MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  zringlpirlem3 Structured version   Visualization version   GIF version

Theorem zringlpirlem3 21407
Description: Lemma for zringlpir 21410. All elements of a nonzero ideal of integers are divided by the least one. (Contributed by Stefan O'Rear, 3-Jan-2015.) (Revised by AV, 9-Jun-2019.) (Proof shortened by AV, 27-Sep-2020.)
Hypotheses
Ref Expression
zringlpirlem.i (𝜑𝐼 ∈ (LIdeal‘ℤring))
zringlpirlem.n0 (𝜑𝐼 ≠ {0})
zringlpirlem.g 𝐺 = inf((𝐼 ∩ ℕ), ℝ, < )
zringlpirlem.x (𝜑𝑋𝐼)
Assertion
Ref Expression
zringlpirlem3 (𝜑𝐺𝑋)

Proof of Theorem zringlpirlem3
StepHypRef Expression
1 zringlpirlem.i . . . . . . . . 9 (𝜑𝐼 ∈ (LIdeal‘ℤring))
2 zringbas 21396 . . . . . . . . . 10 ℤ = (Base‘ℤring)
3 eqid 2725 . . . . . . . . . 10 (LIdeal‘ℤring) = (LIdeal‘ℤring)
42, 3lidlss 21120 . . . . . . . . 9 (𝐼 ∈ (LIdeal‘ℤring) → 𝐼 ⊆ ℤ)
51, 4syl 17 . . . . . . . 8 (𝜑𝐼 ⊆ ℤ)
6 zringlpirlem.x . . . . . . . 8 (𝜑𝑋𝐼)
75, 6sseldd 3977 . . . . . . 7 (𝜑𝑋 ∈ ℤ)
87zred 12699 . . . . . 6 (𝜑𝑋 ∈ ℝ)
9 zringlpirlem.g . . . . . . . . 9 𝐺 = inf((𝐼 ∩ ℕ), ℝ, < )
10 inss2 4228 . . . . . . . . . . 11 (𝐼 ∩ ℕ) ⊆ ℕ
11 nnuz 12898 . . . . . . . . . . 11 ℕ = (ℤ‘1)
1210, 11sseqtri 4013 . . . . . . . . . 10 (𝐼 ∩ ℕ) ⊆ (ℤ‘1)
13 zringlpirlem.n0 . . . . . . . . . . 11 (𝜑𝐼 ≠ {0})
141, 13zringlpirlem1 21405 . . . . . . . . . 10 (𝜑 → (𝐼 ∩ ℕ) ≠ ∅)
15 infssuzcl 12949 . . . . . . . . . 10 (((𝐼 ∩ ℕ) ⊆ (ℤ‘1) ∧ (𝐼 ∩ ℕ) ≠ ∅) → inf((𝐼 ∩ ℕ), ℝ, < ) ∈ (𝐼 ∩ ℕ))
1612, 14, 15sylancr 585 . . . . . . . . 9 (𝜑 → inf((𝐼 ∩ ℕ), ℝ, < ) ∈ (𝐼 ∩ ℕ))
179, 16eqeltrid 2829 . . . . . . . 8 (𝜑𝐺 ∈ (𝐼 ∩ ℕ))
1817elin2d 4197 . . . . . . 7 (𝜑𝐺 ∈ ℕ)
1918nnrpd 13049 . . . . . 6 (𝜑𝐺 ∈ ℝ+)
20 modlt 13881 . . . . . 6 ((𝑋 ∈ ℝ ∧ 𝐺 ∈ ℝ+) → (𝑋 mod 𝐺) < 𝐺)
218, 19, 20syl2anc 582 . . . . 5 (𝜑 → (𝑋 mod 𝐺) < 𝐺)
227, 18zmodcld 13893 . . . . . . 7 (𝜑 → (𝑋 mod 𝐺) ∈ ℕ0)
2322nn0red 12566 . . . . . 6 (𝜑 → (𝑋 mod 𝐺) ∈ ℝ)
2418nnred 12260 . . . . . 6 (𝜑𝐺 ∈ ℝ)
