| Step | Hyp | Ref
| Expression |
| 1 | | simpr 484 |
. . . . 5
⊢ ((𝜑 ∧ 𝑀 = 𝐿) → 𝑀 = 𝐿) |
| 2 | 1 | fveq2d 6910 |
. . . 4
⊢ ((𝜑 ∧ 𝑀 = 𝐿) → (𝐴‘𝑀) = (𝐴‘𝐿)) |
| 3 | | fmul01lt1lem1.3 |
. . . . . 6
⊢ 𝐴 = seq𝐿( · , 𝐵) |
| 4 | 3 | a1i 11 |
. . . . 5
⊢ ((𝜑 ∧ 𝑀 = 𝐿) → 𝐴 = seq𝐿( · , 𝐵)) |
| 5 | 4 | fveq1d 6908 |
. . . 4
⊢ ((𝜑 ∧ 𝑀 = 𝐿) → (𝐴‘𝐿) = (seq𝐿( · , 𝐵)‘𝐿)) |
| 6 | | fmul01lt1lem1.4 |
. . . . . 6
⊢ (𝜑 → 𝐿 ∈ ℤ) |
| 7 | | seq1 14055 |
. . . . . 6
⊢ (𝐿 ∈ ℤ → (seq𝐿( · , 𝐵)‘𝐿) = (𝐵‘𝐿)) |
| 8 | 6, 7 | syl 17 |
. . . . 5
⊢ (𝜑 → (seq𝐿( · , 𝐵)‘𝐿) = (𝐵‘𝐿)) |
| 9 | 8 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ 𝑀 = 𝐿) → (seq𝐿( · , 𝐵)‘𝐿) = (𝐵‘𝐿)) |
| 10 | 2, 5, 9 | 3eqtrd 2781 |
. . 3
⊢ ((𝜑 ∧ 𝑀 = 𝐿) → (𝐴‘𝑀) = (𝐵‘𝐿)) |
| 11 | | fmul01lt1lem1.10 |
. . . 4
⊢ (𝜑 → (𝐵‘𝐿) < 𝐸) |
| 12 | 11 | adantr 480 |
. . 3
⊢ ((𝜑 ∧ 𝑀 = 𝐿) → (𝐵‘𝐿) < 𝐸) |
| 13 | 10, 12 | eqbrtrd 5165 |
. 2
⊢ ((𝜑 ∧ 𝑀 = 𝐿) → (𝐴‘𝑀) < 𝐸) |
| 14 | | simpr 484 |
. . . . 5
⊢ ((𝜑 ∧ ¬ 𝑀 = 𝐿) → ¬ 𝑀 = 𝐿) |
| 15 | 14 | neqned 2947 |
. . . 4
⊢ ((𝜑 ∧ ¬ 𝑀 = 𝐿) → 𝑀 ≠ 𝐿) |
| 16 | 6 | zred 12722 |
. . . . . . 7
⊢ (𝜑 → 𝐿 ∈ ℝ) |
| 17 | | fmul01lt1lem1.5 |
. . . . . . . . 9
⊢ (𝜑 → 𝑀 ∈ (ℤ≥‘𝐿)) |
| 18 | | eluzelz 12888 |
. . . . . . . . 9
⊢ (𝑀 ∈
(ℤ≥‘𝐿) → 𝑀 ∈ ℤ) |
| 19 | 17, 18 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → 𝑀 ∈ ℤ) |
| 20 | 19 | zred 12722 |
. . . . . . 7
⊢ (𝜑 → 𝑀 ∈ ℝ) |
| 21 | | eluzle 12891 |
. . . . . . . 8
⊢ (𝑀 ∈
(ℤ≥‘𝐿) → 𝐿 ≤ 𝑀) |
| 22 | 17, 21 | syl 17 |
. . . . . . 7
⊢ (𝜑 → 𝐿 ≤ 𝑀) |
| 23 | 16, 20, 22 | 3jca 1129 |
. . . . . 6
⊢ (𝜑 → (𝐿 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝐿 ≤ 𝑀)) |
| 24 | 23 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ ¬ 𝑀 = 𝐿) → (𝐿 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝐿 ≤ 𝑀)) |
| 25 | | leltne 11350 |
. . . . 5
⊢ ((𝐿 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝐿 ≤ 𝑀) → (𝐿 < 𝑀 ↔ 𝑀 ≠ 𝐿)) |
| 26 | 24, 25 | syl 17 |
. . . 4
⊢ ((𝜑 ∧ ¬ 𝑀 = 𝐿) → (𝐿 < 𝑀 ↔ 𝑀 ≠ 𝐿)) |
| 27 | 15, 26 | mpbird 257 |
. . 3
⊢ ((𝜑 ∧ ¬ 𝑀 = 𝐿) → 𝐿 < 𝑀) |
| 28 | 3 | fveq1i 6907 |
. . . 4
⊢ (𝐴‘𝑀) = (seq𝐿( · , 𝐵)‘𝑀) |
| 29 | | remulcl 11240 |
. . . . . . 7
⊢ ((𝑗 ∈ ℝ ∧ 𝑘 ∈ ℝ) → (𝑗 · 𝑘) ∈ ℝ) |
| 30 | 29 | adantl 481 |
. . . . . 6
⊢ (((𝜑 ∧ 𝐿 < 𝑀) ∧ (𝑗 ∈ ℝ ∧ 𝑘 ∈ ℝ)) → (𝑗 · 𝑘) ∈ ℝ) |
| 31 | | recn 11245 |
. . . . . . . . 9
⊢ (𝑗 ∈ ℝ → 𝑗 ∈
ℂ) |
