| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > eulerpartlemsv2 | Structured version Visualization version GIF version | ||
| Description: Lemma for eulerpart 34366. Value of the sum of a finite partition 𝐴 (Contributed by Thierry Arnoux, 19-Aug-2018.) |
| Ref | Expression |
|---|---|
| eulerpartlems.r | ⊢ 𝑅 = {𝑓 ∣ (◡𝑓 “ ℕ) ∈ Fin} |
| eulerpartlems.s | ⊢ 𝑆 = (𝑓 ∈ ((ℕ0 ↑m ℕ) ∩ 𝑅) ↦ Σ𝑘 ∈ ℕ ((𝑓‘𝑘) · 𝑘)) |
| Ref | Expression |
|---|---|
| eulerpartlemsv2 | ⊢ (𝐴 ∈ ((ℕ0 ↑m ℕ) ∩ 𝑅) → (𝑆‘𝐴) = Σ𝑘 ∈ (◡𝐴 “ ℕ)((𝐴‘𝑘) · 𝑘)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eulerpartlems.r | . . 3 ⊢ 𝑅 = {𝑓 ∣ (◡𝑓 “ ℕ) ∈ Fin} | |
| 2 | eulerpartlems.s | . . 3 ⊢ 𝑆 = (𝑓 ∈ ((ℕ0 ↑m ℕ) ∩ 𝑅) ↦ Σ𝑘 ∈ ℕ ((𝑓‘𝑘) · 𝑘)) | |
| 3 | 1, 2 | eulerpartlemsv1 34340 | . 2 ⊢ (𝐴 ∈ ((ℕ0 ↑m ℕ) ∩ 𝑅) → (𝑆‘𝐴) = Σ𝑘 ∈ ℕ ((𝐴‘𝑘) · 𝑘)) |
| 4 | cnvimass 6042 | . . . 4 ⊢ (◡𝐴 “ ℕ) ⊆ dom 𝐴 | |
| 5 | 1, 2 | eulerpartlemelr 34341 | . . . . 5 ⊢ (𝐴 ∈ ((ℕ0 ↑m ℕ) ∩ 𝑅) → (𝐴:ℕ⟶ℕ0 ∧ (◡𝐴 “ ℕ) ∈ Fin)) |
| 6 | 5 | simpld 494 | . . . 4 ⊢ (𝐴 ∈ ((ℕ0 ↑m ℕ) ∩ 𝑅) → 𝐴:ℕ⟶ℕ0) |
| 7 | 4, 6 | fssdm 6689 | . . 3 ⊢ (𝐴 ∈ ((ℕ0 ↑m ℕ) ∩ 𝑅) → (◡𝐴 “ ℕ) ⊆ ℕ) |
| 8 | 6 | adantr 480 | . . . . . 6 ⊢ ((𝐴 ∈ ((ℕ0 ↑m ℕ) ∩ 𝑅) ∧ 𝑘 ∈ (◡𝐴 “ ℕ)) → 𝐴:ℕ⟶ℕ0) |
| 9 | 7 | sselda 3943 | . . . . . 6 ⊢ ((𝐴 ∈ ((ℕ0 ↑m ℕ) ∩ 𝑅) ∧ 𝑘 ∈ (◡𝐴 “ ℕ)) → 𝑘 ∈ ℕ) |
| 10 | 8, 9 | ffvelcdmd 7039 | . . . . 5 ⊢ ((𝐴 ∈ ((ℕ0 ↑m ℕ) ∩ 𝑅) ∧ 𝑘 ∈ (◡𝐴 “ ℕ)) → (𝐴‘𝑘) ∈ ℕ0) |
| 11 | 9 | nnnn0d 12479 | . . . . 5 ⊢ ((𝐴 ∈ ((ℕ0 ↑m ℕ) ∩ 𝑅) ∧ 𝑘 ∈ (◡𝐴 “ ℕ)) → 𝑘 ∈ ℕ0) |
| 12 | 10, 11 | nn0mulcld 12484 | . . . 4 ⊢ ((𝐴 ∈ ((ℕ0 ↑m ℕ) ∩ 𝑅) ∧ 𝑘 ∈ (◡𝐴 “ ℕ)) → ((𝐴‘𝑘) · 𝑘) ∈ ℕ0) |
| 13 | 12 | nn0cnd 12481 | . . 3 ⊢ ((𝐴 ∈ ((ℕ0 ↑m ℕ) ∩ 𝑅) ∧ 𝑘 ∈ (◡𝐴 “ ℕ)) → ((𝐴‘𝑘) · 𝑘) ∈ ℂ) |
| 14 | simpr 484 | . . . . . . . 8 ⊢ ((𝐴 ∈ ((ℕ0 ↑m ℕ) ∩ 𝑅) ∧ 𝑘 ∈ (ℕ ∖ (◡𝐴 “ ℕ))) → 𝑘 ∈ (ℕ ∖ (◡𝐴 “ ℕ))) | |
