![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 0elold | Structured version Visualization version GIF version |
Description: Zero is in the old set of any non-zero number. (Contributed by Scott Fenton, 13-Mar-2025.) |
Ref | Expression |
---|---|
0elold.1 | ⊢ (𝜑 → 𝐴 ∈ No ) |
0elold.2 | ⊢ (𝜑 → 𝐴 ≠ 0s ) |
Ref | Expression |
---|---|
0elold | ⊢ (𝜑 → 0s ∈ ( O ‘( bday ‘𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bday0s 27674 | . . 3 ⊢ ( bday ‘ 0s ) = ∅ | |
2 | 0elold.2 | . . . . . 6 ⊢ (𝜑 → 𝐴 ≠ 0s ) | |
3 | 2 | neneqd 2944 | . . . . 5 ⊢ (𝜑 → ¬ 𝐴 = 0s ) |
4 | 0elold.1 | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ No ) | |
5 | bday0b 27676 | . . . . . 6 ⊢ (𝐴 ∈ No → (( bday ‘𝐴) = ∅ ↔ 𝐴 = 0s )) | |
6 | 4, 5 | syl 17 | . . . . 5 ⊢ (𝜑 → (( bday ‘𝐴) = ∅ ↔ 𝐴 = 0s )) |
7 | 3, 6 | mtbird 325 | . . . 4 ⊢ (𝜑 → ¬ ( bday ‘𝐴) = ∅) |
8 | bdayelon 27622 | . . . . 5 ⊢ ( bday ‘𝐴) ∈ On | |
9 | on0eqel 6488 | . . . . 5 ⊢ (( bday ‘𝐴) ∈ On → (( bday ‘𝐴) = ∅ ∨ ∅ ∈ ( bday ‘𝐴))) | |
10 | 8, 9 | ax-mp 5 | . . . 4 ⊢ (( bday ‘𝐴) = ∅ ∨ ∅ ∈ ( bday ‘𝐴)) |
11 | orel1 886 | . . . 4 ⊢ (¬ ( bday ‘𝐴) = ∅ → ((( bday ‘𝐴) = ∅ ∨ ∅ ∈ ( bday ‘𝐴)) → ∅ ∈ ( bday ‘𝐴))) | |
12 | 7, 10, 11 | mpisyl 21 | . . 3 ⊢ (𝜑 → ∅ ∈ ( bday ‘𝐴)) |
13 | 1, 12 | eqeltrid 2836 | . 2 ⊢ (𝜑 → ( bday ‘ 0s ) ∈ ( bday ‘𝐴)) |
14 | 0sno 27672 | . . 3 ⊢ 0s ∈ No | |
15 | oldbday 27740 | . . 3 ⊢ ((( bday ‘𝐴) ∈ On ∧ 0s ∈ No ) → ( 0s ∈ ( O ‘( bday ‘𝐴)) ↔ ( bday ‘ 0s ) ∈ ( bday ‘𝐴))) | |
16 | 8, 14, 15 | mp2an 689 | . 2 ⊢ ( 0s ∈ ( O ‘( bday ‘𝐴)) ↔ ( bday ‘ 0s ) ∈ ( bday ‘𝐴)) |
17 | 13, 16 | sylibr 233 | 1 ⊢ (𝜑 → 0s ∈ ( O ‘( bday ‘𝐴))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∨ wo 844 = wceq 1540 ∈ wcel 2105 ≠ wne 2939 ∅c0 4322 Oncon0 6364 ‘cfv 6543 No csur 27486 bday cbday 27488 0s c0s 27668 O cold 27683 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-tp 4633 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-2nd 7980 df-frecs 8272 df-wrecs 8303 df-recs 8377 df-1o 8472 df-2o 8473 df-no 27489 df-slt 27490 df-bday 27491 df-sslt 27627 df-scut 27629 df-0s 27670 df-made 27687 df-old 27688 df-left 27690 df-right 27691 |
This theorem is referenced by: 0elleft 27749 0elright 27750 |
Copyright terms: Public domain | W3C validator |