| 32 | 31 | 3ad2ant1 1134 |
. . . . . . . 8
⊢ ((𝑗 ∈ ℝ ∧ 𝑘 ∈ ℝ ∧ 𝑙 ∈ ℝ) → 𝑗 ∈
ℂ) |
| 33 | | recn 11245 |
. . . . . . . . 9
⊢ (𝑘 ∈ ℝ → 𝑘 ∈
ℂ) |
| 34 | 33 | 3ad2ant2 1135 |
. . . . . . . 8
⊢ ((𝑗 ∈ ℝ ∧ 𝑘 ∈ ℝ ∧ 𝑙 ∈ ℝ) → 𝑘 ∈
ℂ) |
| 35 | | recn 11245 |
. . . . . . . . 9
⊢ (𝑙 ∈ ℝ → 𝑙 ∈
ℂ) |
| 36 | 35 | 3ad2ant3 1136 |
. . . . . . . 8
⊢ ((𝑗 ∈ ℝ ∧ 𝑘 ∈ ℝ ∧ 𝑙 ∈ ℝ) → 𝑙 ∈
ℂ) |
| 37 | 32, 34, 36 | mulassd 11284 |
. . . . . . 7
⊢ ((𝑗 ∈ ℝ ∧ 𝑘 ∈ ℝ ∧ 𝑙 ∈ ℝ) → ((𝑗 · 𝑘) · 𝑙) = (𝑗 · (𝑘 · 𝑙))) |
| 38 | 37 | adantl 481 |
. . . . . 6
⊢ (((𝜑 ∧ 𝐿 < 𝑀) ∧ (𝑗 ∈ ℝ ∧ 𝑘 ∈ ℝ ∧ 𝑙 ∈ ℝ)) → ((𝑗 · 𝑘) · 𝑙) = (𝑗 · (𝑘 · 𝑙))) |
| 39 | | simpr 484 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝐿 < 𝑀) → 𝐿 < 𝑀) |
| 40 | 39 | olcd 875 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝐿 < 𝑀) → (𝑀 < 𝐿 ∨ 𝐿 < 𝑀)) |
| 41 | 20, 16 | jca 511 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑀 ∈ ℝ ∧ 𝐿 ∈ ℝ)) |
| 42 | 41 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝐿 < 𝑀) → (𝑀 ∈ ℝ ∧ 𝐿 ∈ ℝ)) |
| 43 | | lttri2 11343 |
. . . . . . . . . 10
⊢ ((𝑀 ∈ ℝ ∧ 𝐿 ∈ ℝ) → (𝑀 ≠ 𝐿 ↔ (𝑀 < 𝐿 ∨ 𝐿 < 𝑀))) |
| 44 | 42, 43 | syl 17 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝐿 < 𝑀) → (𝑀 ≠ 𝐿 ↔ (𝑀 < 𝐿 ∨ 𝐿 < 𝑀))) |
| 45 | 40, 44 | mpbird 257 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝐿 < 𝑀) → 𝑀 ≠ 𝐿) |
| 46 | 45 | neneqd 2945 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐿 < 𝑀) → ¬ 𝑀 = 𝐿) |
| 47 | | uzp1 12919 |
. . . . . . . . . 10
⊢ (𝑀 ∈
(ℤ≥‘𝐿) → (𝑀 = 𝐿 ∨ 𝑀 ∈ (ℤ≥‘(𝐿 + 1)))) |
| 48 | 17, 47 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → (𝑀 = 𝐿 ∨ 𝑀 ∈ (ℤ≥‘(𝐿 + 1)))) |
| 49 | 48 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝐿 < 𝑀) → (𝑀 = 𝐿 ∨ 𝑀 ∈ (ℤ≥‘(𝐿 + 1)))) |
| 50 | 49 | ord 865 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐿 < 𝑀) → (¬ 𝑀 = 𝐿 → 𝑀 ∈ (ℤ≥‘(𝐿 + 1)))) |
| 51 | 46, 50 | mpd 15 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐿 < 𝑀) → 𝑀 ∈ (ℤ≥‘(𝐿 + 1))) |
| 52 | 6 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐿 < 𝑀) → 𝐿 ∈ ℤ) |
| 53 | | uzid 12893 |
. . . . . . 7
⊢ (𝐿 ∈ ℤ → 𝐿 ∈
(ℤ≥‘𝐿)) |
| 54 | 52, 53 | syl 17 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐿 < 𝑀) → 𝐿 ∈ (ℤ≥‘𝐿)) |
| 55 | | fmul01lt1lem1.2 |
. . . . . . . . . 10
⊢
Ⅎ𝑖𝜑 |
| 56 | | nfv 1914 |
. . . . . . . . . 10
⊢
Ⅎ𝑖 𝑗 ∈ (𝐿...𝑀) |
