MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0elold Structured version   Visualization version   GIF version

Theorem 0elold 27965
Description: Zero is in the old set of any non-zero number. (Contributed by Scott Fenton, 13-Mar-2025.)
Hypotheses
Ref Expression
0elold.1 (𝜑𝐴 No )
0elold.2 (𝜑𝐴 ≠ 0s )
Assertion
Ref Expression
0elold (𝜑 → 0s ∈ ( O ‘( bday 𝐴)))

Proof of Theorem 0elold
StepHypRef Expression
1 bday0s 27891 . . 3 ( bday ‘ 0s ) = ∅
2 0elold.2 . . . . . 6 (𝜑𝐴 ≠ 0s )
32neneqd 2951 . . . . 5 (𝜑 → ¬ 𝐴 = 0s )
4 0elold.1 . . . . . 6 (𝜑𝐴 No )
5 bday0b 27893 . . . . . 6 (𝐴 No → (( bday 𝐴) = ∅ ↔ 𝐴 = 0s ))
64, 5syl 17 . . . . 5 (𝜑 → (( bday 𝐴) = ∅ ↔ 𝐴 = 0s ))
73, 6mtbird 325 . . . 4 (𝜑 → ¬ ( bday 𝐴) = ∅)
8 bdayelon 27839 . . . . 5 ( bday 𝐴) ∈ On
9 on0eqel 6519 . . . . 5 (( bday 𝐴) ∈ On → (( bday 𝐴) = ∅ ∨ ∅ ∈ ( bday 𝐴)))
108, 9ax-mp 5 . . . 4 (( bday 𝐴) = ∅ ∨ ∅ ∈ ( bday 𝐴))
11 orel1 887 . . . 4 (¬ ( bday 𝐴) = ∅ → ((( bday 𝐴) = ∅ ∨ ∅ ∈ ( bday 𝐴)) → ∅ ∈ ( bday 𝐴)))
127, 10, 11mpisyl 21 . . 3 (𝜑 → ∅ ∈ ( bday 𝐴))
131, 12eqeltrid 2848 . 2 (𝜑 → ( bday ‘ 0s ) ∈ ( bday 𝐴))
14 0sno 27889 . . 3 0s No
15 oldbday 27957 . . 3 ((( bday 𝐴) ∈ On ∧ 0s No ) → ( 0s ∈ ( O ‘( bday 𝐴)) ↔ ( bday ‘ 0s ) ∈ ( bday 𝐴)))
168, 14, 15mp2an 691 . 2 ( 0s ∈ ( O ‘( bday 𝐴)) ↔ ( bday ‘ 0s ) ∈ ( bday 𝐴))
1713, 16sylibr 234 1 (𝜑 → 0s ∈ ( O ‘( bday 𝐴)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wo 846   = wceq 1537  wcel 2108  wne 2946  c0 4352  Oncon0 6395  cfv 6573   No csur 27702   bday cbday 27704   0s c0s 27885   O cold 27900
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-1o 8522  df-2o 8523  df-no 27705  df-slt 27706  df-bday 27707  df-sslt 27844  df-scut 27846  df-0s 27887  df-made 27904  df-old 27905  df-left 27907  df-right 27908
This theorem is referenced by:  0elleft  27966  0elright  27967
  Copyright terms: Public domain W3C validator