MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  zringlpirlem3 Structured version   Visualization version   GIF version

Theorem zringlpirlem3 21498
Description: Lemma for zringlpir 21501. All elements of a nonzero ideal of integers are divided by the least one. (Contributed by Stefan O'Rear, 3-Jan-2015.) (Revised by AV, 9-Jun-2019.) (Proof shortened by AV, 27-Sep-2020.)
Hypotheses
Ref Expression
zringlpirlem.i (𝜑𝐼 ∈ (LIdeal‘ℤring))
zringlpirlem.n0 (𝜑𝐼 ≠ {0})
zringlpirlem.g 𝐺 = inf((𝐼 ∩ ℕ), ℝ, < )
zringlpirlem.x (𝜑𝑋𝐼)
Assertion
Ref Expression
zringlpirlem3 (𝜑𝐺𝑋)

Proof of Theorem zringlpirlem3
StepHypRef Expression
1 zringlpirlem.i . . . . . . . . 9 (𝜑𝐼 ∈ (LIdeal‘ℤring))
2 zringbas 21487 . . . . . . . . . 10 ℤ = (Base‘ℤring)
3 eqid 2740 . . . . . . . . . 10 (LIdeal‘ℤring) = (LIdeal‘ℤring)
42, 3lidlss 21245 . . . . . . . . 9 (𝐼 ∈ (LIdeal‘ℤring) → 𝐼 ⊆ ℤ)
51, 4syl 17 . . . . . . . 8 (𝜑𝐼 ⊆ ℤ)
6 zringlpirlem.x . . . . . . . 8 (𝜑𝑋𝐼)
75, 6sseldd 4009 . . . . . . 7 (𝜑𝑋 ∈ ℤ)
87zred 12747 . . . . . 6 (𝜑𝑋 ∈ ℝ)
9 zringlpirlem.g . . . . . . . . 9 𝐺 = inf((𝐼 ∩ ℕ), ℝ, < )
10 inss2 4259 . . . . . . . . . . 11 (𝐼 ∩ ℕ) ⊆ ℕ
11 nnuz 12946 . . . . . . . . . . 11 ℕ = (ℤ‘1)
1210, 11sseqtri 4045 . . . . . . . . . 10 (𝐼 ∩ ℕ) ⊆ (ℤ‘1)
13 zringlpirlem.n0 . . . . . . . . . . 11 (𝜑𝐼 ≠ {0})
141, 13zringlpirlem1 21496 . . . . . . . . . 10 (𝜑 → (𝐼 ∩ ℕ) ≠ ∅)
15 infssuzcl 12997 . . . . . . . . . 10 (((𝐼 ∩ ℕ) ⊆ (ℤ‘1) ∧ (𝐼 ∩ ℕ) ≠ ∅) → inf((𝐼 ∩ ℕ), ℝ, < ) ∈ (𝐼 ∩ ℕ))
1612, 14, 15sylancr 586 . . . . . . . . 9 (𝜑 → inf((𝐼 ∩ ℕ), ℝ, < ) ∈ (𝐼 ∩ ℕ))
179, 16eqeltrid 2848 . . . . . . . 8 (𝜑𝐺 ∈ (𝐼 ∩ ℕ))
1817elin2d 4228 . . . . . . 7 (𝜑𝐺 ∈ ℕ)
1918nnrpd 13097 . . . . . 6 (𝜑𝐺 ∈ ℝ+)
20 modlt 13931 . . . . . 6 ((𝑋 ∈ ℝ ∧ 𝐺 ∈ ℝ+) → (𝑋 mod 𝐺) < 𝐺)
218, 19, 20syl2anc 583 . . . . 5 (𝜑 → (𝑋 mod 𝐺) < 𝐺)
227, 18zmodcld 13943 . . . . . . 7 (𝜑 → (𝑋 mod 𝐺) ∈ ℕ0)
2322nn0red 12614 . . . . . 6 (𝜑 → (𝑋 mod 𝐺) ∈ ℝ)
2418nnred 12308 . . . . . 6 (𝜑𝐺 ∈ ℝ)
2523, 24ltnled 11437 . . . . 5 (𝜑 → ((𝑋 mod 𝐺) < 𝐺 ↔ ¬ 𝐺 ≤ (𝑋 mod 𝐺)))
2621, 25mpbid 232 . . . 4 (𝜑 → ¬ 𝐺 ≤ (𝑋 mod 𝐺))
277zcnd 12748 . . . . . . . . . . 11 (𝜑𝑋 ∈ ℂ)
2818nncnd 12309 . . . . . . . . . . . 12 (𝜑𝐺 ∈ ℂ)
298, 18nndivred 12347 . . . . . . . . . . . . . 14 (𝜑 → (𝑋 / 𝐺) ∈ ℝ)