| 57 | 55, 56 | nfan 1899 |
. . . . . . . . 9
⊢
Ⅎ𝑖(𝜑 ∧ 𝑗 ∈ (𝐿...𝑀)) |
| 58 | | fmul01lt1lem1.1 |
. . . . . . . . . . 11
⊢
Ⅎ𝑖𝐵 |
| 59 | | nfcv 2905 |
. . . . . . . . . . 11
⊢
Ⅎ𝑖𝑗 |
| 60 | 58, 59 | nffv 6916 |
. . . . . . . . . 10
⊢
Ⅎ𝑖(𝐵‘𝑗) |
| 61 | 60 | nfel1 2922 |
. . . . . . . . 9
⊢
Ⅎ𝑖(𝐵‘𝑗) ∈ ℝ |
| 62 | 57, 61 | nfim 1896 |
. . . . . . . 8
⊢
Ⅎ𝑖((𝜑 ∧ 𝑗 ∈ (𝐿...𝑀)) → (𝐵‘𝑗) ∈ ℝ) |
| 63 | | eleq1 2829 |
. . . . . . . . . 10
⊢ (𝑖 = 𝑗 → (𝑖 ∈ (𝐿...𝑀) ↔ 𝑗 ∈ (𝐿...𝑀))) |
| 64 | 63 | anbi2d 630 |
. . . . . . . . 9
⊢ (𝑖 = 𝑗 → ((𝜑 ∧ 𝑖 ∈ (𝐿...𝑀)) ↔ (𝜑 ∧ 𝑗 ∈ (𝐿...𝑀)))) |
| 65 | | fveq2 6906 |
. . . . . . . . . 10
⊢ (𝑖 = 𝑗 → (𝐵‘𝑖) = (𝐵‘𝑗)) |
| 66 | 65 | eleq1d 2826 |
. . . . . . . . 9
⊢ (𝑖 = 𝑗 → ((𝐵‘𝑖) ∈ ℝ ↔ (𝐵‘𝑗) ∈ ℝ)) |
| 67 | 64, 66 | imbi12d 344 |
. . . . . . . 8
⊢ (𝑖 = 𝑗 → (((𝜑 ∧ 𝑖 ∈ (𝐿...𝑀)) → (𝐵‘𝑖) ∈ ℝ) ↔ ((𝜑 ∧ 𝑗 ∈ (𝐿...𝑀)) → (𝐵‘𝑗) ∈ ℝ))) |
| 68 | | fmul01lt1lem1.6 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 ∈ (𝐿...𝑀)) → (𝐵‘𝑖) ∈ ℝ) |
| 69 | 62, 67, 68 | chvarfv 2240 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑗 ∈ (𝐿...𝑀)) → (𝐵‘𝑗) ∈ ℝ) |
| 70 | 69 | adantlr 715 |
. . . . . 6
⊢ (((𝜑 ∧ 𝐿 < 𝑀) ∧ 𝑗 ∈ (𝐿...𝑀)) → (𝐵‘𝑗) ∈ ℝ) |
| 71 | 30, 38, 51, 54, 70 | seqsplit 14076 |
. . . . 5
⊢ ((𝜑 ∧ 𝐿 < 𝑀) → (seq𝐿( · , 𝐵)‘𝑀) = ((seq𝐿( · , 𝐵)‘𝐿) · (seq(𝐿 + 1)( · , 𝐵)‘𝑀))) |
| 72 | | eluzfz1 13571 |
. . . . . . . . . . 11
⊢ (𝑀 ∈
(ℤ≥‘𝐿) → 𝐿 ∈ (𝐿...𝑀)) |
| 73 | 17, 72 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐿 ∈ (𝐿...𝑀)) |
| 74 | 73 | ancli 548 |
. . . . . . . . . 10
⊢ (𝜑 → (𝜑 ∧ 𝐿 ∈ (𝐿...𝑀))) |
| 75 | | nfv 1914 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑖 𝐿 ∈ (𝐿...𝑀) |
| 76 | 55, 75 | nfan 1899 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑖(𝜑 ∧ 𝐿 ∈ (𝐿...𝑀)) |
| 77 | | nfcv 2905 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑖𝐿 |
| 78 | 58, 77 | nffv 6916 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑖(𝐵‘𝐿) |
| 79 | 78 | nfel1 2922 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑖(𝐵‘𝐿) ∈ ℝ |
| 80 | 76, 79 | nfim 1896 |
. . . . . . . . . . 11
⊢
Ⅎ𝑖((𝜑 ∧ 𝐿 ∈ (𝐿...𝑀)) → (𝐵‘𝐿) ∈ ℝ) |
| 81 | | eleq1 2829 |
. . . . . . . . . . . . 13
⊢ (𝑖 = 𝐿 → (𝑖 ∈ (𝐿...𝑀) ↔ 𝐿 ∈ (𝐿...𝑀))) |
| 82 | 81 | anbi2d 630 |
. . . . . . . . . . . 12
⊢ (𝑖 = 𝐿 → ((𝜑 ∧ 𝑖 ∈ (𝐿...𝑀)) ↔ (𝜑 ∧ 𝐿 ∈ (𝐿...𝑀)))) |
| 83 | | fveq2 6906 |
