MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  zringlpirlem3 Structured version   Visualization version   GIF version

Theorem zringlpirlem3 20179
Description: Lemma for zringlpir 20182. All elements of a nonzero ideal of integers are divided by the least one. (Contributed by Stefan O'Rear, 3-Jan-2015.) (Revised by AV, 9-Jun-2019.) (Proof shortened by AV, 27-Sep-2020.)
Hypotheses
Ref Expression
zringlpirlem.i (𝜑𝐼 ∈ (LIdeal‘ℤring))
zringlpirlem.n0 (𝜑𝐼 ≠ {0})
zringlpirlem.g 𝐺 = inf((𝐼 ∩ ℕ), ℝ, < )
zringlpirlem.x (𝜑𝑋𝐼)
Assertion
Ref Expression
zringlpirlem3 (𝜑𝐺𝑋)

Proof of Theorem zringlpirlem3
StepHypRef Expression
1 zringlpirlem.i . . . . . . . . 9 (𝜑𝐼 ∈ (LIdeal‘ℤring))
2 zringbas 20169 . . . . . . . . . 10 ℤ = (Base‘ℤring)
3 eqid 2798 . . . . . . . . . 10 (LIdeal‘ℤring) = (LIdeal‘ℤring)
42, 3lidlss 19976 . . . . . . . . 9 (𝐼 ∈ (LIdeal‘ℤring) → 𝐼 ⊆ ℤ)
51, 4syl 17 . . . . . . . 8 (𝜑𝐼 ⊆ ℤ)
6 zringlpirlem.x . . . . . . . 8 (𝜑𝑋𝐼)
75, 6sseldd 3916 . . . . . . 7 (𝜑𝑋 ∈ ℤ)
87zred 12075 . . . . . 6 (𝜑𝑋 ∈ ℝ)
9 zringlpirlem.g . . . . . . . . 9 𝐺 = inf((𝐼 ∩ ℕ), ℝ, < )
10 inss2 4156 . . . . . . . . . . 11 (𝐼 ∩ ℕ) ⊆ ℕ
11 nnuz 12269 . . . . . . . . . . 11 ℕ = (ℤ‘1)
1210, 11sseqtri 3951 . . . . . . . . . 10 (𝐼 ∩ ℕ) ⊆ (ℤ‘1)
13 zringlpirlem.n0 . . . . . . . . . . 11 (𝜑𝐼 ≠ {0})
141, 13zringlpirlem1 20177 . . . . . . . . . 10 (𝜑 → (𝐼 ∩ ℕ) ≠ ∅)
15 infssuzcl 12320 . . . . . . . . . 10 (((𝐼 ∩ ℕ) ⊆ (ℤ‘1) ∧ (𝐼 ∩ ℕ) ≠ ∅) → inf((𝐼 ∩ ℕ), ℝ, < ) ∈ (𝐼 ∩ ℕ))
1612, 14, 15sylancr 590 . . . . . . . . 9 (𝜑 → inf((𝐼 ∩ ℕ), ℝ, < ) ∈ (𝐼 ∩ ℕ))
179, 16eqeltrid 2894 . . . . . . . 8 (𝜑𝐺 ∈ (𝐼 ∩ ℕ))
1817elin2d 4126 . . . . . . 7 (𝜑𝐺 ∈ ℕ)
1918nnrpd 12417 . . . . . 6 (𝜑𝐺 ∈ ℝ+)
20 modlt 13243 . . . . . 6 ((𝑋 ∈ ℝ ∧ 𝐺 ∈ ℝ+) → (𝑋 mod 𝐺) < 𝐺)
218, 19, 20syl2anc 587 . . . . 5 (𝜑 → (𝑋 mod 𝐺) < 𝐺)
227, 18zmodcld 13255 . . . . . . 7 (𝜑 → (𝑋 mod 𝐺) ∈ ℕ0)
2322nn0red 11944 . . . . . 6 (𝜑 → (𝑋 mod 𝐺) ∈ ℝ)
2418nnred 11640 . . . . . 6 (𝜑𝐺 ∈ ℝ)
2523, 24ltnled 10776 . . . . 5 (𝜑 → ((𝑋 mod 𝐺) < 𝐺 ↔ ¬ 𝐺 ≤ (𝑋 mod 𝐺)))
2621, 25mpbid 235 . . . 4 (𝜑 → ¬ 𝐺 ≤ (𝑋 mod 𝐺))
277zcnd 12076 . . . . . . . . . . 11 (𝜑𝑋 ∈ ℂ)
2818nncnd 11641 . . . . . . . . . . . 12 (𝜑𝐺 ∈ ℂ)
298, 18nndivred 11679 . . . . . . . . . . . . . 14 (𝜑 → (𝑋 / 𝐺) ∈ ℝ)