2523, 24ltnled 11393 . . . . 5 (𝜑 → ((𝑋 mod 𝐺) < 𝐺 ↔ ¬ 𝐺 ≤ (𝑋 mod 𝐺)))
2621, 25mpbid 231 . . . 4 (𝜑 → ¬ 𝐺 ≤ (𝑋 mod 𝐺))
277zcnd 12700 . . . . . . . . . . 11 (𝜑𝑋 ∈ ℂ)
2818nncnd 12261 . . . . . . . . . . . 12 (𝜑𝐺 ∈ ℂ)
298, 18nndivred 12299 . . . . . . . . . . . . . 14 (𝜑 → (𝑋 / 𝐺) ∈ ℝ)
3029flcld 13799 . . . . . . . . . . . . 13 (𝜑 → (⌊‘(𝑋 / 𝐺)) ∈ ℤ)
3130zcnd 12700 . . . . . . . . . . . 12 (𝜑 → (⌊‘(𝑋 / 𝐺)) ∈ ℂ)
3228, 31mulcld 11266 . . . . . . . . . . 11 (𝜑 → (𝐺 · (⌊‘(𝑋 / 𝐺))) ∈ ℂ)
3327, 32negsubd 11609 . . . . . . . . . 10 (𝜑 → (𝑋 + -(𝐺 · (⌊‘(𝑋 / 𝐺)))) = (𝑋 − (𝐺 · (⌊‘(𝑋 / 𝐺)))))
3430znegcld 12701 . . . . . . . . . . . . . 14 (𝜑 → -(⌊‘(𝑋 / 𝐺)) ∈ ℤ)
3534zcnd 12700 . . . . . . . . . . . . 13 (𝜑 → -(⌊‘(𝑋 / 𝐺)) ∈ ℂ)
3635, 28mulcomd 11267 . . . . . . . . . . . 12 (𝜑 → (-(⌊‘(𝑋 / 𝐺)) · 𝐺) = (𝐺 · -(⌊‘(𝑋 / 𝐺))))
3728, 31mulneg2d 11700 . . . . . . . . . . . 12 (𝜑 → (𝐺 · -(⌊‘(𝑋 / 𝐺))) = -(𝐺 · (⌊‘(𝑋 / 𝐺))))
3836, 37eqtrd 2765 . . . . . . . . . . 11 (𝜑 → (-(⌊‘(𝑋 / 𝐺)) · 𝐺) = -(𝐺 · (⌊‘(𝑋 / 𝐺))))
3938oveq2d 7435 . . . . . . . . . 10 (𝜑 → (𝑋 + (-(⌊‘(𝑋 / 𝐺)) · 𝐺)) = (𝑋 + -(𝐺 · (⌊‘(𝑋 / 𝐺)))))
40 modval 13872 . . . . . . . . . . 11 ((𝑋 ∈ ℝ ∧ 𝐺 ∈ ℝ+) → (𝑋 mod 𝐺) = (𝑋 − (𝐺 · (⌊‘(𝑋 / 𝐺)))))
418, 19, 40syl2anc 582 . . . . . . . . . 10 (𝜑 → (𝑋 mod 𝐺) = (𝑋 − (𝐺 · (⌊‘(𝑋 / 𝐺)))))
4233, 39, 413eqtr4rd 2776 . . . . . . . . 9 (𝜑 → (𝑋 mod 𝐺) = (𝑋 + (-(⌊‘(𝑋 / 𝐺)) · 𝐺)))
43 zringring 21392 . . . . . . . . . . 11 ring ∈ Ring
4443a1i 11 . . . . . . . . . 10 (𝜑 → ℤring ∈ Ring)
451, 13, 9zringlpirlem2 21406 . . . . . . . . . . 11 (𝜑𝐺𝐼)
46 zringmulr 21400 . . . . . . . . . . . 12 · = (.r‘ℤring)
473, 2, 46lidlmcl 21133 . . . . . . . . . . 11 (((ℤring ∈ Ring ∧ 𝐼 ∈ (LIdeal‘ℤring)) ∧ (-(⌊‘(𝑋 / 𝐺)) ∈ ℤ ∧ 𝐺𝐼)) → (-(⌊‘(𝑋 / 𝐺)) · 𝐺) ∈ 𝐼)
4844, 1, 34, 45, 47syl22anc 837 . . . . . . . . . 10 (𝜑 → (-(⌊‘(𝑋 / 𝐺)) · 𝐺) ∈ 𝐼)
49 zringplusg 21397 . . . . . . . . . . 11 + = (+g‘ℤring)
