| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > eulerpartlemsv2 | Structured version Visualization version GIF version | ||
| Description: Lemma for eulerpart 34325. Value of the sum of a finite partition 𝐴 (Contributed by Thierry Arnoux, 19-Aug-2018.) |
| Ref | Expression |
|---|---|
| eulerpartlems.r | ⊢ 𝑅 = {𝑓 ∣ (◡𝑓 “ ℕ) ∈ Fin} |
| eulerpartlems.s | ⊢ 𝑆 = (𝑓 ∈ ((ℕ0 ↑m ℕ) ∩ 𝑅) ↦ Σ𝑘 ∈ ℕ ((𝑓‘𝑘) · 𝑘)) |
| Ref | Expression |
|---|---|
| eulerpartlemsv2 | ⊢ (𝐴 ∈ ((ℕ0 ↑m ℕ) ∩ 𝑅) → (𝑆‘𝐴) = Σ𝑘 ∈ (◡𝐴 “ ℕ)((𝐴‘𝑘) · 𝑘)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eulerpartlems.r | . . 3 ⊢ 𝑅 = {𝑓 ∣ (◡𝑓 “ ℕ) ∈ Fin} | |
| 2 | eulerpartlems.s | . . 3 ⊢ 𝑆 = (𝑓 ∈ ((ℕ0 ↑m ℕ) ∩ 𝑅) ↦ Σ𝑘 ∈ ℕ ((𝑓‘𝑘) · 𝑘)) | |
| 3 | 1, 2 | eulerpartlemsv1 34299 | . 2 ⊢ (𝐴 ∈ ((ℕ0 ↑m ℕ) ∩ 𝑅) → (𝑆‘𝐴) = Σ𝑘 ∈ ℕ ((𝐴‘𝑘) · 𝑘)) |
| 4 | cnvimass 6082 | . . . 4 ⊢ (◡𝐴 “ ℕ) ⊆ dom 𝐴 | |
| 5 | 1, 2 | eulerpartlemelr 34300 | . . . . 5 ⊢ (𝐴 ∈ ((ℕ0 ↑m ℕ) ∩ 𝑅) → (𝐴:ℕ⟶ℕ0 ∧ (◡𝐴 “ ℕ) ∈ Fin)) |
| 6 | 5 | simpld 494 | . . . 4 ⊢ (𝐴 ∈ ((ℕ0 ↑m ℕ) ∩ 𝑅) → 𝐴:ℕ⟶ℕ0) |
| 7 | 4, 6 | fssdm 6736 | . . 3 ⊢ (𝐴 ∈ ((ℕ0 ↑m ℕ) ∩ 𝑅) → (◡𝐴 “ ℕ) ⊆ ℕ) |
| 8 | 6 | adantr 480 | . . . . . 6 ⊢ ((𝐴 ∈ ((ℕ0 ↑m ℕ) ∩ 𝑅) ∧ 𝑘 ∈ (◡𝐴 “ ℕ)) → 𝐴:ℕ⟶ℕ0) |
| 9 | 7 | sselda 3965 | . . . . . 6 ⊢ ((𝐴 ∈ ((ℕ0 ↑m ℕ) ∩ 𝑅) ∧ 𝑘 ∈ (◡𝐴 “ ℕ)) → 𝑘 ∈ ℕ) |
| 10 | 8, 9 | ffvelcdmd 7086 | . . . . 5 ⊢ ((𝐴 ∈ ((ℕ0 ↑m ℕ) ∩ 𝑅) ∧ 𝑘 ∈ (◡𝐴 “ ℕ)) → (𝐴‘𝑘) ∈ ℕ0) |
| 11 | 9 | nnnn0d 12571 | . . . . 5 ⊢ ((𝐴 ∈ ((ℕ0 ↑m ℕ) ∩ 𝑅) ∧ 𝑘 ∈ (◡𝐴 “ ℕ)) → 𝑘 ∈ ℕ0) |
| 12 | 10, 11 | nn0mulcld 12576 | . . . 4 ⊢ ((𝐴 ∈ ((ℕ0 ↑m ℕ) ∩ 𝑅) ∧ 𝑘 ∈ (◡𝐴 “ ℕ)) → ((𝐴‘𝑘) · 𝑘) ∈ ℕ0) |
| 13 | 12 | nn0cnd 12573 | . . 3 ⊢ ((𝐴 ∈ ((ℕ0 ↑m ℕ) ∩ 𝑅) ∧ 𝑘 ∈ (◡𝐴 “ ℕ)) → ((𝐴‘𝑘) · 𝑘) ∈ ℂ) |
| 14 | simpr 484 | . . . . . . . 8 ⊢ ((𝐴 ∈ ((ℕ0 ↑m ℕ) ∩ 𝑅) ∧ 𝑘 ∈ (ℕ ∖ (◡𝐴 “ ℕ))) → 𝑘 ∈ (ℕ ∖ (◡𝐴 “ ℕ))) | |
| 15 | 14 | eldifad 3945 | . . . . . . 7 ⊢ ((𝐴 ∈ ((ℕ0 ↑m ℕ) ∩ 𝑅) ∧ 𝑘 ∈ (ℕ ∖ (◡𝐴 “ ℕ))) → 𝑘 ∈ ℕ) |
| 16 | 14 | eldifbd 3946 | . . . . . . . . 9 ⊢ ((𝐴 ∈ ((ℕ0 ↑m ℕ) ∩ 𝑅) ∧ 𝑘 ∈ (ℕ ∖ (◡𝐴 “ ℕ))) → ¬ 𝑘 ∈ (◡𝐴 “ ℕ)) |
| 17 | 6 | adantr 480 | . . . . . . . . . 10 ⊢ ((𝐴 ∈ ((ℕ0 ↑m ℕ) ∩ 𝑅) ∧ 𝑘 ∈ (ℕ ∖ (◡𝐴 “ ℕ))) → 𝐴:ℕ⟶ℕ0) |
