Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eulerpartlemsv2 Structured version   Visualization version   GIF version

Theorem eulerpartlemsv2 33352
Description: Lemma for eulerpart 33376. Value of the sum of a finite partition 𝐴 (Contributed by Thierry Arnoux, 19-Aug-2018.)
Hypotheses
Ref Expression
eulerpartlems.r 𝑅 = {𝑓 ∣ (◑𝑓 β€œ β„•) ∈ Fin}
eulerpartlems.s 𝑆 = (𝑓 ∈ ((β„•0 ↑m β„•) ∩ 𝑅) ↦ Ξ£π‘˜ ∈ β„• ((π‘“β€˜π‘˜) Β· π‘˜))
Assertion
Ref Expression
eulerpartlemsv2 (𝐴 ∈ ((β„•0 ↑m β„•) ∩ 𝑅) β†’ (π‘†β€˜π΄) = Ξ£π‘˜ ∈ (◑𝐴 β€œ β„•)((π΄β€˜π‘˜) Β· π‘˜))
Distinct variable groups:   𝑓,π‘˜,𝐴   𝑅,𝑓,π‘˜
Allowed substitution hints:   𝑆(𝑓,π‘˜)

Proof of Theorem eulerpartlemsv2
StepHypRef Expression
1 eulerpartlems.r . . 3 𝑅 = {𝑓 ∣ (◑𝑓 β€œ β„•) ∈ Fin}
2 eulerpartlems.s . . 3 𝑆 = (𝑓 ∈ ((β„•0 ↑m β„•) ∩ 𝑅) ↦ Ξ£π‘˜ ∈ β„• ((π‘“β€˜π‘˜) Β· π‘˜))
31, 2eulerpartlemsv1 33350 . 2 (𝐴 ∈ ((β„•0 ↑m β„•) ∩ 𝑅) β†’ (π‘†β€˜π΄) = Ξ£π‘˜ ∈ β„• ((π΄β€˜π‘˜) Β· π‘˜))
4 cnvimass 6080 . . . 4 (◑𝐴 β€œ β„•) βŠ† dom 𝐴
51, 2eulerpartlemelr 33351 . . . . 5 (𝐴 ∈ ((β„•0 ↑m β„•) ∩ 𝑅) β†’ (𝐴:β„•βŸΆβ„•0 ∧ (◑𝐴 β€œ β„•) ∈ Fin))
65simpld 495 . . . 4 (𝐴 ∈ ((β„•0 ↑m β„•) ∩ 𝑅) β†’ 𝐴:β„•βŸΆβ„•0)
74, 6fssdm 6737 . . 3 (𝐴 ∈ ((β„•0 ↑m β„•) ∩ 𝑅) β†’ (◑𝐴 β€œ β„•) βŠ† β„•)
86adantr 481 . . . . . 6 ((𝐴 ∈ ((β„•0 ↑m β„•) ∩ 𝑅) ∧ π‘˜ ∈ (◑𝐴 β€œ β„•)) β†’ 𝐴:β„•βŸΆβ„•0)
97sselda 3982 . . . . . 6 ((𝐴 ∈ ((β„•0 ↑m β„•) ∩ 𝑅) ∧ π‘˜ ∈ (◑𝐴 β€œ β„•)) β†’ π‘˜ ∈ β„•)
108, 9ffvelcdmd 7087 . . . . 5 ((𝐴 ∈ ((β„•0 ↑m β„•) ∩ 𝑅) ∧ π‘˜ ∈ (◑𝐴 β€œ β„•)) β†’ (π΄β€˜π‘˜) ∈ β„•0)
119nnnn0d 12531 . . . . 5 ((𝐴 ∈ ((β„•0 ↑m β„•) ∩ 𝑅) ∧ π‘˜ ∈ (◑𝐴 β€œ β„•)) β†’ π‘˜ ∈ β„•0)
1210, 11nn0mulcld 12536 . . . 4 ((𝐴 ∈ ((β„•0 ↑m β„•) ∩ 𝑅) ∧ π‘˜ ∈ (◑𝐴 β€œ β„•)) β†’ ((π΄β€˜π‘˜) Β· π‘˜) ∈ β„•0)
1312nn0cnd 12533 . . 3 ((𝐴 ∈ ((β„•0 ↑m β„•) ∩ 𝑅) ∧ π‘˜ ∈ (◑𝐴 β€œ β„•)) β†’ ((π΄β€˜π‘˜) Β· π‘˜) ∈ β„‚)
14 simpr 485 . . . . . . . 8 ((𝐴 ∈ ((β„•0 ↑m β„•) ∩ 𝑅) ∧ π‘˜ ∈ (β„• βˆ– (◑𝐴 β€œ β„•))) β†’ π‘˜ ∈ (β„• βˆ– (◑𝐴 β€œ β„•)))
1514eldifad 3960 . . . . . . 7 ((𝐴 ∈ ((β„•0 ↑m β„•) ∩ 𝑅) ∧ π‘˜ ∈ (β„• βˆ– (◑𝐴 β€œ β„•))) β†’ π‘˜ ∈ β„•)