. . . . . . . . . . . . 13
⊢ (𝑖 = 𝐿 → (𝐵‘𝑖) = (𝐵‘𝐿)) |
| 84 | 83 | eleq1d 2826 |
. . . . . . . . . . . 12
⊢ (𝑖 = 𝐿 → ((𝐵‘𝑖) ∈ ℝ ↔ (𝐵‘𝐿) ∈ ℝ)) |
| 85 | 82, 84 | imbi12d 344 |
. . . . . . . . . . 11
⊢ (𝑖 = 𝐿 → (((𝜑 ∧ 𝑖 ∈ (𝐿...𝑀)) → (𝐵‘𝑖) ∈ ℝ) ↔ ((𝜑 ∧ 𝐿 ∈ (𝐿...𝑀)) → (𝐵‘𝐿) ∈ ℝ))) |
| 86 | 80, 85, 68 | vtoclg1f 3570 |
. . . . . . . . . 10
⊢ (𝐿 ∈ (𝐿...𝑀) → ((𝜑 ∧ 𝐿 ∈ (𝐿...𝑀)) → (𝐵‘𝐿) ∈ ℝ)) |
| 87 | 73, 74, 86 | sylc 65 |
. . . . . . . . 9
⊢ (𝜑 → (𝐵‘𝐿) ∈ ℝ) |
| 88 | 8, 87 | eqeltrd 2841 |
. . . . . . . 8
⊢ (𝜑 → (seq𝐿( · , 𝐵)‘𝐿) ∈ ℝ) |
| 89 | 88 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐿 < 𝑀) → (seq𝐿( · , 𝐵)‘𝐿) ∈ ℝ) |
| 90 | 6 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ ((𝐿 + 1)...𝑀)) → 𝐿 ∈ ℤ) |
| 91 | 19 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ ((𝐿 + 1)...𝑀)) → 𝑀 ∈ ℤ) |
| 92 | | elfzelz 13564 |
. . . . . . . . . . . 12
⊢ (𝑗 ∈ ((𝐿 + 1)...𝑀) → 𝑗 ∈ ℤ) |
| 93 | 92 | adantl 481 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ ((𝐿 + 1)...𝑀)) → 𝑗 ∈ ℤ) |
| 94 | 16 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑗 ∈ ((𝐿 + 1)...𝑀)) → 𝐿 ∈ ℝ) |
| 95 | | peano2re 11434 |
. . . . . . . . . . . . . 14
⊢ (𝐿 ∈ ℝ → (𝐿 + 1) ∈
ℝ) |
| 96 | 16, 95 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝐿 + 1) ∈ ℝ) |
| 97 | 96 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑗 ∈ ((𝐿 + 1)...𝑀)) → (𝐿 + 1) ∈ ℝ) |
| 98 | 92 | zred 12722 |
. . . . . . . . . . . . 13
⊢ (𝑗 ∈ ((𝐿 + 1)...𝑀) → 𝑗 ∈ ℝ) |
| 99 | 98 | adantl 481 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑗 ∈ ((𝐿 + 1)...𝑀)) → 𝑗 ∈ ℝ) |
| 100 | 16 | lep1d 12199 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐿 ≤ (𝐿 + 1)) |
| 101 | 100 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑗 ∈ ((𝐿 + 1)...𝑀)) → 𝐿 ≤ (𝐿 + 1)) |
| 102 | | elfzle1 13567 |
. . . . . . . . . . . . 13
⊢ (𝑗 ∈ ((𝐿 + 1)...𝑀) → (𝐿 + 1) ≤ 𝑗) |
| 103 | 102 | adantl 481 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑗 ∈ ((𝐿 + 1)...𝑀)) → (𝐿 + 1) ≤ 𝑗) |
| 104 | 94, 97, 99, 101, 103 | letrd 11418 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ ((𝐿 + 1)...𝑀)) → 𝐿 ≤ 𝑗) |
| 105 | | elfzle2 13568 |
. . . . . . . . . . . 12
⊢ (𝑗 ∈ ((𝐿 + 1)...𝑀) → 𝑗 ≤ 𝑀) |
| 106 | 105 | adantl 481 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ ((𝐿 + 1)...𝑀)) → 𝑗 ≤ 𝑀) |
