MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psgnodpm Structured version   Visualization version   GIF version

Theorem psgnodpm 21623
Description: A permutation which is odd (i.e. not even) has sign -1. (Contributed by SO, 9-Jul-2018.)
Hypotheses
Ref Expression
evpmss.s 𝑆 = (SymGrp‘𝐷)
evpmss.p 𝑃 = (Base‘𝑆)
psgnevpmb.n 𝑁 = (pmSgn‘𝐷)
Assertion
Ref Expression
psgnodpm ((𝐷 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝐷))) → (𝑁𝐹) = -1)

Proof of Theorem psgnodpm
StepHypRef Expression
1 eldif 3972 . . 3 (𝐹 ∈ (𝑃 ∖ (pmEven‘𝐷)) ↔ (𝐹𝑃 ∧ ¬ 𝐹 ∈ (pmEven‘𝐷)))
2 simpr 484 . . . . . . . 8 ((𝐷 ∈ Fin ∧ 𝐹𝑃) → 𝐹𝑃)
32a1d 25 . . . . . . 7 ((𝐷 ∈ Fin ∧ 𝐹𝑃) → ((𝑁𝐹) = 1 → 𝐹𝑃))
43ancrd 551 . . . . . 6 ((𝐷 ∈ Fin ∧ 𝐹𝑃) → ((𝑁𝐹) = 1 → (𝐹𝑃 ∧ (𝑁𝐹) = 1)))
5 evpmss.s . . . . . . . 8 𝑆 = (SymGrp‘𝐷)
6 evpmss.p . . . . . . . 8 𝑃 = (Base‘𝑆)
7 psgnevpmb.n . . . . . . . 8 𝑁 = (pmSgn‘𝐷)
85, 6, 7psgnevpmb 21622 . . . . . . 7 (𝐷 ∈ Fin → (𝐹 ∈ (pmEven‘𝐷) ↔ (𝐹𝑃 ∧ (𝑁𝐹) = 1)))
98adantr 480 . . . . . 6 ((𝐷 ∈ Fin ∧ 𝐹𝑃) → (𝐹 ∈ (pmEven‘𝐷) ↔ (𝐹𝑃 ∧ (𝑁𝐹) = 1)))
104, 9sylibrd 259 . . . . 5 ((𝐷 ∈ Fin ∧ 𝐹𝑃) → ((𝑁𝐹) = 1 → 𝐹 ∈ (pmEven‘𝐷)))
1110con3d 152 . . . 4 ((𝐷 ∈ Fin ∧ 𝐹𝑃) → (¬ 𝐹 ∈ (pmEven‘𝐷) → ¬ (𝑁𝐹) = 1))
1211impr 454 . . 3 ((𝐷 ∈ Fin ∧ (𝐹𝑃 ∧ ¬ 𝐹 ∈ (pmEven‘𝐷))) → ¬ (𝑁𝐹) = 1)
131, 12sylan2b 594 . 2 ((𝐷 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝐷))) → ¬ (𝑁𝐹) = 1)
14 eqid 2734 . . . . . . 7 ((mulGrp‘ℂfld) ↾s {1, -1}) = ((mulGrp‘ℂfld) ↾s {1, -1})
155, 7, 14psgnghm2 21616 . . . . . 6 (𝐷 ∈ Fin → 𝑁 ∈ (𝑆 GrpHom ((mulGrp‘ℂfld) ↾s {1, -1})))
1615adantr 480 . . . . 5 ((𝐷 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝐷))) → 𝑁 ∈ (𝑆 GrpHom ((mulGrp‘ℂfld) ↾s {1, -1})))
1714cnmsgnbas 21613 . . . . . 6 {1, -1} = (Base‘((mulGrp‘ℂfld) ↾s {1, -1}))
186, 17ghmf 19250 . . . . 5 (𝑁 ∈ (𝑆 GrpHom ((mulGrp‘ℂfld) ↾s {1, -1})) → 𝑁:𝑃⟶{1, -1})
1916, 18syl 17 . . . 4 ((𝐷 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝐷))) → 𝑁:𝑃⟶{1, -1})
20 eldifi 4140 . . . . 5 (𝐹 ∈ (𝑃 ∖ (pmEven‘𝐷)) → 𝐹𝑃)
2120adantl 481 . . . 4 ((𝐷 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝐷))) → 𝐹𝑃)
2219, 21ffvelcdmd 7104 . . 3 ((𝐷 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝐷))) → (𝑁𝐹) ∈ {1, -1})
23 fvex 6919 . . . 4 (𝑁𝐹) ∈ V
2423elpr 4654 . . 3 ((𝑁𝐹) ∈ {1, -1} ↔ ((𝑁𝐹) = 1 ∨ (𝑁𝐹) = -1))
2522, 24sylib 218 . 2 ((𝐷 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝐷))) → ((𝑁𝐹) = 1 ∨ (𝑁𝐹) = -1))
26 orel1 888 . 2 (¬ (𝑁𝐹) = 1 → (((𝑁𝐹) = 1 ∨ (𝑁𝐹) = -1) → (𝑁𝐹) = -1))
