MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  zringlpirlem3 Structured version   Visualization version   GIF version

Theorem zringlpirlem3 21381
Description: Lemma for zringlpir 21384. All elements of a nonzero ideal of integers are divided by the least one. (Contributed by Stefan O'Rear, 3-Jan-2015.) (Revised by AV, 9-Jun-2019.) (Proof shortened by AV, 27-Sep-2020.)
Hypotheses
Ref Expression
zringlpirlem.i (𝜑𝐼 ∈ (LIdeal‘ℤring))
zringlpirlem.n0 (𝜑𝐼 ≠ {0})
zringlpirlem.g 𝐺 = inf((𝐼 ∩ ℕ), ℝ, < )
zringlpirlem.x (𝜑𝑋𝐼)
Assertion
Ref Expression
zringlpirlem3 (𝜑𝐺𝑋)

Proof of Theorem zringlpirlem3
StepHypRef Expression
1 zringlpirlem.i . . . . . . . . 9 (𝜑𝐼 ∈ (LIdeal‘ℤring))
2 zringbas 21370 . . . . . . . . . 10 ℤ = (Base‘ℤring)
3 eqid 2730 . . . . . . . . . 10 (LIdeal‘ℤring) = (LIdeal‘ℤring)
42, 3lidlss 21129 . . . . . . . . 9 (𝐼 ∈ (LIdeal‘ℤring) → 𝐼 ⊆ ℤ)
51, 4syl 17 . . . . . . . 8 (𝜑𝐼 ⊆ ℤ)
6 zringlpirlem.x . . . . . . . 8 (𝜑𝑋𝐼)
75, 6sseldd 3950 . . . . . . 7 (𝜑𝑋 ∈ ℤ)
87zred 12645 . . . . . 6 (𝜑𝑋 ∈ ℝ)
9 zringlpirlem.g . . . . . . . . 9 𝐺 = inf((𝐼 ∩ ℕ), ℝ, < )
10 inss2 4204 . . . . . . . . . . 11 (𝐼 ∩ ℕ) ⊆ ℕ
11 nnuz 12843 . . . . . . . . . . 11 ℕ = (ℤ‘1)
1210, 11sseqtri 3998 . . . . . . . . . 10 (𝐼 ∩ ℕ) ⊆ (ℤ‘1)
13 zringlpirlem.n0 . . . . . . . . . . 11 (𝜑𝐼 ≠ {0})
141, 13zringlpirlem1 21379 . . . . . . . . . 10 (𝜑 → (𝐼 ∩ ℕ) ≠ ∅)
15 infssuzcl 12898 . . . . . . . . . 10 (((𝐼 ∩ ℕ) ⊆ (ℤ‘1) ∧ (𝐼 ∩ ℕ) ≠ ∅) → inf((𝐼 ∩ ℕ), ℝ, < ) ∈ (𝐼 ∩ ℕ))
1612, 14, 15sylancr 587 . . . . . . . . 9 (𝜑 → inf((𝐼 ∩ ℕ), ℝ, < ) ∈ (𝐼 ∩ ℕ))
179, 16eqeltrid 2833 . . . . . . . 8 (𝜑𝐺 ∈ (𝐼 ∩ ℕ))
1817elin2d 4171 . . . . . . 7 (𝜑𝐺 ∈ ℕ)
1918nnrpd 13000 . . . . . 6 (𝜑𝐺 ∈ ℝ+)
20 modlt 13849 . . . . . 6 ((𝑋 ∈ ℝ ∧ 𝐺 ∈ ℝ+) → (𝑋 mod 𝐺) < 𝐺)
218, 19, 20syl2anc 584 . . . . 5 (𝜑 → (𝑋 mod 𝐺) < 𝐺)
227, 18zmodcld 13861 . . . . . . 7 (𝜑 → (𝑋 mod 𝐺) ∈ ℕ0)
2322nn0red 12511 . . . . . 6 (𝜑 → (𝑋 mod 𝐺) ∈ ℝ)
2418nnred 12208 . . . . . 6 (𝜑𝐺 ∈ ℝ)
2523, 24ltnled 11328 . . . . 5 (𝜑 → ((𝑋 mod 𝐺) < 𝐺 ↔ ¬ 𝐺 ≤ (𝑋 mod 𝐺)))
2621, 25mpbid 232 . . . 4 (𝜑 → ¬ 𝐺 ≤ (𝑋 mod 𝐺))
277zcnd 12646 . . . . . . . . . . 11 (𝜑𝑋 ∈ ℂ)
2818nncnd 12209 . . . . . . . . . . . 12 (𝜑𝐺 ∈ ℂ)
298, 18nndivred 12247 . . . . . . . . . . . . . 14 (𝜑 → (𝑋 / 𝐺) ∈ ℝ)