| 18 | ffn 6717 | . . . . . . . . . 10 ⊢ (𝐴:ℕ⟶ℕ0 → 𝐴 Fn ℕ) | |
| 19 | elpreima 7059 | . . . . . . . . . 10 ⊢ (𝐴 Fn ℕ → (𝑘 ∈ (◡𝐴 “ ℕ) ↔ (𝑘 ∈ ℕ ∧ (𝐴‘𝑘) ∈ ℕ))) | |
| 20 | 17, 18, 19 | 3syl 18 | . . . . . . . . 9 ⊢ ((𝐴 ∈ ((ℕ0 ↑m ℕ) ∩ 𝑅) ∧ 𝑘 ∈ (ℕ ∖ (◡𝐴 “ ℕ))) → (𝑘 ∈ (◡𝐴 “ ℕ) ↔ (𝑘 ∈ ℕ ∧ (𝐴‘𝑘) ∈ ℕ))) |
| 21 | 16, 20 | mtbid 324 | . . . . . . . 8 ⊢ ((𝐴 ∈ ((ℕ0 ↑m ℕ) ∩ 𝑅) ∧ 𝑘 ∈ (ℕ ∖ (◡𝐴 “ ℕ))) → ¬ (𝑘 ∈ ℕ ∧ (𝐴‘𝑘) ∈ ℕ)) |
| 22 | imnan 399 | . . . . . . . 8 ⊢ ((𝑘 ∈ ℕ → ¬ (𝐴‘𝑘) ∈ ℕ) ↔ ¬ (𝑘 ∈ ℕ ∧ (𝐴‘𝑘) ∈ ℕ)) | |
| 23 | 21, 22 | sylibr 234 | . . . . . . 7 ⊢ ((𝐴 ∈ ((ℕ0 ↑m ℕ) ∩ 𝑅) ∧ 𝑘 ∈ (ℕ ∖ (◡𝐴 “ ℕ))) → (𝑘 ∈ ℕ → ¬ (𝐴‘𝑘) ∈ ℕ)) |
| 24 | 15, 23 | mpd 15 | . . . . . 6 ⊢ ((𝐴 ∈ ((ℕ0 ↑m ℕ) ∩ 𝑅) ∧ 𝑘 ∈ (ℕ ∖ (◡𝐴 “ ℕ))) → ¬ (𝐴‘𝑘) ∈ ℕ) |
| 25 | 17, 15 | ffvelcdmd 7086 | . . . . . . 7 ⊢ ((𝐴 ∈ ((ℕ0 ↑m ℕ) ∩ 𝑅) ∧ 𝑘 ∈ (ℕ ∖ (◡𝐴 “ ℕ))) → (𝐴‘𝑘) ∈ ℕ0) |
| 26 | elnn0 12512 | . . . . . . 7 ⊢ ((𝐴‘𝑘) ∈ ℕ0 ↔ ((𝐴‘𝑘) ∈ ℕ ∨ (𝐴‘𝑘) = 0)) | |
| 27 | 25, 26 | sylib 218 | . . . . . 6 ⊢ ((𝐴 ∈ ((ℕ0 ↑m ℕ) ∩ 𝑅) ∧ 𝑘 ∈ (ℕ ∖ (◡𝐴 “ ℕ))) → ((𝐴‘𝑘) ∈ ℕ ∨ (𝐴‘𝑘) = 0)) |
| 28 | orel1 888 | . . . . . 6 ⊢ (¬ (𝐴‘𝑘) ∈ ℕ → (((𝐴‘𝑘) ∈ ℕ ∨ (𝐴‘𝑘) = 0) → (𝐴‘𝑘) = 0)) | |
| 29 | 24, 27, 28 | sylc 65 | . . . . 5 ⊢ ((𝐴 ∈ ((ℕ0 ↑m ℕ) ∩ 𝑅) ∧ 𝑘 ∈ (ℕ ∖ (◡𝐴 “ ℕ))) → (𝐴‘𝑘) = 0) |
| 30 | 29 | oveq1d 7429 | . . . 4 ⊢ ((𝐴 ∈ ((ℕ0 ↑m ℕ) ∩ 𝑅) ∧ 𝑘 ∈ (ℕ ∖ (◡𝐴 “ ℕ))) → ((𝐴‘𝑘) · 𝑘) = (0 · 𝑘)) |
| 31 | 15 | nncnd 12265 | . . . . 5 ⊢ ((𝐴 ∈ ((ℕ0 ↑m ℕ) ∩ 𝑅) ∧ 𝑘 ∈ (ℕ ∖ (◡𝐴 “ ℕ))) → 𝑘 ∈ ℂ) |
| 32 | 31 | mul02d 11442 | . . . 4 ⊢ ((𝐴 ∈ ((ℕ0 ↑m ℕ) ∩ 𝑅) ∧ 𝑘 ∈ (ℕ ∖ (◡𝐴 “ ℕ))) → (0 · 𝑘) = 0) |
| 33 | 30, 32 | eqtrd 2769 | . . 3 ⊢ ((𝐴 ∈ ((ℕ0 ↑m ℕ) ∩ 𝑅) ∧ 𝑘 ∈ (ℕ ∖ (◡𝐴 “ ℕ))) → ((𝐴‘𝑘) · 𝑘) = 0) |
| 34 | nnuz 12904 | . . . . 5 ⊢ ℕ = (ℤ≥‘1) | |
| 35 | 34 | eqimssi 4026 | . . . 4 ⊢ ℕ ⊆ (ℤ≥‘1) |
| 36 | 35 | a1i 11 | . . 3 ⊢ (𝐴 ∈ ((ℕ0 ↑m ℕ) ∩ 𝑅) → ℕ ⊆ (ℤ≥‘1)) |
| 37 | 7, 13, 33, 36 | sumss 15743 | . 2 ⊢ (𝐴 ∈ ((ℕ0 ↑m ℕ) ∩ 𝑅) → Σ𝑘 ∈ (◡𝐴 “ ℕ)((𝐴‘𝑘) · 𝑘) = Σ𝑘 ∈ ℕ ((𝐴‘𝑘) · 𝑘)) |
