MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0elold Structured version   Visualization version   GIF version

Theorem 0elold 27878
Description: Zero is in the old set of any non-zero number. (Contributed by Scott Fenton, 13-Mar-2025.)
Hypotheses
Ref Expression
0elold.1 (𝜑𝐴 No )
0elold.2 (𝜑𝐴 ≠ 0s )
Assertion
Ref Expression
0elold (𝜑 → 0s ∈ ( O ‘( bday 𝐴)))

Proof of Theorem 0elold
StepHypRef Expression
1 bday0s 27797 . . 3 ( bday ‘ 0s ) = ∅
2 0elold.2 . . . . . 6 (𝜑𝐴 ≠ 0s )
32neneqd 2938 . . . . 5 (𝜑 → ¬ 𝐴 = 0s )
4 0elold.1 . . . . . 6 (𝜑𝐴 No )
5 bday0b 27799 . . . . . 6 (𝐴 No → (( bday 𝐴) = ∅ ↔ 𝐴 = 0s ))
64, 5syl 17 . . . . 5 (𝜑 → (( bday 𝐴) = ∅ ↔ 𝐴 = 0s ))
73, 6mtbird 325 . . . 4 (𝜑 → ¬ ( bday 𝐴) = ∅)
8 bdayelon 27745 . . . . 5 ( bday 𝐴) ∈ On
9 on0eqel 6483 . . . . 5 (( bday 𝐴) ∈ On → (( bday 𝐴) = ∅ ∨ ∅ ∈ ( bday 𝐴)))
108, 9ax-mp 5 . . . 4 (( bday 𝐴) = ∅ ∨ ∅ ∈ ( bday 𝐴))
11 orel1 888 . . . 4 (¬ ( bday 𝐴) = ∅ → ((( bday 𝐴) = ∅ ∨ ∅ ∈ ( bday 𝐴)) → ∅ ∈ ( bday 𝐴)))
127, 10, 11mpisyl 21 . . 3 (𝜑 → ∅ ∈ ( bday 𝐴))
131, 12eqeltrid 2839 . 2 (𝜑 → ( bday ‘ 0s ) ∈ ( bday 𝐴))
14 0sno 27795 . . 3 0s No
15 oldbday 27869 . . 3 ((( bday 𝐴) ∈ On ∧ 0s No ) → ( 0s ∈ ( O ‘( bday 𝐴)) ↔ ( bday ‘ 0s ) ∈ ( bday 𝐴)))
168, 14, 15mp2an 692 . 2 ( 0s ∈ ( O ‘( bday 𝐴)) ↔ ( bday ‘ 0s ) ∈ ( bday 𝐴))
1713, 16sylibr 234 1 (𝜑 → 0s ∈ ( O ‘( bday 𝐴)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wo 847   = wceq 1540  wcel 2109  wne 2933  c0 4313  Oncon0 6357  cfv 6536   No csur 27608   bday cbday 27610   0s c0s 27791   O cold 27808
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-1o 8485  df-2o 8486  df-no 27611  df-slt 27612  df-bday 27613  df-sslt 27750  df-scut 27752  df-0s 27793  df-made 27812  df-old 27813  df-left 27815  df-right 27816
This theorem is referenced by:  0elleft  27879  0elright  27880
  Copyright terms: Public domain W3C validator