1614eldifbd 3961 . . . . . . . . 9 ((𝐴 ∈ ((β„•0 ↑m β„•) ∩ 𝑅) ∧ π‘˜ ∈ (β„• βˆ– (◑𝐴 β€œ β„•))) β†’ Β¬ π‘˜ ∈ (◑𝐴 β€œ β„•))
176adantr 481 . . . . . . . . . 10 ((𝐴 ∈ ((β„•0 ↑m β„•) ∩ 𝑅) ∧ π‘˜ ∈ (β„• βˆ– (◑𝐴 β€œ β„•))) β†’ 𝐴:β„•βŸΆβ„•0)
18 ffn 6717 . . . . . . . . . 10 (𝐴:β„•βŸΆβ„•0 β†’ 𝐴 Fn β„•)
19 elpreima 7059 . . . . . . . . . 10 (𝐴 Fn β„• β†’ (π‘˜ ∈ (◑𝐴 β€œ β„•) ↔ (π‘˜ ∈ β„• ∧ (π΄β€˜π‘˜) ∈ β„•)))
2017, 18, 193syl 18 . . . . . . . . 9 ((𝐴 ∈ ((β„•0 ↑m β„•) ∩ 𝑅) ∧ π‘˜ ∈ (β„• βˆ– (◑𝐴 β€œ β„•))) β†’ (π‘˜ ∈ (◑𝐴 β€œ β„•) ↔ (π‘˜ ∈ β„• ∧ (π΄β€˜π‘˜) ∈ β„•)))
2116, 20mtbid 323 . . . . . . . 8 ((𝐴 ∈ ((β„•0 ↑m β„•) ∩ 𝑅) ∧ π‘˜ ∈ (β„• βˆ– (◑𝐴 β€œ β„•))) β†’ Β¬ (π‘˜ ∈ β„• ∧ (π΄β€˜π‘˜) ∈ β„•))
22 imnan 400 . . . . . . . 8 ((π‘˜ ∈ β„• β†’ Β¬ (π΄β€˜π‘˜) ∈ β„•) ↔ Β¬ (π‘˜ ∈ β„• ∧ (π΄β€˜π‘˜) ∈ β„•))
2321, 22sylibr 233 . . . . . . 7 ((𝐴 ∈ ((β„•0 ↑m β„•) ∩ 𝑅) ∧ π‘˜ ∈ (β„• βˆ– (◑𝐴 β€œ β„•))) β†’ (π‘˜ ∈ β„• β†’ Β¬ (π΄β€˜π‘˜) ∈ β„•))
2415, 23mpd 15 . . . . . 6 ((𝐴 ∈ ((β„•0 ↑m β„•) ∩ 𝑅) ∧ π‘˜ ∈ (β„• βˆ– (◑𝐴 β€œ β„•))) β†’ Β¬ (π΄β€˜π‘˜) ∈ β„•)
2517, 15ffvelcdmd 7087 . . . . . . 7 ((𝐴 ∈ ((β„•0 ↑m β„•) ∩ 𝑅) ∧ π‘˜ ∈ (β„• βˆ– (◑𝐴 β€œ β„•))) β†’ (π΄β€˜π‘˜) ∈ β„•0)
26 elnn0 12473 . . . . . . 7 ((π΄β€˜π‘˜) ∈ β„•0 ↔ ((π΄β€˜π‘˜) ∈ β„• ∨ (π΄β€˜π‘˜) = 0))
2725, 26sylib 217 . . . . . 6 ((𝐴 ∈ ((β„•0 ↑m β„•) ∩ 𝑅) ∧ π‘˜ ∈ (β„• βˆ– (◑𝐴 β€œ β„•))) β†’ ((π΄β€˜π‘˜) ∈ β„• ∨ (π΄β€˜π‘˜) = 0))
28 orel1 887 . . . . . 6 (Β¬ (π΄β€˜π‘˜) ∈ β„• β†’ (((π΄β€˜π‘˜) ∈ β„• ∨ (π΄β€˜π‘˜) = 0) β†’ (π΄β€˜π‘˜) = 0))
2924, 27, 28sylc 65 . . . . 5 ((𝐴 ∈ ((β„•0 ↑m β„•) ∩ 𝑅) ∧ π‘˜ ∈ (β„• βˆ– (◑𝐴 β€œ β„•))) β†’ (π΄β€˜π‘˜) = 0)
3029oveq1d 7423 . . . 4 ((𝐴 ∈ ((β„•0 ↑m β„•) ∩ 𝑅) ∧ π‘˜ ∈ (β„• βˆ– (◑𝐴 β€œ β„•))) β†’ ((π΄β€˜π‘˜) Β· π‘˜) = (0 Β· π‘˜))
3115nncnd 12227 . . . . 5 ((𝐴 ∈ ((β„•0 ↑m β„•) ∩ 𝑅) ∧ π‘˜ ∈ (β„• βˆ– (◑𝐴 β€œ β„•))) β†’ π‘˜ ∈ β„‚)
3231mul02d 11411 . . . 4 ((𝐴 ∈ ((β„•0 ↑m β„•) ∩ 𝑅) ∧ π‘˜ ∈ (β„• βˆ– (◑𝐴 β€œ β„•))) β†’ (0 Β· π‘˜) = 0)
3330, 32eqtrd 2772 . . 3 ((𝐴 ∈ ((β„•0 ↑m β„•) ∩ 𝑅) ∧ π‘˜ ∈ (β„• βˆ– (◑𝐴 β€œ β„•))) β†’ ((π΄β€˜π‘˜) Β· π‘˜) = 0)
34 nnuz 12864 . . . . 5 β„• = (β„€β‰₯β€˜1)
