theorem eulerpartlemsv2
StepHypRef Expression
1 eulerpartlems.r . . 3 𝑅 = {𝑓 ∣ (𝑓 “ ℕ) ∈ Fin}
2 eulerpartlems.s . . 3 𝑆 = (𝑓 ∈ ((ℕ0m ℕ) ∩ 𝑅) ↦ Σ𝑘 ∈ ℕ ((𝑓𝑘) · 𝑘))
31, 2eulerpartlemsv1 34353 . 2 (𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) → (𝑆𝐴) = Σ𝑘 ∈ ℕ ((𝐴𝑘) · 𝑘))
4 cnvimass 6055 . . . 4 (𝐴 “ ℕ) ⊆ dom 𝐴
51, 2eulerpartlemelr 34354 . . . . 5 (𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) → (𝐴:ℕ⟶ℕ0 ∧ (𝐴 “ ℕ) ∈ Fin))
65simpld 494 . . . 4 (𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) → 𝐴:ℕ⟶ℕ0)
74, 6fssdm 6709 . . 3 (𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) → (𝐴 “ ℕ) ⊆ ℕ)
86adantr 480 . . . . . 6 ((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ 𝑘 ∈ (𝐴 “ ℕ)) → 𝐴:ℕ⟶ℕ0)
97sselda 3948 . . . . . 6 ((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ 𝑘 ∈ (𝐴 “ ℕ)) → 𝑘 ∈ ℕ)
108, 9ffvelcdmd 7059 . . . . 5 ((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ 𝑘 ∈ (𝐴 “ ℕ)) → (𝐴𝑘) ∈ ℕ0)
119nnnn0d 12509 . . . . 5 ((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ 𝑘 ∈ (𝐴 “ ℕ)) → 𝑘 ∈ ℕ0)
1210, 11nn0mulcld 12514 . . . 4 ((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ 𝑘 ∈ (𝐴 “ ℕ)) → ((𝐴𝑘) · 𝑘) ∈ ℕ0)
1312nn0cnd 12511 . . 3 ((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ 𝑘 ∈ (𝐴 “ ℕ)) → ((𝐴𝑘) · 𝑘) ∈ ℂ)
14 simpr 484 . . . . . . . 8 ((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ 𝑘 ∈ (ℕ ∖ (𝐴 “ ℕ))) → 𝑘 ∈ (ℕ ∖ (𝐴 “ ℕ)))
1514eldifad 3928 . . . . . . 7 ((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ 𝑘 ∈ (ℕ ∖ (𝐴 “ ℕ))) → 𝑘 ∈ ℕ)
1614eldifbd 3929 . . . . . . . . 9 ((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ 𝑘 ∈ (ℕ ∖ (𝐴 “ ℕ))) → ¬ 𝑘 ∈ (𝐴 “ ℕ))
176adantr 480 . . . . . . . . . 10 ((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ 𝑘 ∈ (ℕ ∖ (𝐴 “ ℕ))) → 𝐴:ℕ⟶ℕ0)
18 ffn 6690 . . . . . . . . . 10 (𝐴:ℕ⟶ℕ0𝐴 Fn ℕ)
19 elpreima 7032 . . . . . . . . . 10 (𝐴 Fn ℕ → (𝑘 ∈ (𝐴 “ ℕ) ↔ (𝑘 ∈ ℕ ∧ (𝐴𝑘) ∈ ℕ)))
2017, 18, 193syl 18 . . . . . . . . 9 ((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ 𝑘 ∈ (ℕ ∖ (𝐴 “ ℕ))) → (𝑘 ∈ (𝐴 “ ℕ) ↔ (𝑘 ∈ ℕ ∧ (𝐴𝑘) ∈ ℕ)))
2116, 20mtbid 324 . . . . . . . 8 ((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ 𝑘 ∈ (ℕ ∖ (𝐴 “ ℕ))) → ¬ (𝑘 ∈ ℕ ∧ (𝐴𝑘) ∈ ℕ))
22 imnan 399 . . . . . . . 8 ((𝑘 ∈ ℕ → ¬ (𝐴𝑘) ∈ ℕ) ↔ ¬ (𝑘 ∈ ℕ ∧ (𝐴𝑘) ∈ ℕ))
2321, 22sylibr 234 . . . . . . 7 ((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ 𝑘 ∈ (ℕ ∖ (𝐴 “ ℕ))) → (𝑘 ∈ ℕ → ¬ (𝐴𝑘) ∈ ℕ))
2415, 23mpd 15 . . . . . 6 ((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ 𝑘 ∈ (ℕ ∖ (𝐴 “ ℕ))) → ¬ (𝐴𝑘) ∈ ℕ)
2517, 15ffvelcdmd 7059 . . . . . . 7 ((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ 𝑘 ∈ (ℕ ∖ (𝐴 “ ℕ))) → (𝐴𝑘) ∈ ℕ0)
26 elnn0 12450 . . . . . . 7 ((𝐴𝑘) ∈ ℕ0 ↔ ((𝐴𝑘) ∈ ℕ ∨ (𝐴𝑘) = 0))
2725, 26sylib 218 . . . . . 6 ((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ 𝑘 ∈ (ℕ ∖ (𝐴 “ ℕ))) → ((𝐴𝑘) ∈ ℕ ∨ (𝐴𝑘) = 0))
28 orel1 888 . . . . . 6 (¬ (𝐴𝑘) ∈ ℕ → (((𝐴𝑘) ∈ ℕ ∨ (𝐴𝑘) = 0) → (𝐴𝑘) = 0))
2924, 27, 28sylc 65 . . . . 5 ((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ 𝑘 ∈ (ℕ ∖ (𝐴 “ ℕ))) → (𝐴𝑘) = 0)