| 107 | 90, 91, 93, 104, 106 | elfzd 13555 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ ((𝐿 + 1)...𝑀)) → 𝑗 ∈ (𝐿...𝑀)) |
| 108 | 107, 69 | syldan 591 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑗 ∈ ((𝐿 + 1)...𝑀)) → (𝐵‘𝑗) ∈ ℝ) |
| 109 | 108 | adantlr 715 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝐿 < 𝑀) ∧ 𝑗 ∈ ((𝐿 + 1)...𝑀)) → (𝐵‘𝑗) ∈ ℝ) |
| 110 | 51, 109, 30 | seqcl 14063 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐿 < 𝑀) → (seq(𝐿 + 1)( · , 𝐵)‘𝑀) ∈ ℝ) |
| 111 | 89, 110 | remulcld 11291 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐿 < 𝑀) → ((seq𝐿( · , 𝐵)‘𝐿) · (seq(𝐿 + 1)( · , 𝐵)‘𝑀)) ∈ ℝ) |
| 112 | | fmul01lt1lem1.9 |
. . . . . . . 8
⊢ (𝜑 → 𝐸 ∈
ℝ+) |
| 113 | 112 | rpred 13077 |
. . . . . . 7
⊢ (𝜑 → 𝐸 ∈ ℝ) |
| 114 | 113 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐿 < 𝑀) → 𝐸 ∈ ℝ) |
| 115 | | 1red 11262 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝐿 < 𝑀) → 1 ∈ ℝ) |
| 116 | | nfcv 2905 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑖0 |
| 117 | | nfcv 2905 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑖
≤ |
| 118 | 116, 117,
78 | nfbr 5190 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑖0 ≤
(𝐵‘𝐿) |
| 119 | 76, 118 | nfim 1896 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑖((𝜑 ∧ 𝐿 ∈ (𝐿...𝑀)) → 0 ≤ (𝐵‘𝐿)) |
| 120 | 83 | breq2d 5155 |
. . . . . . . . . . . . 13
⊢ (𝑖 = 𝐿 → (0 ≤ (𝐵‘𝑖) ↔ 0 ≤ (𝐵‘𝐿))) |
| 121 | 82, 120 | imbi12d 344 |
. . . . . . . . . . . 12
⊢ (𝑖 = 𝐿 → (((𝜑 ∧ 𝑖 ∈ (𝐿...𝑀)) → 0 ≤ (𝐵‘𝑖)) ↔ ((𝜑 ∧ 𝐿 ∈ (𝐿...𝑀)) → 0 ≤ (𝐵‘𝐿)))) |
| 122 | | fmul01lt1lem1.7 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑖 ∈ (𝐿...𝑀)) → 0 ≤ (𝐵‘𝑖)) |
| 123 | 119, 121,
122 | vtoclg1f 3570 |
. . . . . . . . . . 11
⊢ (𝐿 ∈ (𝐿...𝑀) → ((𝜑 ∧ 𝐿 ∈ (𝐿...𝑀)) → 0 ≤ (𝐵‘𝐿))) |
| 124 | 73, 74, 123 | sylc 65 |
. . . . . . . . . 10
⊢ (𝜑 → 0 ≤ (𝐵‘𝐿)) |
| 125 | 124, 8 | breqtrrd 5171 |
. . . . . . . . 9
⊢ (𝜑 → 0 ≤ (seq𝐿( · , 𝐵)‘𝐿)) |
| 126 | 125 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝐿 < 𝑀) → 0 ≤ (seq𝐿( · , 𝐵)‘𝐿)) |
| 127 | | nfv 1914 |
. . . . . . . . . . 11
⊢
Ⅎ𝑖 𝐿 < 𝑀 |
| 128 | 55, 127 | nfan 1899 |
. . . . . . . . . 10
⊢
Ⅎ𝑖(𝜑 ∧ 𝐿 < 𝑀) |
| 129 | | eqid 2737 |
. . . . . . . . . 10
⊢ seq(𝐿 + 1)( · , 𝐵) = seq(𝐿 + 1)( · , 𝐵) |
| 130 | 6 | peano2zd 12725 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝐿 + 1) ∈ ℤ) |