3534eqimssi 4042 . . . 4 β„• βŠ† (β„€β‰₯β€˜1)
3635a1i 11 . . 3 (𝐴 ∈ ((β„•0 ↑m β„•) ∩ 𝑅) β†’ β„• βŠ† (β„€β‰₯β€˜1))
377, 13, 33, 36sumss 15669 . 2 (𝐴 ∈ ((β„•0 ↑m β„•) ∩ 𝑅) β†’ Ξ£π‘˜ ∈ (◑𝐴 β€œ β„•)((π΄β€˜π‘˜) Β· π‘˜) = Ξ£π‘˜ ∈ β„• ((π΄β€˜π‘˜) Β· π‘˜))
383, 37eqtr4d 2775 1 (𝐴 ∈ ((β„•0 ↑m β„•) ∩ 𝑅) β†’ (π‘†β€˜π΄) = Ξ£π‘˜ ∈ (◑𝐴 β€œ β„•)((π΄β€˜π‘˜) Β· π‘˜))
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ↔ wb 205   ∧ wa 396   ∨ wo 845   = wceq 1541   ∈ wcel 2106  {cab 2709   βˆ– cdif 3945   ∩ cin 3947   βŠ† wss 3948   ↦ cmpt 5231  β—‘ccnv 5675   β€œ cima 5679   Fn wfn 6538  βŸΆwf 6539  β€˜cfv 6543  (class class class)co 7408   ↑m cmap 8819  Fincfn 8938  0cc0 11109  1c1 11110   Β· cmul 11114  β„•cn 12211  β„•0cn0 12471  β„€β‰₯cuz 12821  Ξ£csu 15631
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7724  ax-inf2 9635  ax-cnex 11165  ax-resscn 11166  ax-1cn 11167  ax-icn 11168  ax-addcl 11169  ax-addrcl 11170  ax-mulcl 11171  ax-mulrcl 11172  ax-mulcom 11173  ax-addass 11174  ax-mulass 11175  ax-distr 11176  ax-i2m1 11177  ax-1ne0 11178  ax-1rid 11179  ax-rnegex 11180  ax-rrecex 11181  ax-cnre 11182  ax-pre-lttri 11183  ax-pre-lttrn 11184  ax-pre-ltadd 11185  ax-pre-mulgt0 11186
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-se 5632  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-isom 6552  df-riota 7364  df-ov 7411  df-oprab 7412  df-mpo 7413  df-om 7855  df-1st 7974  df-2nd 7975  df-frecs 8265  df-wrecs 8296  df-recs 8370  df-rdg 8409  df-1o 8465  df-er 8702  df-map 8821  df-en 8939  df-dom 8940  df-sdom 8941  df-fin 8942  df-oi 9504  df-card 9933  df-pnf 11249  df-mnf 11250  df-xr 11251  df-ltxr 11252  df-le 11253  df-sub 11445  df-neg 11446  df-div 11871  df-nn 12212  df-2 12274  df-n0 12472  df-z 12558  df-uz 12822  df-rp 12974  df-fz 13484  df-fzo 13627  df-seq 13966  df-exp 14027  df-hash 14290  df-cj 15045  df-re 15046  df-im 15047  df-sqrt 15181  df-abs 15182  df-clim 15431  df-sum 15632
This theorem is referenced by:  eulerpartlemsf  33353  eulerpartlemgs2  33374
  Copyright terms: Public domain W3C validator