3029oveq1d 7404 . . . 4 ((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ 𝑘 ∈ (ℕ ∖ (𝐴 “ ℕ))) → ((𝐴𝑘) · 𝑘) = (0 · 𝑘))
3115nncnd 12203 . . . . 5 ((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ 𝑘 ∈ (ℕ ∖ (𝐴 “ ℕ))) → 𝑘 ∈ ℂ)
3231mul02d 11378 . . . 4 ((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ 𝑘 ∈ (ℕ ∖ (𝐴 “ ℕ))) → (0 · 𝑘) = 0)
3330, 32eqtrd 2765 . . 3 ((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ 𝑘 ∈ (ℕ ∖ (𝐴 “ ℕ))) → ((𝐴𝑘) · 𝑘) = 0)
34 nnuz 12842 . . . . 5 ℕ = (ℤ‘1)
3534eqimssi 4009 . . . 4 ℕ ⊆ (ℤ‘1)
3635a1i 11 . . 3 (𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) → ℕ ⊆ (ℤ‘1))
377, 13, 33, 36sumss 15696 . 2 (𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) → Σ𝑘 ∈ (𝐴 “ ℕ)((𝐴𝑘) · 𝑘) = Σ𝑘 ∈ ℕ ((𝐴𝑘) · 𝑘))
383, 37eqtr4d 2768 1 (𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) → (𝑆𝐴) = Σ𝑘 ∈ (𝐴 “ ℕ)((𝐴𝑘) · 𝑘))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wcel 2109  {cab 2708  cdif 3913  cin 3915  wss 3916  cmpt 5190  ccnv 5639  cima 5643   Fn wfn 6508  wf 6509  cfv 6513  (class class class)co 7389  m cmap 8801  Fincfn 8920  0cc0 11074  1c1 11075   · cmul 11079  cn 12187  0cn0 12448  cuz 12799  Σcsu 15658
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5236  ax-sep 5253  ax-nul 5263  ax-pow 5322  ax-pr 5389  ax-un 7713  ax-inf2 9600  ax-cnex 11130  ax-resscn 11131  ax-1cn 11132  ax-icn 11133  ax-addcl 11134  ax-addrcl 11135  ax-mulcl 11136  ax-mulrcl 11137  ax-mulcom 11138  ax-addass 11139  ax-mulass 11140  ax-distr 11141  ax-i2m1 11142  ax-1ne0 11143  ax-1rid 11144  ax-rnegex 11145  ax-rrecex 11146  ax-cnre 11147  ax-pre-lttri 11148  ax-pre-lttrn 11149  ax-pre-ltadd 11150  ax-pre-mulgt0 11151
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3756  df-csb 3865  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-pss 3936  df-nul 4299  df-if 4491  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4874  df-int 4913  df-iun 4959  df-br 5110  df-opab 5172  df-mpt 5191  df-tr 5217  df-id 5535  df-eprel 5540  df-po 5548  df-so 5549  df-fr 5593  df-se 5594  df-we 5595  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-rn 5651  df-res 5652  df-ima 5653  df-pred 6276  df-ord 6337  df-on 6338  df-lim 6339  df-suc 6340  df-iota 6466  df-fun 6515  df-fn 6516  df-f 6517  df-f1 6518  df-fo 6519  df-f1o 6520  df-fv 6521  df-isom 6522  df-riota 7346  df-ov 7392  df-oprab 7393  df-mpo 7394  df-om 7845  df-1st 7970  df-2nd 7971  df-frecs 8262  df-wrecs 8293  df-recs 8342  df-rdg 8380  df-1o 8436  df-er 8673  df-map 8803  df-en 8921  df-dom 8922  df-sdom 8923  df-fin 8924  df-oi 9469  df-card 9898  df-pnf 11216  df-mnf 11217  df-xr 11218  df-ltxr 11219  df-le 11220  df-sub 11413  df-neg 11414  df-div 11842  df-nn 12188  df-2 12250  df-n0 12449  df-z 12536  df-uz 12800  df-rp 12958  df-fz 13475  df-fzo 13622  df-seq 13973  df-exp 14033  df-hash 14302  df-cj 15071  df-re 15072  df-im 15073  df-sqrt 15207  df-abs 15208  df-clim 15460  df-sum 15659
This theorem is referenced by:  eulerpartlemsf  34356  eulerpartlemgs2  34377
  Copyright terms: Public domain W3C validator