| 131 | 130 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝐿 < 𝑀) → (𝐿 + 1) ∈ ℤ) |
| 132 | 16 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝐿 < 𝑀) → 𝐿 ∈ ℝ) |
| 133 | 132, 39 | gtned 11396 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝐿 < 𝑀) → 𝑀 ≠ 𝐿) |
| 134 | 133 | neneqd 2945 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝐿 < 𝑀) → ¬ 𝑀 = 𝐿) |
| 135 | 17 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝐿 < 𝑀) → 𝑀 ∈ (ℤ≥‘𝐿)) |
| 136 | 135, 47 | syl 17 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝐿 < 𝑀) → (𝑀 = 𝐿 ∨ 𝑀 ∈ (ℤ≥‘(𝐿 + 1)))) |
| 137 | | orel1 889 |
. . . . . . . . . . 11
⊢ (¬
𝑀 = 𝐿 → ((𝑀 = 𝐿 ∨ 𝑀 ∈ (ℤ≥‘(𝐿 + 1))) → 𝑀 ∈ (ℤ≥‘(𝐿 + 1)))) |
| 138 | 134, 136,
137 | sylc 65 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝐿 < 𝑀) → 𝑀 ∈ (ℤ≥‘(𝐿 + 1))) |
| 139 | 19 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝐿 < 𝑀) → 𝑀 ∈ ℤ) |
| 140 | | zltp1le 12667 |
. . . . . . . . . . . . 13
⊢ ((𝐿 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝐿 < 𝑀 ↔ (𝐿 + 1) ≤ 𝑀)) |
| 141 | 52, 139, 140 | syl2anc 584 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝐿 < 𝑀) → (𝐿 < 𝑀 ↔ (𝐿 + 1) ≤ 𝑀)) |
| 142 | 39, 141 | mpbid 232 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝐿 < 𝑀) → (𝐿 + 1) ≤ 𝑀) |
| 143 | 20 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝐿 < 𝑀) → 𝑀 ∈ ℝ) |
| 144 | 143 | leidd 11829 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝐿 < 𝑀) → 𝑀 ≤ 𝑀) |
| 145 | 131, 139,
139, 142, 144 | elfzd 13555 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝐿 < 𝑀) → 𝑀 ∈ ((𝐿 + 1)...𝑀)) |
| 146 | 6 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑖 ∈ ((𝐿 + 1)...𝑀)) → 𝐿 ∈ ℤ) |
| 147 | 19 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑖 ∈ ((𝐿 + 1)...𝑀)) → 𝑀 ∈ ℤ) |
| 148 | | elfzelz 13564 |
. . . . . . . . . . . . . 14
⊢ (𝑖 ∈ ((𝐿 + 1)...𝑀) → 𝑖 ∈ ℤ) |
| 149 | 148 | adantl 481 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑖 ∈ ((𝐿 + 1)...𝑀)) → 𝑖 ∈ ℤ) |
| 150 | 16 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑖 ∈ ((𝐿 + 1)...𝑀)) → 𝐿 ∈ ℝ) |
| 151 | 150, 95 | syl 17 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑖 ∈ ((𝐿 + 1)...𝑀)) → (𝐿 + 1) ∈ ℝ) |
| 152 | 148 | zred 12722 |
. . . . . . . . . . . . . . 15