3029flcld 13767 . . . . . . . . . . . . 13 (𝜑 → (⌊‘(𝑋 / 𝐺)) ∈ ℤ)
3130zcnd 12646 . . . . . . . . . . . 12 (𝜑 → (⌊‘(𝑋 / 𝐺)) ∈ ℂ)
3228, 31mulcld 11201 . . . . . . . . . . 11 (𝜑 → (𝐺 · (⌊‘(𝑋 / 𝐺))) ∈ ℂ)
3327, 32negsubd 11546 . . . . . . . . . 10 (𝜑 → (𝑋 + -(𝐺 · (⌊‘(𝑋 / 𝐺)))) = (𝑋 − (𝐺 · (⌊‘(𝑋 / 𝐺)))))
3430znegcld 12647 . . . . . . . . . . . . . 14 (𝜑 → -(⌊‘(𝑋 / 𝐺)) ∈ ℤ)
3534zcnd 12646 . . . . . . . . . . . . 13 (𝜑 → -(⌊‘(𝑋 / 𝐺)) ∈ ℂ)
3635, 28mulcomd 11202 . . . . . . . . . . . 12 (𝜑 → (-(⌊‘(𝑋 / 𝐺)) · 𝐺) = (𝐺 · -(⌊‘(𝑋 / 𝐺))))
3728, 31mulneg2d 11639 . . . . . . . . . . . 12 (𝜑 → (𝐺 · -(⌊‘(𝑋 / 𝐺))) = -(𝐺 · (⌊‘(𝑋 / 𝐺))))
3836, 37eqtrd 2765 . . . . . . . . . . 11 (𝜑 → (-(⌊‘(𝑋 / 𝐺)) · 𝐺) = -(𝐺 · (⌊‘(𝑋 / 𝐺))))
3938oveq2d 7406 . . . . . . . . . 10 (𝜑 → (𝑋 + (-(⌊‘(𝑋 / 𝐺)) · 𝐺)) = (𝑋 + -(𝐺 · (⌊‘(𝑋 / 𝐺)))))
40 modval 13840 . . . . . . . . . . 11 ((𝑋 ∈ ℝ ∧ 𝐺 ∈ ℝ+) → (𝑋 mod 𝐺) = (𝑋 − (𝐺 · (⌊‘(𝑋 / 𝐺)))))
418, 19, 40syl2anc 584 . . . . . . . . . 10 (𝜑 → (𝑋 mod 𝐺) = (𝑋 − (𝐺 · (⌊‘(𝑋 / 𝐺)))))
4233, 39, 413eqtr4rd 2776 . . . . . . . . 9 (𝜑 → (𝑋 mod 𝐺) = (𝑋 + (-(⌊‘(𝑋 / 𝐺)) · 𝐺)))
43 zringring 21366 . . . . . . . . . . 11 ring ∈ Ring
4443a1i 11 . . . . . . . . . 10 (𝜑 → ℤring ∈ Ring)
451, 13, 9zringlpirlem2 21380 . . . . . . . . . . 11 (𝜑𝐺𝐼)
46 zringmulr 21374 . . . . . . . . . . . 12 · = (.r‘ℤring)
473, 2, 46lidlmcl 21142 . . . . . . . . . . 11 (((ℤring ∈ Ring ∧ 𝐼 ∈ (LIdeal‘ℤring)) ∧ (-(⌊‘(𝑋 / 𝐺)) ∈ ℤ ∧ 𝐺𝐼)) → (-(⌊‘(𝑋 / 𝐺)) · 𝐺) ∈ 𝐼)
4844, 1, 34, 45, 47syl22anc 838 . . . . . . . . . 10 (𝜑 → (-(⌊‘(𝑋 / 𝐺)) · 𝐺) ∈ 𝐼)
49 zringplusg 21371 . . . . . . . . . . 11 + = (+g‘ℤring)
503, 49lidlacl 21138 . . . . . . . . . 10 (((ℤring ∈ Ring ∧ 𝐼 ∈ (LIdeal‘ℤring)) ∧ (𝑋𝐼 ∧ (-(⌊‘(𝑋 / 𝐺)) · 𝐺) ∈ 𝐼)) → (𝑋 + (-(⌊‘(𝑋 / 𝐺)) · 𝐺)) ∈ 𝐼)
5144, 1, 6, 48, 50syl22anc 838 . . . . . . . . 9 (𝜑 → (𝑋 + (-(⌊‘(𝑋 / 𝐺)) · 𝐺)) ∈ 𝐼)
5242, 51eqeltrd 2829 . . . . . . . 8 (𝜑 → (𝑋 mod 𝐺) ∈ 𝐼)
5352adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑋 mod 𝐺) ∈ ℕ) → (𝑋 mod 𝐺) ∈ 𝐼)
54 simpr 484 . . . . . . 7 ((𝜑 ∧ (𝑋 mod 𝐺) ∈ ℕ) → (𝑋 mod 𝐺) ∈ ℕ)
5553, 54elind 4166 . . . . . 6 ((𝜑 ∧ (𝑋 mod 𝐺) ∈ ℕ) → (𝑋 mod 𝐺) ∈ (𝐼 ∩ ℕ))
56 infssuzle 12897 . . . . . 6 (((𝐼 ∩ ℕ) ⊆ (ℤ‘1) ∧ (𝑋 mod 𝐺) ∈ (𝐼 ∩ ℕ)) → inf((𝐼 ∩ ℕ), ℝ, < ) ≤ (𝑋 mod 𝐺))
