| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 0elold | Structured version Visualization version GIF version | ||
| Description: Zero is in the old set of any non-zero number. (Contributed by Scott Fenton, 13-Mar-2025.) |
| Ref | Expression |
|---|---|
| 0elold.1 | ⊢ (𝜑 → 𝐴 ∈ No ) |
| 0elold.2 | ⊢ (𝜑 → 𝐴 ≠ 0s ) |
| Ref | Expression |
|---|---|
| 0elold | ⊢ (𝜑 → 0s ∈ ( O ‘( bday ‘𝐴))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bday0s 27747 | . . 3 ⊢ ( bday ‘ 0s ) = ∅ | |
| 2 | 0elold.2 | . . . . . 6 ⊢ (𝜑 → 𝐴 ≠ 0s ) | |
| 3 | 2 | neneqd 2931 | . . . . 5 ⊢ (𝜑 → ¬ 𝐴 = 0s ) |
| 4 | 0elold.1 | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ No ) | |
| 5 | bday0b 27749 | . . . . . 6 ⊢ (𝐴 ∈ No → (( bday ‘𝐴) = ∅ ↔ 𝐴 = 0s )) | |
| 6 | 4, 5 | syl 17 | . . . . 5 ⊢ (𝜑 → (( bday ‘𝐴) = ∅ ↔ 𝐴 = 0s )) |
| 7 | 3, 6 | mtbird 325 | . . . 4 ⊢ (𝜑 → ¬ ( bday ‘𝐴) = ∅) |
| 8 | bdayelon 27695 | . . . . 5 ⊢ ( bday ‘𝐴) ∈ On | |
| 9 | on0eqel 6461 | . . . . 5 ⊢ (( bday ‘𝐴) ∈ On → (( bday ‘𝐴) = ∅ ∨ ∅ ∈ ( bday ‘𝐴))) | |
| 10 | 8, 9 | ax-mp 5 | . . . 4 ⊢ (( bday ‘𝐴) = ∅ ∨ ∅ ∈ ( bday ‘𝐴)) |
| 11 | orel1 888 | . . . 4 ⊢ (¬ ( bday ‘𝐴) = ∅ → ((( bday ‘𝐴) = ∅ ∨ ∅ ∈ ( bday ‘𝐴)) → ∅ ∈ ( bday ‘𝐴))) | |
| 12 | 7, 10, 11 | mpisyl 21 | . . 3 ⊢ (𝜑 → ∅ ∈ ( bday ‘𝐴)) |
| 13 | 1, 12 | eqeltrid 2833 | . 2 ⊢ (𝜑 → ( bday ‘ 0s ) ∈ ( bday ‘𝐴)) |
| 14 | 0sno 27745 | . . 3 ⊢ 0s ∈ No | |
| 15 | oldbday 27819 | . . 3 ⊢ ((( bday ‘𝐴) ∈ On ∧ 0s ∈ No ) → ( 0s ∈ ( O ‘( bday ‘𝐴)) ↔ ( bday ‘ 0s ) ∈ ( bday ‘𝐴))) | |
| 16 | 8, 14, 15 | mp2an 692 | . 2 ⊢ ( 0s ∈ ( O ‘( bday ‘𝐴)) ↔ ( bday ‘ 0s ) ∈ ( bday ‘𝐴)) |
| 17 | 13, 16 | sylibr 234 | 1 ⊢ (𝜑 → 0s ∈ ( O ‘( bday ‘𝐴))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∨ wo 847 = wceq 1540 ∈ wcel 2109 ≠ wne 2926 ∅c0 4299 Oncon0 6335 ‘cfv 6514 No csur 27558 bday cbday 27560 0s c0s 27741 O cold 27758 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-tp 4597 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-1o 8437 df-2o 8438 df-no 27561 df-slt 27562 df-bday 27563 df-sslt 27700 df-scut 27702 df-0s 27743 df-made 27762 df-old 27763 df-left 27765 df-right 27766 |
| This theorem is referenced by: 0elleft 27829 0elright 27830 |
| Copyright terms: Public domain | W3C validator |