⊢ (𝑖 ∈ ((𝐿 + 1)...𝑀) → 𝑖 ∈ ℝ) |
| 153 | 152 | adantl 481 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑖 ∈ ((𝐿 + 1)...𝑀)) → 𝑖 ∈ ℝ) |
| 154 | 100 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑖 ∈ ((𝐿 + 1)...𝑀)) → 𝐿 ≤ (𝐿 + 1)) |
| 155 | | elfzle1 13567 |
. . . . . . . . . . . . . . 15
⊢ (𝑖 ∈ ((𝐿 + 1)...𝑀) → (𝐿 + 1) ≤ 𝑖) |
| 156 | 155 | adantl 481 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑖 ∈ ((𝐿 + 1)...𝑀)) → (𝐿 + 1) ≤ 𝑖) |
| 157 | 150, 151,
153, 154, 156 | letrd 11418 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑖 ∈ ((𝐿 + 1)...𝑀)) → 𝐿 ≤ 𝑖) |
| 158 | | elfzle2 13568 |
. . . . . . . . . . . . . 14
⊢ (𝑖 ∈ ((𝐿 + 1)...𝑀) → 𝑖 ≤ 𝑀) |
| 159 | 158 | adantl 481 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑖 ∈ ((𝐿 + 1)...𝑀)) → 𝑖 ≤ 𝑀) |
| 160 | 146, 147,
149, 157, 159 | elfzd 13555 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑖 ∈ ((𝐿 + 1)...𝑀)) → 𝑖 ∈ (𝐿...𝑀)) |
| 161 | 160, 68 | syldan 591 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑖 ∈ ((𝐿 + 1)...𝑀)) → (𝐵‘𝑖) ∈ ℝ) |
| 162 | 161 | adantlr 715 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝐿 < 𝑀) ∧ 𝑖 ∈ ((𝐿 + 1)...𝑀)) → (𝐵‘𝑖) ∈ ℝ) |
| 163 | | simpll 767 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝐿 < 𝑀) ∧ 𝑖 ∈ ((𝐿 + 1)...𝑀)) → 𝜑) |
| 164 | 6 | ad2antrr 726 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝐿 < 𝑀) ∧ 𝑖 ∈ ((𝐿 + 1)...𝑀)) → 𝐿 ∈ ℤ) |
| 165 | 19 | ad2antrr 726 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝐿 < 𝑀) ∧ 𝑖 ∈ ((𝐿 + 1)...𝑀)) → 𝑀 ∈ ℤ) |
| 166 | 148 | adantl 481 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝐿 < 𝑀) ∧ 𝑖 ∈ ((𝐿 + 1)...𝑀)) → 𝑖 ∈ ℤ) |
| 167 | 16 | ad2antrr 726 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝐿 < 𝑀) ∧ 𝑖 ∈ ((𝐿 + 1)...𝑀)) → 𝐿 ∈ ℝ) |
| 168 | 96 | ad2antrr 726 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝐿 < 𝑀) ∧ 𝑖 ∈ ((𝐿 + 1)...𝑀)) → (𝐿 + 1) ∈ ℝ) |
| 169 | 152 | adantl 481 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝐿 < 𝑀) ∧ 𝑖 ∈ ((𝐿 + 1)...𝑀)) → 𝑖 ∈ ℝ) |
| 170 | 100 | ad2antrr 726 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝐿 < 𝑀) ∧ 𝑖 ∈ ((𝐿 + 1)...𝑀)) → 𝐿 ≤ (𝐿 + 1)) |
| 171 | 155 | adantl 481 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝐿 < 𝑀) ∧ 𝑖 ∈ ((𝐿 + 1)...𝑀)) → (𝐿 + 1) ≤ 𝑖) |
| 172 | 167, 168,
