| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > psgnodpm | Structured version Visualization version GIF version | ||
| Description: A permutation which is odd (i.e. not even) has sign -1. (Contributed by SO, 9-Jul-2018.) |
| Ref | Expression |
|---|---|
| evpmss.s | ⊢ 𝑆 = (SymGrp‘𝐷) |
| evpmss.p | ⊢ 𝑃 = (Base‘𝑆) |
| psgnevpmb.n | ⊢ 𝑁 = (pmSgn‘𝐷) |
| Ref | Expression |
|---|---|
| psgnodpm | ⊢ ((𝐷 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝐷))) → (𝑁‘𝐹) = -1) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eldif 3936 | . . 3 ⊢ (𝐹 ∈ (𝑃 ∖ (pmEven‘𝐷)) ↔ (𝐹 ∈ 𝑃 ∧ ¬ 𝐹 ∈ (pmEven‘𝐷))) | |
| 2 | simpr 484 | . . . . . . . 8 ⊢ ((𝐷 ∈ Fin ∧ 𝐹 ∈ 𝑃) → 𝐹 ∈ 𝑃) | |
| 3 | 2 | a1d 25 | . . . . . . 7 ⊢ ((𝐷 ∈ Fin ∧ 𝐹 ∈ 𝑃) → ((𝑁‘𝐹) = 1 → 𝐹 ∈ 𝑃)) |
| 4 | 3 | ancrd 551 | . . . . . 6 ⊢ ((𝐷 ∈ Fin ∧ 𝐹 ∈ 𝑃) → ((𝑁‘𝐹) = 1 → (𝐹 ∈ 𝑃 ∧ (𝑁‘𝐹) = 1))) |
| 5 | evpmss.s | . . . . . . . 8 ⊢ 𝑆 = (SymGrp‘𝐷) | |
| 6 | evpmss.p | . . . . . . . 8 ⊢ 𝑃 = (Base‘𝑆) | |
| 7 | psgnevpmb.n | . . . . . . . 8 ⊢ 𝑁 = (pmSgn‘𝐷) | |
| 8 | 5, 6, 7 | psgnevpmb 21547 | . . . . . . 7 ⊢ (𝐷 ∈ Fin → (𝐹 ∈ (pmEven‘𝐷) ↔ (𝐹 ∈ 𝑃 ∧ (𝑁‘𝐹) = 1))) |
| 9 | 8 | adantr 480 | . . . . . 6 ⊢ ((𝐷 ∈ Fin ∧ 𝐹 ∈ 𝑃) → (𝐹 ∈ (pmEven‘𝐷) ↔ (𝐹 ∈ 𝑃 ∧ (𝑁‘𝐹) = 1))) |
| 10 | 4, 9 | sylibrd 259 | . . . . 5 ⊢ ((𝐷 ∈ Fin ∧ 𝐹 ∈ 𝑃) → ((𝑁‘𝐹) = 1 → 𝐹 ∈ (pmEven‘𝐷))) |
| 11 | 10 | con3d 152 | . . . 4 ⊢ ((𝐷 ∈ Fin ∧ 𝐹 ∈ 𝑃) → (¬ 𝐹 ∈ (pmEven‘𝐷) → ¬ (𝑁‘𝐹) = 1)) |
| 12 | 11 | impr 454 | . . 3 ⊢ ((𝐷 ∈ Fin ∧ (𝐹 ∈ 𝑃 ∧ ¬ 𝐹 ∈ (pmEven‘𝐷))) → ¬ (𝑁‘𝐹) = 1) |
| 13 | 1, 12 | sylan2b 594 | . 2 ⊢ ((𝐷 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝐷))) → ¬ (𝑁‘𝐹) = 1) |
| 14 | eqid 2735 | . . . . . . 7 ⊢ ((mulGrp‘ℂfld) ↾s {1, -1}) = ((mulGrp‘ℂfld) ↾s {1, -1}) | |
| 15 | 5, 7, 14 | psgnghm2 21541 | . . . . . 6 ⊢ (𝐷 ∈ Fin → 𝑁 ∈ (𝑆 GrpHom ((mulGrp‘ℂfld) ↾s {1, -1}))) |
| 16 | 15 | adantr 480 | . . . . 5 ⊢ ((𝐷 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝐷))) → 𝑁 ∈ (𝑆 GrpHom ((mulGrp‘ℂfld) ↾s {1, -1}))) |
| 17 | 14 | cnmsgnbas 21538 | . . . . . 6 ⊢ {1, -1} = (Base‘((mulGrp‘ℂfld) ↾s {1, -1})) |
| 18 | 6, 17 | ghmf 19203 | . . . . 5 ⊢ (𝑁 ∈ (𝑆 GrpHom ((mulGrp‘ℂfld) ↾s {1, -1})) → 𝑁:𝑃⟶{1, -1}) |
| 19 | 16, 18 | syl 17 | . . . 4 ⊢ ((𝐷 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝐷))) → 𝑁:𝑃⟶{1, -1}) |
| 20 | eldifi 4106 | . . . . 5 ⊢ (𝐹 ∈ (𝑃 ∖ (pmEven‘𝐷)) → 𝐹 ∈ 𝑃) | |
| 21 | 20 | adantl 481 | . . . 4 ⊢ ((𝐷 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝐷))) → 𝐹 ∈ 𝑃) |
| 22 | 19, 21 | ffvelcdmd 7075 | . . 3 ⊢ ((𝐷 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝐷))) → (𝑁‘𝐹) ∈ {1, -1}) |
| 23 | fvex 6889 | . . . 4 ⊢ (𝑁‘𝐹) ∈ V | |