2713, 25, 26sylc 65 1 ((𝐷 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝐷))) → (𝑁𝐹) = -1)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1536  wcel 2105  cdif 3959  {cpr 4632  wf 6558  cfv 6562  (class class class)co 7430  Fincfn 8983  1c1 11153  -cneg 11490  Basecbs 17244  s cress 17273   GrpHom cghm 19242  SymGrpcsymg 19400  pmSgncpsgn 19521  pmEvencevpm 19522  mulGrpcmgp 20151  fldccnfld 21381
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-rep 5284  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-cnex 11208  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228  ax-pre-mulgt0 11229  ax-addf 11231  ax-mulf 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-xor 1508  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3377  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-tp 4635  df-op 4637  df-ot 4639  df-uni 4912  df-int 4951  df-iun 4997  df-iin 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-se 5641  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-isom 6571  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-om 7887  df-1st 8012  df-2nd 8013  df-tpos 8249  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-1o 8504  df-2o 8505  df-er 8743  df-map 8866  df-en 8984  df-dom 8985  df-sdom 8986  df-fin 8987  df-card 9976  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492  df-div 11918  df-nn 12264  df-2 12326  df-3 12327  df-4 12328  df-5 12329  df-6 12330  df-7 12331  df-8 12332  df-9 12333  df-n0 12524  df-xnn0 12597  df-z 12611  df-dec 12731  df-uz 12876  df-rp 13032  df-fz 13544  df-fzo 13691  df-seq 14039  df-exp 14099  df-hash 14366  df-word 14549  df-lsw 14597  df-concat 14605  df-s1 14630  df-substr 14675  df-pfx 14705  df-splice 14784  df-reverse 14793  df-s2 14883  df-struct 17180  df-sets 17197  df-slot 17215  df-ndx 17227  df-base 17245  df-ress 17274  df-plusg 17310  df-mulr 17311  df-starv 17312  df-tset 17316  df-ple 17317  df-ds 17319  df-unif 17320  df-0g 17487  df-gsum 17488  df-mre 17630  df-mrc 17631  df-acs 17633  df-mgm 18665  df-sgrp 18744  df-mnd 18760  df-mhm 18808  df-submnd 18809  df-efmnd 18894  df-grp 18966  df-minusg 18967  df-subg 19153  df-ghm 19243  df-gim 19289  df-oppg 19376  df-symg 19401  df-pmtr 19474  df-psgn 19523  df-evpm 19524  df-cmn 19814  df-abl 19815  df-mgp 20152  df-rng 20170  df-ur 20199  df-ring 20252  df-cring 20253  df-oppr 20350  df-dvdsr 20373  df-unit 20374  df-invr 20404  df-dvr 20417  df-drng 20747  df-cnfld 21382
This theorem is referenced by:  zrhpsgnodpm  21627  evpmodpmf1o  21631  odpmco  33088
  Copyright terms: Public domain W3C validator