169, 170, 171 | letrd 11418 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝐿 < 𝑀) ∧ 𝑖 ∈ ((𝐿 + 1)...𝑀)) → 𝐿 ≤ 𝑖) |
| 173 | 158 | adantl 481 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝐿 < 𝑀) ∧ 𝑖 ∈ ((𝐿 + 1)...𝑀)) → 𝑖 ≤ 𝑀) |
| 174 | 164, 165,
166, 172, 173 | elfzd 13555 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝐿 < 𝑀) ∧ 𝑖 ∈ ((𝐿 + 1)...𝑀)) → 𝑖 ∈ (𝐿...𝑀)) |
| 175 | 163, 174,
122 | syl2anc 584 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝐿 < 𝑀) ∧ 𝑖 ∈ ((𝐿 + 1)...𝑀)) → 0 ≤ (𝐵‘𝑖)) |
| 176 | | fmul01lt1lem1.8 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑖 ∈ (𝐿...𝑀)) → (𝐵‘𝑖) ≤ 1) |
| 177 | 163, 174,
176 | syl2anc 584 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝐿 < 𝑀) ∧ 𝑖 ∈ ((𝐿 + 1)...𝑀)) → (𝐵‘𝑖) ≤ 1) |
| 178 | 58, 128, 129, 131, 138, 145, 162, 175, 177 | fmul01 45595 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝐿 < 𝑀) → (0 ≤ (seq(𝐿 + 1)( · , 𝐵)‘𝑀) ∧ (seq(𝐿 + 1)( · , 𝐵)‘𝑀) ≤ 1)) |
| 179 | 178 | simprd 495 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝐿 < 𝑀) → (seq(𝐿 + 1)( · , 𝐵)‘𝑀) ≤ 1) |
| 180 | 110, 115,
89, 126, 179 | lemul2ad 12208 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐿 < 𝑀) → ((seq𝐿( · , 𝐵)‘𝐿) · (seq(𝐿 + 1)( · , 𝐵)‘𝑀)) ≤ ((seq𝐿( · , 𝐵)‘𝐿) · 1)) |
| 181 | 88 | recnd 11289 |
. . . . . . . . 9
⊢ (𝜑 → (seq𝐿( · , 𝐵)‘𝐿) ∈ ℂ) |
| 182 | 181 | mulridd 11278 |
. . . . . . . 8
⊢ (𝜑 → ((seq𝐿( · , 𝐵)‘𝐿) · 1) = (seq𝐿( · , 𝐵)‘𝐿)) |
| 183 | 182 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐿 < 𝑀) → ((seq𝐿( · , 𝐵)‘𝐿) · 1) = (seq𝐿( · , 𝐵)‘𝐿)) |
| 184 | 180, 183 | breqtrd 5169 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐿 < 𝑀) → ((seq𝐿( · , 𝐵)‘𝐿) · (seq(𝐿 + 1)( · , 𝐵)‘𝑀)) ≤ (seq𝐿( · , 𝐵)‘𝐿)) |
| 185 | 8, 11 | eqbrtrd 5165 |
. . . . . . 7
⊢ (𝜑 → (seq𝐿( · , 𝐵)‘𝐿) < 𝐸) |
| 186 | 185 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐿 < 𝑀) → (seq𝐿( · , 𝐵)‘𝐿) < 𝐸) |
| 187 | 111, 89, 114, 184, 186 | lelttrd 11419 |
. . . . 5
⊢ ((𝜑 ∧ 𝐿 < 𝑀) → ((seq𝐿( · , 𝐵)‘𝐿) · (seq(𝐿 + 1)( · , 𝐵)‘𝑀)) < 𝐸) |
| 188 | 71, 187 | eqbrtrd 5165 |
. . . 4
⊢ ((𝜑 ∧ 𝐿 < 𝑀) → (seq𝐿( · , 𝐵)‘𝑀) < 𝐸) |
| 189 | 28, 188 | eqbrtrid 5178 |
. . 3
⊢ ((𝜑 ∧ 𝐿 < 𝑀) → (𝐴‘𝑀) < 𝐸) |
| 190 | 27, 189 | syldan 591 |
. 2
⊢ ((𝜑 ∧ ¬ 𝑀 = 𝐿) → (𝐴‘𝑀) < 𝐸) |
| 191 | 13, 190 | pm2.61dan 813 |
1
⊢ (𝜑 → (𝐴‘𝑀) < 𝐸) |