503, 49lidlacl 21129 . . . . . . . . . 10 (((ℤring ∈ Ring ∧ 𝐼 ∈ (LIdeal‘ℤring)) ∧ (𝑋𝐼 ∧ (-(⌊‘(𝑋 / 𝐺)) · 𝐺) ∈ 𝐼)) → (𝑋 + (-(⌊‘(𝑋 / 𝐺)) · 𝐺)) ∈ 𝐼)
5144, 1, 6, 48, 50syl22anc 837 . . . . . . . . 9 (𝜑 → (𝑋 + (-(⌊‘(𝑋 / 𝐺)) · 𝐺)) ∈ 𝐼)
5242, 51eqeltrd 2825 . . . . . . . 8 (𝜑 → (𝑋 mod 𝐺) ∈ 𝐼)
5352adantr 479 . . . . . . 7 ((𝜑 ∧ (𝑋 mod 𝐺) ∈ ℕ) → (𝑋 mod 𝐺) ∈ 𝐼)
54 simpr 483 . . . . . . 7 ((𝜑 ∧ (𝑋 mod 𝐺) ∈ ℕ) → (𝑋 mod 𝐺) ∈ ℕ)
5553, 54elind 4192 . . . . . 6 ((𝜑 ∧ (𝑋 mod 𝐺) ∈ ℕ) → (𝑋 mod 𝐺) ∈ (𝐼 ∩ ℕ))
56 infssuzle 12948 . . . . . 6 (((𝐼 ∩ ℕ) ⊆ (ℤ‘1) ∧ (𝑋 mod 𝐺) ∈ (𝐼 ∩ ℕ)) → inf((𝐼 ∩ ℕ), ℝ, < ) ≤ (𝑋 mod 𝐺))
5712, 55, 56sylancr 585 . . . . 5 ((𝜑 ∧ (𝑋 mod 𝐺) ∈ ℕ) → inf((𝐼 ∩ ℕ), ℝ, < ) ≤ (𝑋 mod 𝐺))
589, 57eqbrtrid 5184 . . . 4 ((𝜑 ∧ (𝑋 mod 𝐺) ∈ ℕ) → 𝐺 ≤ (𝑋 mod 𝐺))
5926, 58mtand 814 . . 3 (𝜑 → ¬ (𝑋 mod 𝐺) ∈ ℕ)
60 elnn0 12507 . . . 4 ((𝑋 mod 𝐺) ∈ ℕ0 ↔ ((𝑋 mod 𝐺) ∈ ℕ ∨ (𝑋 mod 𝐺) = 0))
6122, 60sylib 217 . . 3 (𝜑 → ((𝑋 mod 𝐺) ∈ ℕ ∨ (𝑋 mod 𝐺) = 0))
62 orel1 886 . . 3 (¬ (𝑋 mod 𝐺) ∈ ℕ → (((𝑋 mod 𝐺) ∈ ℕ ∨ (𝑋 mod 𝐺) = 0) → (𝑋 mod 𝐺) = 0))
6359, 61, 62sylc 65 . 2 (𝜑 → (𝑋 mod 𝐺) = 0)
64 dvdsval3 16238 . . 3 ((𝐺 ∈ ℕ ∧ 𝑋 ∈ ℤ) → (𝐺𝑋 ↔ (𝑋 mod 𝐺) = 0))
6518, 7, 64syl2anc 582 . 2 (𝜑 → (𝐺𝑋 ↔ (𝑋 mod 𝐺) = 0))
6663, 65mpbird 256 1 (𝜑𝐺𝑋)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 394  wo 845   = wceq 1533  wcel 2098  wne 2929  cin 3943  wss 3944  c0 4322  {csn 4630   class class class wbr 5149  cfv 6549  (class class class)co 7419  infcinf 9466  cr 11139  0cc0 11140  1c1 11141   + caddc 11143   · cmul 11145   < clt 11280  cle 11281  cmin 11476  -cneg 11477   / cdiv 11903  cn 12245  0cn0 12505  cz 12591  cuz 12855  +crp 13009  cfl 13791   mod cmo 13870  cdvds 16234  Ringcrg 20185  LIdealclidl 21114  ringczring 21389
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741  ax-cnex 11196  ax-resscn 11197  ax-1cn 11198  ax-icn 11199  ax-addcl 11200  ax-addrcl 11201  ax-mulcl 11202  ax-mulrcl 11203  ax-mulcom 11204  ax-addass 11205  ax-mulass 11206  ax-distr 11207  ax-i2m1 11208  ax-1ne0 11209  ax-1rid 11210  ax-rnegex 11211  ax-rrecex 11212  ax-cnre 11213  ax-pre-lttri 11214  ax-pre-lttrn 11215  ax-pre-ltadd 11216  ax-pre-mulgt0 11217  ax-pre-sup 11218  ax-addf 11219  ax-mulf 11220
