MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0elold Structured version   Visualization version   GIF version

Theorem 0elold 27850
Description: Zero is in the old set of any non-zero number. (Contributed by Scott Fenton, 13-Mar-2025.)
Hypotheses
Ref Expression
0elold.1 (𝜑𝐴 No )
0elold.2 (𝜑𝐴 ≠ 0s )
Assertion
Ref Expression
0elold (𝜑 → 0s ∈ ( O ‘( bday 𝐴)))

Proof of Theorem 0elold
StepHypRef Expression
1 bday0s 27767 . . 3 ( bday ‘ 0s ) = ∅
2 0elold.2 . . . . . 6 (𝜑𝐴 ≠ 0s )
32neneqd 2933 . . . . 5 (𝜑 → ¬ 𝐴 = 0s )
4 0elold.1 . . . . . 6 (𝜑𝐴 No )
5 bday0b 27769 . . . . . 6 (𝐴 No → (( bday 𝐴) = ∅ ↔ 𝐴 = 0s ))
64, 5syl 17 . . . . 5 (𝜑 → (( bday 𝐴) = ∅ ↔ 𝐴 = 0s ))
73, 6mtbird 325 . . . 4 (𝜑 → ¬ ( bday 𝐴) = ∅)
8 bdayelon 27710 . . . . 5 ( bday 𝐴) ∈ On
9 on0eqel 6426 . . . . 5 (( bday 𝐴) ∈ On → (( bday 𝐴) = ∅ ∨ ∅ ∈ ( bday 𝐴)))
108, 9ax-mp 5 . . . 4 (( bday 𝐴) = ∅ ∨ ∅ ∈ ( bday 𝐴))
11 orel1 888 . . . 4 (¬ ( bday 𝐴) = ∅ → ((( bday 𝐴) = ∅ ∨ ∅ ∈ ( bday 𝐴)) → ∅ ∈ ( bday 𝐴)))
127, 10, 11mpisyl 21 . . 3 (𝜑 → ∅ ∈ ( bday 𝐴))
131, 12eqeltrid 2835 . 2 (𝜑 → ( bday ‘ 0s ) ∈ ( bday 𝐴))
14 0sno 27765 . . 3 0s No
15 oldbday 27841 . . 3 ((( bday 𝐴) ∈ On ∧ 0s No ) → ( 0s ∈ ( O ‘( bday 𝐴)) ↔ ( bday ‘ 0s ) ∈ ( bday 𝐴)))
168, 14, 15mp2an 692 . 2 ( 0s ∈ ( O ‘( bday 𝐴)) ↔ ( bday ‘ 0s ) ∈ ( bday 𝐴))
1713, 16sylibr 234 1 (𝜑 → 0s ∈ ( O ‘( bday 𝐴)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wo 847   = wceq 1541  wcel 2111  wne 2928  c0 4278  Oncon0 6301  cfv 6476   No csur 27573   bday cbday 27575   0s c0s 27761   O cold 27779
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5212  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-tp 4576  df-op 4578  df-uni 4855  df-int 4893  df-iun 4938  df-br 5087  df-opab 5149  df-mpt 5168  df-tr 5194  df-id 5506  df-eprel 5511  df-po 5519  df-so 5520  df-fr 5564  df-we 5566  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-pred 6243  df-ord 6304  df-on 6305  df-suc 6307  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-2nd 7917  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-1o 8380  df-2o 8381  df-no 27576  df-slt 27577  df-bday 27578  df-sslt 27716  df-scut 27718  df-0s 27763  df-made 27783  df-old 27784  df-left 27786  df-right 27787
This theorem is referenced by:  0elleft  27851  0elright  27852
  Copyright terms: Public domain W3C validator