3029flcld 13163 . . . . . . . . . . . . 13 (𝜑 → (⌊‘(𝑋 / 𝐺)) ∈ ℤ)
3130zcnd 12076 . . . . . . . . . . . 12 (𝜑 → (⌊‘(𝑋 / 𝐺)) ∈ ℂ)
3228, 31mulcld 10650 . . . . . . . . . . 11 (𝜑 → (𝐺 · (⌊‘(𝑋 / 𝐺))) ∈ ℂ)
3327, 32negsubd 10992 . . . . . . . . . 10 (𝜑 → (𝑋 + -(𝐺 · (⌊‘(𝑋 / 𝐺)))) = (𝑋 − (𝐺 · (⌊‘(𝑋 / 𝐺)))))
3430znegcld 12077 . . . . . . . . . . . . . 14 (𝜑 → -(⌊‘(𝑋 / 𝐺)) ∈ ℤ)
3534zcnd 12076 . . . . . . . . . . . . 13 (𝜑 → -(⌊‘(𝑋 / 𝐺)) ∈ ℂ)
3635, 28mulcomd 10651 . . . . . . . . . . . 12 (𝜑 → (-(⌊‘(𝑋 / 𝐺)) · 𝐺) = (𝐺 · -(⌊‘(𝑋 / 𝐺))))
3728, 31mulneg2d 11083 . . . . . . . . . . . 12 (𝜑 → (𝐺 · -(⌊‘(𝑋 / 𝐺))) = -(𝐺 · (⌊‘(𝑋 / 𝐺))))
3836, 37eqtrd 2833 . . . . . . . . . . 11 (𝜑 → (-(⌊‘(𝑋 / 𝐺)) · 𝐺) = -(𝐺 · (⌊‘(𝑋 / 𝐺))))
3938oveq2d 7151 . . . . . . . . . 10 (𝜑 → (𝑋 + (-(⌊‘(𝑋 / 𝐺)) · 𝐺)) = (𝑋 + -(𝐺 · (⌊‘(𝑋 / 𝐺)))))
40 modval 13234 . . . . . . . . . . 11 ((𝑋 ∈ ℝ ∧ 𝐺 ∈ ℝ+) → (𝑋 mod 𝐺) = (𝑋 − (𝐺 · (⌊‘(𝑋 / 𝐺)))))
418, 19, 40syl2anc 587 . . . . . . . . . 10 (𝜑 → (𝑋 mod 𝐺) = (𝑋 − (𝐺 · (⌊‘(𝑋 / 𝐺)))))
4233, 39, 413eqtr4rd 2844 . . . . . . . . 9 (𝜑 → (𝑋 mod 𝐺) = (𝑋 + (-(⌊‘(𝑋 / 𝐺)) · 𝐺)))
43 zringring 20166 . . . . . . . . . . 11 ring ∈ Ring
4443a1i 11 . . . . . . . . . 10 (𝜑 → ℤring ∈ Ring)
451, 13, 9zringlpirlem2 20178 . . . . . . . . . . 11 (𝜑𝐺𝐼)
46 zringmulr 20172 . . . . . . . . . . . 12 · = (.r‘ℤring)
473, 2, 46lidlmcl 19983 . . . . . . . . . . 11 (((ℤring ∈ Ring ∧ 𝐼 ∈ (LIdeal‘ℤring)) ∧ (-(⌊‘(𝑋 / 𝐺)) ∈ ℤ ∧ 𝐺𝐼)) → (-(⌊‘(𝑋 / 𝐺)) · 𝐺) ∈ 𝐼)
4844, 1, 34, 45, 47syl22anc 837 . . . . . . . . . 10 (𝜑 → (-(⌊‘(𝑋 / 𝐺)) · 𝐺) ∈ 𝐼)
49 zringplusg 20170 . . . . . . . . . . 11 + = (+g‘ℤring)
503, 49lidlacl 19979 . . . . . . . . . 10 (((ℤring ∈ Ring ∧ 𝐼 ∈ (LIdeal‘ℤring)) ∧ (𝑋𝐼 ∧ (-(⌊‘(𝑋 / 𝐺)) · 𝐺) ∈ 𝐼)) → (𝑋 + (-(⌊‘(𝑋 / 𝐺)) · 𝐺)) ∈ 𝐼)
5144, 1, 6, 48, 50syl22anc 837 . . . . . . . . 9 (𝜑 → (𝑋 + (-(⌊‘(𝑋 / 𝐺)) · 𝐺)) ∈ 𝐼)
5242, 51eqeltrd 2890 . . . . . . . 8 (𝜑 → (𝑋 mod 𝐺) ∈ 𝐼)
5352adantr 484 . . . . . . 7 ((𝜑 ∧ (𝑋 mod 𝐺) ∈ ℕ) → (𝑋 mod 𝐺) ∈ 𝐼)
54 simpr 488 . . . . . . 7 ((𝜑 ∧ (𝑋 mod 𝐺) ∈ ℕ) → (𝑋 mod 𝐺) ∈ ℕ)
5553, 54elind 4121 . . . . . 6 ((𝜑 ∧ (𝑋 mod 𝐺) ∈ ℕ) → (𝑋 mod 𝐺) ∈ (𝐼 ∩ ℕ))
56 infssuzle 12319 . . . . . 6 (((𝐼 ∩ ℕ) ⊆ (ℤ‘1) ∧ (𝑋 mod 𝐺) ∈ (𝐼 ∩ ℕ)) → inf((𝐼 ∩ ℕ), ℝ, < ) ≤ (𝑋 mod 𝐺))