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3964  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-tp 4635  df-op 4637  df-uni 4910  df-iun 4999  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6307  df-ord 6374  df-on 6375  df-lim 6376  df-suc 6377  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-riota 7375  df-ov 7422  df-oprab 7423  df-mpo 7424  df-om 7872  df-1st 7994  df-2nd 7995  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-1o 8487  df-er 8725  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-sup 9467  df-inf 9468  df-pnf 11282  df-mnf 11283  df-xr 11284  df-ltxr 11285  df-le 11286  df-sub 11478  df-neg 11479  df-div 11904  df-nn 12246  df-2 12308  df-3 12309  df-4 12310  df-5 12311  df-6 12312  df-7 12313  df-8 12314  df-9 12315  df-n0 12506  df-z 12592  df-dec 12711  df-uz 12856  df-rp 13010  df-fz 13520  df-fl 13793  df-mod 13871  df-seq 14003  df-exp 14063  df-cj 15082  df-re 15083  df-im 15084  df-sqrt 15218  df-abs 15219  df-dvds 16235  df-struct 17119  df-sets 17136  df-slot 17154  df-ndx 17166  df-base 17184  df-ress 17213  df-plusg 17249  df-mulr 17250  df-starv 17251  df-sca 17252  df-vsca 17253  df-ip 17254  df-tset 17255  df-ple 17256  df-ds 17258  df-unif 17259  df-0g 17426  df-mgm 18603  df-sgrp 18682  df-mnd 18698  df-grp 18901  df-minusg 18902  df-sbg 18903  df-subg 19086  df-cmn 19749  df-abl 19750  df-mgp 20087  df-rng 20105  df-ur 20134  df-ring 20187  df-cring 20188  df-subrng 20495  df-subrg 20520  df-lmod 20757  df-lss 20828  df-sra 21070  df-rgmod 21071  df-lidl 21116  df-cnfld 21297  df-zring 21390
This theorem is referenced by:  zringlpir  21410
  Copyright terms: Public domain W3C validator