5712, 55, 56sylancr 587 . . . . 5 ((𝜑 ∧ (𝑋 mod 𝐺) ∈ ℕ) → inf((𝐼 ∩ ℕ), ℝ, < ) ≤ (𝑋 mod 𝐺))
589, 57eqbrtrid 5145 . . . 4 ((𝜑 ∧ (𝑋 mod 𝐺) ∈ ℕ) → 𝐺 ≤ (𝑋 mod 𝐺))
5926, 58mtand 815 . . 3 (𝜑 → ¬ (𝑋 mod 𝐺) ∈ ℕ)
60 elnn0 12451 . . . 4 ((𝑋 mod 𝐺) ∈ ℕ0 ↔ ((𝑋 mod 𝐺) ∈ ℕ ∨ (𝑋 mod 𝐺) = 0))
6122, 60sylib 218 . . 3 (𝜑 → ((𝑋 mod 𝐺) ∈ ℕ ∨ (𝑋 mod 𝐺) = 0))
62 orel1 888 . . 3 (¬ (𝑋 mod 𝐺) ∈ ℕ → (((𝑋 mod 𝐺) ∈ ℕ ∨ (𝑋 mod 𝐺) = 0) → (𝑋 mod 𝐺) = 0))
6359, 61, 62sylc 65 . 2 (𝜑 → (𝑋 mod 𝐺) = 0)
64 dvdsval3 16233 . . 3 ((𝐺 ∈ ℕ ∧ 𝑋 ∈ ℤ) → (𝐺𝑋 ↔ (𝑋 mod 𝐺) = 0))
6518, 7, 64syl2anc 584 . 2 (𝜑 → (𝐺𝑋 ↔ (𝑋 mod 𝐺) = 0))
6663, 65mpbird 257 1 (𝜑𝐺𝑋)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wcel 2109  wne 2926  cin 3916  wss 3917  c0 4299  {csn 4592   class class class wbr 5110  cfv 6514  (class class class)co 7390  infcinf 9399  cr 11074  0cc0 11075  1c1 11076   + caddc 11078   · cmul 11080   < clt 11215  cle 11216  cmin 11412  -cneg 11413   / cdiv 11842  cn 12193  0cn0 12449  cz 12536  cuz 12800  +crp 12958  cfl 13759   mod cmo 13838  cdvds 16229  Ringcrg 20149  LIdealclidl 21123  ringczring 21363
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153  ax-addf 11154  ax-mulf 11155
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-sup 9400  df-inf 9401  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-z 12537  df-dec 12657  df-uz 12801  df-rp 12959  df-fz 13476  df-fl 13761  df-mod 13839  df-seq 13974  df-exp 14034  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-dvds 16230  df-struct 17124  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-mulr 17241  df-starv 17242  df-sca 17243  df-vsca 17244  df-ip 17245  df-tset 17246  df-ple 17247  df-ds 17249  df-unif 17250  df-0g 17411  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-grp 18875  df-minusg 18876  df-sbg 18877  df-subg 19062  df-cmn 19719  df-abl 19720  df-mgp 20057  df-rng 20069  df-ur 20098  df-ring 20151  df-cring 20152  df-subrng 20462  df-subrg 20486  df-lmod 20775  df-lss 20845  df-sra 21087  df-rgmod 21088  df-lidl 21125  df-cnfld 21272  df-zring 21364
This theorem is referenced by:  zringlpir  21384
  Copyright terms: Public domain W3C validator