| 24 | 23 | elpr 4626 | . . 3 ⊢ ((𝑁‘𝐹) ∈ {1, -1} ↔ ((𝑁‘𝐹) = 1 ∨ (𝑁‘𝐹) = -1)) |
| 25 | 22, 24 | sylib 218 | . 2 ⊢ ((𝐷 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝐷))) → ((𝑁‘𝐹) = 1 ∨ (𝑁‘𝐹) = -1)) |
| 26 | orel1 888 | . 2 ⊢ (¬ (𝑁‘𝐹) = 1 → (((𝑁‘𝐹) = 1 ∨ (𝑁‘𝐹) = -1) → (𝑁‘𝐹) = -1)) | |
| 27 | 13, 25, 26 | sylc 65 | 1 ⊢ ((𝐷 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝐷))) → (𝑁‘𝐹) = -1) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 = wceq 1540 ∈ wcel 2108 ∖ cdif 3923 {cpr 4603 ⟶wf 6527 ‘cfv 6531 (class class class)co 7405 Fincfn 8959 1c1 11130 -cneg 11467 Basecbs 17228 ↾s cress 17251 GrpHom cghm 19195 SymGrpcsymg 19350 pmSgncpsgn 19470 pmEvencevpm 19471 mulGrpcmgp 20100 ℂfldccnfld 21315 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 ax-addf 11208 ax-mulf 11209 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-xor 1512 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-tp 4606 df-op 4608 df-ot 4610 df-uni 4884 df-int 4923 df-iun 4969 df-iin 4970 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-se 5607 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-isom 6540 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-1st 7988 df-2nd 7989 df-tpos 8225 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-2o 8481 df-er 8719 df-map 8842 df-en 8960 df-dom 8961 df-sdom 8962 df-fin 8963 df-card 9953 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-div 11895 df-nn 12241 df-2 12303 df-3 12304 df-4 12305 df-5 12306 df-6 12307 df-7 12308 df-8 12309 df-9 12310 df-n0 12502 df-xnn0 12575 df-z 12589 df-dec 12709 df-uz 12853 df-rp 13009 df-fz 13525 df-fzo 13672 df-seq 14020 df-exp 14080 df-hash 14349 df-word 14532 df-lsw 14581 df-concat 14589 df-s1 14614 df-substr 14659 df-pfx 14689 df-splice 14768 df-reverse 14777 df-s2 14867 df-struct 17166 df-sets 17183 df-slot 17201 df-ndx 17213 df-base 17229 df-ress 17252 df-plusg 17284 df-mulr 17285 df-starv 17286 df-tset 17290 df-ple 17291 df-ds 17293 df-unif 17294 df-0g 17455 df-gsum 17456 df-mre 17598 df-mrc 17599 df-acs 17601 df-mgm 18618 df-sgrp 18697 df-mnd 18713 df-mhm 18761 df-submnd 18762 df-efmnd 18847 df-grp 18919 df-minusg 18920 df-subg 19106 df-ghm 19196 df-gim 19242 df-oppg 19329 df-symg 19351 df-pmtr 19423 df-psgn 19472 df-evpm 19473 df-cmn 19763 df-abl 19764 df-mgp 20101 df-rng 20113 df-ur 20142 df-ring 20195 df-cring 20196 df-oppr 20297 df-dvdsr 20317 df-unit 20318 df-invr 20348 df-dvr 20361 df-drng 20691 df-cnfld 21316 |
| This theorem is referenced by: zrhpsgnodpm 21552 evpmodpmf1o 21556 odpmco 33097 |
| Copyright terms: Public domain | W3C validator |