| 38 | 3, 37 | eqtr4d 2772 | 1 ⊢ (𝐴 ∈ ((ℕ0 ↑m ℕ) ∩ 𝑅) → (𝑆‘𝐴) = Σ𝑘 ∈ (◡𝐴 “ ℕ)((𝐴‘𝑘) · 𝑘)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 = wceq 1539 ∈ wcel 2107 {cab 2712 ∖ cdif 3930 ∩ cin 3932 ⊆ wss 3933 ↦ cmpt 5207 ◡ccnv 5666 “ cima 5670 Fn wfn 6537 ⟶wf 6538 ‘cfv 6542 (class class class)co 7414 ↑m cmap 8849 Fincfn 8968 0cc0 11138 1c1 11139 · cmul 11143 ℕcn 12249 ℕ0cn0 12510 ℤ≥cuz 12861 Σcsu 15705 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5261 ax-sep 5278 ax-nul 5288 ax-pow 5347 ax-pr 5414 ax-un 7738 ax-inf2 9664 ax-cnex 11194 ax-resscn 11195 ax-1cn 11196 ax-icn 11197 ax-addcl 11198 ax-addrcl 11199 ax-mulcl 11200 ax-mulrcl 11201 ax-mulcom 11202 ax-addass 11203 ax-mulass 11204 ax-distr 11205 ax-i2m1 11206 ax-1ne0 11207 ax-1rid 11208 ax-rnegex 11209 ax-rrecex 11210 ax-cnre 11211 ax-pre-lttri 11212 ax-pre-lttrn 11213 ax-pre-ltadd 11214 ax-pre-mulgt0 11215 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3773 df-csb 3882 df-dif 3936 df-un 3938 df-in 3940 df-ss 3950 df-pss 3953 df-nul 4316 df-if 4508 df-pw 4584 df-sn 4609 df-pr 4611 df-op 4615 df-uni 4890 df-int 4929 df-iun 4975 df-br 5126 df-opab 5188 df-mpt 5208 df-tr 5242 df-id 5560 df-eprel 5566 df-po 5574 df-so 5575 df-fr 5619 df-se 5620 df-we 5621 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-pred 6303 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6495 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-isom 6551 df-riota 7371 df-ov 7417 df-oprab 7418 df-mpo 7419 df-om 7871 df-1st 7997 df-2nd 7998 df-frecs 8289 df-wrecs 8320 df-recs 8394 df-rdg 8433 df-1o 8489 df-er 8728 df-map 8851 df-en 8969 df-dom 8970 df-sdom 8971 df-fin 8972 df-oi 9533 df-card 9962 df-pnf 11280 df-mnf 11281 df-xr 11282 df-ltxr 11283 df-le 11284 df-sub 11477 df-neg 11478 df-div 11904 df-nn 12250 df-2 12312 df-n0 12511 df-z 12598 df-uz 12862 df-rp 13018 df-fz 13531 df-fzo 13678 df-seq 14026 df-exp 14086 df-hash 14353 df-cj 15121 df-re 15122 df-im 15123 df-sqrt 15257 df-abs 15258 df-clim 15507 df-sum 15706 |
| This theorem is referenced by: eulerpartlemsf 34302 eulerpartlemgs2 34323 |
| Copyright terms: Public domain | W3C validator |