5712, 55, 56sylancr 590 . . . . 5 ((𝜑 ∧ (𝑋 mod 𝐺) ∈ ℕ) → inf((𝐼 ∩ ℕ), ℝ, < ) ≤ (𝑋 mod 𝐺))
589, 57eqbrtrid 5065 . . . 4 ((𝜑 ∧ (𝑋 mod 𝐺) ∈ ℕ) → 𝐺 ≤ (𝑋 mod 𝐺))
5926, 58mtand 815 . . 3 (𝜑 → ¬ (𝑋 mod 𝐺) ∈ ℕ)
60 elnn0 11887 . . . 4 ((𝑋 mod 𝐺) ∈ ℕ0 ↔ ((𝑋 mod 𝐺) ∈ ℕ ∨ (𝑋 mod 𝐺) = 0))
6122, 60sylib 221 . . 3 (𝜑 → ((𝑋 mod 𝐺) ∈ ℕ ∨ (𝑋 mod 𝐺) = 0))
62 orel1 886 . . 3 (¬ (𝑋 mod 𝐺) ∈ ℕ → (((𝑋 mod 𝐺) ∈ ℕ ∨ (𝑋 mod 𝐺) = 0) → (𝑋 mod 𝐺) = 0))
6359, 61, 62sylc 65 . 2 (𝜑 → (𝑋 mod 𝐺) = 0)
64 dvdsval3 15603 . . 3 ((𝐺 ∈ ℕ ∧ 𝑋 ∈ ℤ) → (𝐺𝑋 ↔ (𝑋 mod 𝐺) = 0))
6518, 7, 64syl2anc 587 . 2 (𝜑 → (𝐺𝑋 ↔ (𝑋 mod 𝐺) = 0))
6663, 65mpbird 260 1 (𝜑𝐺𝑋)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  wo 844   = wceq 1538  wcel 2111  wne 2987  cin 3880  wss 3881  c0 4243  {csn 4525   class class class wbr 5030  cfv 6324  (class class class)co 7135  infcinf 8889  cr 10525  0cc0 10526  1c1 10527   + caddc 10529   · cmul 10531   < clt 10664  cle 10665  cmin 10859  -cneg 10860   / cdiv 11286  cn 11625  0cn0 11885  cz 11969  cuz 12231  +crp 12377  cfl 13155   mod cmo 13232  cdvds 15599  Ringcrg 19290  LIdealclidl 19935  ringzring 20163
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604  ax-addf 10605  ax-mulf 10606
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-oadd 8089  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-sup 8890  df-inf 8891  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-z 11970  df-dec 12087  df-uz 12232  df-rp 12378  df-fz 12886  df-fl 13157  df-mod 13233  df-seq 13365  df-exp 13426  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-dvds 15600  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-mulr 16571  df-starv 16572  df-sca 16573  df-vsca 16574  df-ip 16575  df-tset 16576  df-ple 16577  df-ds 16579  df-unif 16580  df-0g 16707  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-grp 18098  df-minusg 18099  df-sbg 18100  df-subg 18268  df-cmn 18900  df-mgp 19233  df-ur 19245  df-ring 19292  df-cring 19293  df-subrg 19526  df-lmod 19629  df-lss 19697  df-sra 19937  df-rgmod 19938  df-lidl 19939  df-cnfld 20092  df-zring 20164
This theorem is referenced by:  zringlpir  20182
  Copyright terms: Public domain W3C validator