| 15 | 14 | eldifad 3923 | . . . . . . 7 ⊢ ((𝐴 ∈ ((ℕ0 ↑m ℕ) ∩ 𝑅) ∧ 𝑘 ∈ (ℕ ∖ (◡𝐴 “ ℕ))) → 𝑘 ∈ ℕ) |
| 16 | 14 | eldifbd 3924 | . . . . . . . . 9 ⊢ ((𝐴 ∈ ((ℕ0 ↑m ℕ) ∩ 𝑅) ∧ 𝑘 ∈ (ℕ ∖ (◡𝐴 “ ℕ))) → ¬ 𝑘 ∈ (◡𝐴 “ ℕ)) |
| 17 | 6 | adantr 480 | . . . . . . . . . 10 ⊢ ((𝐴 ∈ ((ℕ0 ↑m ℕ) ∩ 𝑅) ∧ 𝑘 ∈ (ℕ ∖ (◡𝐴 “ ℕ))) → 𝐴:ℕ⟶ℕ0) |
| 18 | ffn 6670 | . . . . . . . . . 10 ⊢ (𝐴:ℕ⟶ℕ0 → 𝐴 Fn ℕ) | |
| 19 | elpreima 7012 | . . . . . . . . . 10 ⊢ (𝐴 Fn ℕ → (𝑘 ∈ (◡𝐴 “ ℕ) ↔ (𝑘 ∈ ℕ ∧ (𝐴‘𝑘) ∈ ℕ))) | |
| 20 | 17, 18, 19 | 3syl 18 | . . . . . . . . 9 ⊢ ((𝐴 ∈ ((ℕ0 ↑m ℕ) ∩ 𝑅) ∧ 𝑘 ∈ (ℕ ∖ (◡𝐴 “ ℕ))) → (𝑘 ∈ (◡𝐴 “ ℕ) ↔ (𝑘 ∈ ℕ ∧ (𝐴‘𝑘) ∈ ℕ))) |
| 21 | 16, 20 | mtbid 324 | . . . . . . . 8 ⊢ ((𝐴 ∈ ((ℕ0 ↑m ℕ) ∩ 𝑅) ∧ 𝑘 ∈ (ℕ ∖ (◡𝐴 “ ℕ))) → ¬ (𝑘 ∈ ℕ ∧ (𝐴‘𝑘) ∈ ℕ)) |
| 22 | imnan 399 | . . . . . . . 8 ⊢ ((𝑘 ∈ ℕ → ¬ (𝐴‘𝑘) ∈ ℕ) ↔ ¬ (𝑘 ∈ ℕ ∧ (𝐴‘𝑘) ∈ ℕ)) | |
| 23 | 21, 22 | sylibr 234 | . . . . . . 7 ⊢ ((𝐴 ∈ ((ℕ0 ↑m ℕ) ∩ 𝑅) ∧ 𝑘 ∈ (ℕ ∖ (◡𝐴 “ ℕ))) → (𝑘 ∈ ℕ → ¬ (𝐴‘𝑘) ∈ ℕ)) |
| 24 | 15, 23 | mpd 15 | . . . . . 6 ⊢ ((𝐴 ∈ ((ℕ0 ↑m ℕ) ∩ 𝑅) ∧ 𝑘 ∈ (ℕ ∖ (◡𝐴 “ ℕ))) → ¬ (𝐴‘𝑘) ∈ ℕ) |
| 25 | 17, 15 | ffvelcdmd 7039 | . . . . . . 7 ⊢ ((𝐴 ∈ ((ℕ0 ↑m ℕ) ∩ 𝑅) ∧ 𝑘 ∈ (ℕ ∖ (◡𝐴 “ ℕ))) → (𝐴‘𝑘) ∈ ℕ0) |
| 26 | elnn0 12420 | . . . . . . 7 ⊢ ((𝐴‘𝑘) ∈ ℕ0 ↔ ((𝐴‘𝑘) ∈ ℕ ∨ (𝐴‘𝑘) = 0)) | |
| 27 | 25, 26 | sylib 218 | . . . . . 6 ⊢ ((𝐴 ∈ ((ℕ0 ↑m ℕ) ∩ 𝑅) ∧ 𝑘 ∈ (ℕ ∖ (◡𝐴 “ ℕ))) → ((𝐴‘𝑘) ∈ ℕ ∨ (𝐴‘𝑘) = 0)) |
| 28 | orel1 888 | . . . . . 6 ⊢ (¬ (𝐴‘𝑘) ∈ ℕ → (((𝐴‘𝑘) ∈ ℕ ∨ (𝐴‘𝑘) = 0) → (𝐴‘𝑘) = 0)) | |
| 29 | 24, 27, 28 | sylc 65 | . . . . 5 ⊢ ((𝐴 ∈ ((ℕ0 ↑m ℕ) ∩ 𝑅) ∧ 𝑘 ∈ (ℕ ∖ (◡𝐴 “ ℕ))) → (𝐴‘𝑘) = 0) |
| 30 | 29 | oveq1d 7384 | . . . 4 ⊢ ((𝐴 ∈ ((ℕ0 ↑m ℕ) ∩ 𝑅) ∧ 𝑘 ∈ (ℕ ∖ (◡𝐴 “ ℕ))) → ((𝐴‘𝑘) · 𝑘) = (0 · 𝑘)) |
| 31 | 15 | nncnd 12178 | . . . . 5 ⊢ ((𝐴 ∈ ((ℕ0 ↑m ℕ) ∩ 𝑅) ∧ 𝑘 ∈ (ℕ ∖ (◡𝐴 “ ℕ))) → 𝑘 ∈ ℂ) |