3029flcld 13849 . . . . . . . . . . . . 13 (𝜑 → (⌊‘(𝑋 / 𝐺)) ∈ ℤ)
3130zcnd 12748 . . . . . . . . . . . 12 (𝜑 → (⌊‘(𝑋 / 𝐺)) ∈ ℂ)
3228, 31mulcld 11310 . . . . . . . . . . 11 (𝜑 → (𝐺 · (⌊‘(𝑋 / 𝐺))) ∈ ℂ)
3327, 32negsubd 11653 . . . . . . . . . 10 (𝜑 → (𝑋 + -(𝐺 · (⌊‘(𝑋 / 𝐺)))) = (𝑋 − (𝐺 · (⌊‘(𝑋 / 𝐺)))))
3430znegcld 12749 . . . . . . . . . . . . . 14 (𝜑 → -(⌊‘(𝑋 / 𝐺)) ∈ ℤ)
3534zcnd 12748 . . . . . . . . . . . . 13 (𝜑 → -(⌊‘(𝑋 / 𝐺)) ∈ ℂ)
3635, 28mulcomd 11311 . . . . . . . . . . . 12 (𝜑 → (-(⌊‘(𝑋 / 𝐺)) · 𝐺) = (𝐺 · -(⌊‘(𝑋 / 𝐺))))
3728, 31mulneg2d 11744 . . . . . . . . . . . 12 (𝜑 → (𝐺 · -(⌊‘(𝑋 / 𝐺))) = -(𝐺 · (⌊‘(𝑋 / 𝐺))))
3836, 37eqtrd 2780 . . . . . . . . . . 11 (𝜑 → (-(⌊‘(𝑋 / 𝐺)) · 𝐺) = -(𝐺 · (⌊‘(𝑋 / 𝐺))))
3938oveq2d 7464 . . . . . . . . . 10 (𝜑 → (𝑋 + (-(⌊‘(𝑋 / 𝐺)) · 𝐺)) = (𝑋 + -(𝐺 · (⌊‘(𝑋 / 𝐺)))))
40 modval 13922 . . . . . . . . . . 11 ((𝑋 ∈ ℝ ∧ 𝐺 ∈ ℝ+) → (𝑋 mod 𝐺) = (𝑋 − (𝐺 · (⌊‘(𝑋 / 𝐺)))))
418, 19, 40syl2anc 583 . . . . . . . . . 10 (𝜑 → (𝑋 mod 𝐺) = (𝑋 − (𝐺 · (⌊‘(𝑋 / 𝐺)))))
4233, 39, 413eqtr4rd 2791 . . . . . . . . 9 (𝜑 → (𝑋 mod 𝐺) = (𝑋 + (-(⌊‘(𝑋 / 𝐺)) · 𝐺)))
43 zringring 21483 . . . . . . . . . . 11 ring ∈ Ring
4443a1i 11 . . . . . . . . . 10 (𝜑 → ℤring ∈ Ring)
451, 13, 9zringlpirlem2 21497 . . . . . . . . . . 11 (𝜑𝐺𝐼)
46 zringmulr 21491 . . . . . . . . . . . 12 · = (.r‘ℤring)
473, 2, 46lidlmcl 21258 . . . . . . . . . . 11 (((ℤring ∈ Ring ∧ 𝐼 ∈ (LIdeal‘ℤring)) ∧ (-(⌊‘(𝑋 / 𝐺)) ∈ ℤ ∧ 𝐺𝐼)) → (-(⌊‘(𝑋 / 𝐺)) · 𝐺) ∈ 𝐼)
4844, 1, 34, 45, 47syl22anc 838 . . . . . . . . . 10 (𝜑 → (-(⌊‘(𝑋 / 𝐺)) · 𝐺) ∈ 𝐼)
49 zringplusg 21488 . . . . . . . . . . 11 + = (+g‘ℤring)
503, 49lidlacl 21254 . . . . . . . . . 10 (((ℤring ∈ Ring ∧ 𝐼 ∈ (LIdeal‘ℤring)) ∧ (𝑋𝐼 ∧ (-(⌊‘(𝑋 / 𝐺)) · 𝐺) ∈ 𝐼)) → (𝑋 + (-(⌊‘(𝑋 / 𝐺)) · 𝐺)) ∈ 𝐼)
5144, 1, 6, 48, 50syl22anc 838 . . . . . . . . 9 (𝜑 → (𝑋 + (-(⌊‘(𝑋 / 𝐺)) · 𝐺)) ∈ 𝐼)
5242, 51eqeltrd 2844 . . . . . . . 8 (𝜑 → (𝑋 mod 𝐺) ∈ 𝐼)
5352adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑋 mod 𝐺) ∈ ℕ) → (𝑋 mod 𝐺) ∈ 𝐼)
54 simpr 484 . . . . . . 7 ((𝜑 ∧ (𝑋 mod 𝐺) ∈ ℕ) → (𝑋 mod 𝐺) ∈ ℕ)
5553, 54elind 4223 . . . . . 6 ((𝜑 ∧ (𝑋 mod 𝐺) ∈ ℕ) → (𝑋 mod 𝐺) ∈ (𝐼 ∩ ℕ))
56 infssuzle 12996 . . . . . 6 (((𝐼 ∩ ℕ) ⊆ (ℤ‘1) ∧ (𝑋 mod 𝐺) ∈ (𝐼 ∩ ℕ)) → inf((𝐼 ∩ ℕ), ℝ, < ) ≤ (𝑋 mod 𝐺))