| 32 | 31 | mul02d 11348 | . . . 4 ⊢ ((𝐴 ∈ ((ℕ0 ↑m ℕ) ∩ 𝑅) ∧ 𝑘 ∈ (ℕ ∖ (◡𝐴 “ ℕ))) → (0 · 𝑘) = 0) |
| 33 | 30, 32 | eqtrd 2764 | . . 3 ⊢ ((𝐴 ∈ ((ℕ0 ↑m ℕ) ∩ 𝑅) ∧ 𝑘 ∈ (ℕ ∖ (◡𝐴 “ ℕ))) → ((𝐴‘𝑘) · 𝑘) = 0) |
| 34 | nnuz 12812 | . . . . 5 ⊢ ℕ = (ℤ≥‘1) | |
| 35 | 34 | eqimssi 4004 | . . . 4 ⊢ ℕ ⊆ (ℤ≥‘1) |
| 36 | 35 | a1i 11 | . . 3 ⊢ (𝐴 ∈ ((ℕ0 ↑m ℕ) ∩ 𝑅) → ℕ ⊆ (ℤ≥‘1)) |
| 37 | 7, 13, 33, 36 | sumss 15666 | . 2 ⊢ (𝐴 ∈ ((ℕ0 ↑m ℕ) ∩ 𝑅) → Σ𝑘 ∈ (◡𝐴 “ ℕ)((𝐴‘𝑘) · 𝑘) = Σ𝑘 ∈ ℕ ((𝐴‘𝑘) · 𝑘)) |
| 38 | 3, 37 | eqtr4d 2767 | 1 ⊢ (𝐴 ∈ ((ℕ0 ↑m ℕ) ∩ 𝑅) → (𝑆‘𝐴) = Σ𝑘 ∈ (◡𝐴 “ ℕ)((𝐴‘𝑘) · 𝑘)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 = wceq 1540 ∈ wcel 2109 {cab 2707 ∖ cdif 3908 ∩ cin 3910 ⊆ wss 3911 ↦ cmpt 5183 ◡ccnv 5630 “ cima 5634 Fn wfn 6494 ⟶wf 6495 ‘cfv 6499 (class class class)co 7369 ↑m cmap 8776 Fincfn 8895 0cc0 11044 1c1 11045 · cmul 11049 ℕcn 12162 ℕ0cn0 12418 ℤ≥cuz 12769 Σcsu 15628 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-inf2 9570 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-int 4907 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-se 5585 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-isom 6508 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-er 8648 df-map 8778 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-oi 9439 df-card 9868 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-div 11812 df-nn 12163 df-2 12225 df-n0 12419 df-z 12506 df-uz 12770 df-rp 12928 df-fz 13445 df-fzo 13592 df-seq 13943 df-exp 14003 df-hash 14272 df-cj 15041 df-re 15042 df-im 15043 df-sqrt 15177 df-abs 15178 df-clim 15430 df-sum 15629 |
| This theorem is referenced by: eulerpartlemsf 34343 eulerpartlemgs2 34364 |
| Copyright terms: Public domain | W3C validator |