5712, 55, 56sylancr 586 . . . . 5 ((𝜑 ∧ (𝑋 mod 𝐺) ∈ ℕ) → inf((𝐼 ∩ ℕ), ℝ, < ) ≤ (𝑋 mod 𝐺))
589, 57eqbrtrid 5201 . . . 4 ((𝜑 ∧ (𝑋 mod 𝐺) ∈ ℕ) → 𝐺 ≤ (𝑋 mod 𝐺))
5926, 58mtand 815 . . 3 (𝜑 → ¬ (𝑋 mod 𝐺) ∈ ℕ)
60 elnn0 12555 . . . 4 ((𝑋 mod 𝐺) ∈ ℕ0 ↔ ((𝑋 mod 𝐺) ∈ ℕ ∨ (𝑋 mod 𝐺) = 0))
6122, 60sylib 218 . . 3 (𝜑 → ((𝑋 mod 𝐺) ∈ ℕ ∨ (𝑋 mod 𝐺) = 0))
62 orel1 887 . . 3 (¬ (𝑋 mod 𝐺) ∈ ℕ → (((𝑋 mod 𝐺) ∈ ℕ ∨ (𝑋 mod 𝐺) = 0) → (𝑋 mod 𝐺) = 0))
6359, 61, 62sylc 65 . 2 (𝜑 → (𝑋 mod 𝐺) = 0)
64 dvdsval3 16306 . . 3 ((𝐺 ∈ ℕ ∧ 𝑋 ∈ ℤ) → (𝐺𝑋 ↔ (𝑋 mod 𝐺) = 0))
6518, 7, 64syl2anc 583 . 2 (𝜑 → (𝐺𝑋 ↔ (𝑋 mod 𝐺) = 0))
6663, 65mpbird 257 1 (𝜑𝐺𝑋)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 846   = wceq 1537  wcel 2108  wne 2946  cin 3975  wss 3976  c0 4352  {csn 4648   class class class wbr 5166  cfv 6573  (class class class)co 7448  infcinf 9510  cr 11183  0cc0 11184  1c1 11185   + caddc 11187   · cmul 11189   < clt 11324  cle 11325  cmin 11520  -cneg 11521   / cdiv 11947  cn 12293  0cn0 12553  cz 12639  cuz 12903  +crp 13057  cfl 13841   mod cmo 13920  cdvds 16302  Ringcrg 20260  LIdealclidl 21239  ringczring 21480
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262  ax-addf 11263  ax-mulf 11264
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-sup 9511  df-inf 9512  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-z 12640  df-dec 12759  df-uz 12904  df-rp 13058  df-fz 13568  df-fl 13843  df-mod 13921  df-seq 14053  df-exp 14113  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-dvds 16303  df-struct 17194  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-starv 17326  df-sca 17327  df-vsca 17328  df-ip 17329  df-tset 17330  df-ple 17331  df-ds 17333  df-unif 17334  df-0g 17501  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-grp 18976  df-minusg 18977  df-sbg 18978  df-subg 19163  df-cmn 19824  df-abl 19825  df-mgp 20162  df-rng 20180  df-ur 20209  df-ring 20262  df-cring 20263  df-subrng 20572  df-subrg 20597  df-lmod 20882  df-lss 20953  df-sra 21195  df-rgmod 21196  df-lidl 21241  df-cnfld 21388  df-zring 21481
This theorem is referenced by:  zringlpir  21501
  Copyright terms: Public domain W3C validator