![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > psgnodpm | Structured version Visualization version GIF version |
Description: A permutation which is odd (i.e. not even) has sign -1. (Contributed by SO, 9-Jul-2018.) |
Ref | Expression |
---|---|
evpmss.s | ⊢ 𝑆 = (SymGrp‘𝐷) |
evpmss.p | ⊢ 𝑃 = (Base‘𝑆) |
psgnevpmb.n | ⊢ 𝑁 = (pmSgn‘𝐷) |
Ref | Expression |
---|---|
psgnodpm | ⊢ ((𝐷 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝐷))) → (𝑁‘𝐹) = -1) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eldif 3954 | . . 3 ⊢ (𝐹 ∈ (𝑃 ∖ (pmEven‘𝐷)) ↔ (𝐹 ∈ 𝑃 ∧ ¬ 𝐹 ∈ (pmEven‘𝐷))) | |
2 | simpr 483 | . . . . . . . 8 ⊢ ((𝐷 ∈ Fin ∧ 𝐹 ∈ 𝑃) → 𝐹 ∈ 𝑃) | |
3 | 2 | a1d 25 | . . . . . . 7 ⊢ ((𝐷 ∈ Fin ∧ 𝐹 ∈ 𝑃) → ((𝑁‘𝐹) = 1 → 𝐹 ∈ 𝑃)) |
4 | 3 | ancrd 550 | . . . . . 6 ⊢ ((𝐷 ∈ Fin ∧ 𝐹 ∈ 𝑃) → ((𝑁‘𝐹) = 1 → (𝐹 ∈ 𝑃 ∧ (𝑁‘𝐹) = 1))) |
5 | evpmss.s | . . . . . . . 8 ⊢ 𝑆 = (SymGrp‘𝐷) | |
6 | evpmss.p | . . . . . . . 8 ⊢ 𝑃 = (Base‘𝑆) | |
7 | psgnevpmb.n | . . . . . . . 8 ⊢ 𝑁 = (pmSgn‘𝐷) | |
8 | 5, 6, 7 | psgnevpmb 21536 | . . . . . . 7 ⊢ (𝐷 ∈ Fin → (𝐹 ∈ (pmEven‘𝐷) ↔ (𝐹 ∈ 𝑃 ∧ (𝑁‘𝐹) = 1))) |
9 | 8 | adantr 479 | . . . . . 6 ⊢ ((𝐷 ∈ Fin ∧ 𝐹 ∈ 𝑃) → (𝐹 ∈ (pmEven‘𝐷) ↔ (𝐹 ∈ 𝑃 ∧ (𝑁‘𝐹) = 1))) |
10 | 4, 9 | sylibrd 258 | . . . . 5 ⊢ ((𝐷 ∈ Fin ∧ 𝐹 ∈ 𝑃) → ((𝑁‘𝐹) = 1 → 𝐹 ∈ (pmEven‘𝐷))) |
11 | 10 | con3d 152 | . . . 4 ⊢ ((𝐷 ∈ Fin ∧ 𝐹 ∈ 𝑃) → (¬ 𝐹 ∈ (pmEven‘𝐷) → ¬ (𝑁‘𝐹) = 1)) |
12 | 11 | impr 453 | . . 3 ⊢ ((𝐷 ∈ Fin ∧ (𝐹 ∈ 𝑃 ∧ ¬ 𝐹 ∈ (pmEven‘𝐷))) → ¬ (𝑁‘𝐹) = 1) |
13 | 1, 12 | sylan2b 592 | . 2 ⊢ ((𝐷 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝐷))) → ¬ (𝑁‘𝐹) = 1) |
14 | eqid 2725 | . . . . . . 7 ⊢ ((mulGrp‘ℂfld) ↾s {1, -1}) = ((mulGrp‘ℂfld) ↾s {1, -1}) | |
15 | 5, 7, 14 | psgnghm2 21530 | . . . . . 6 ⊢ (𝐷 ∈ Fin → 𝑁 ∈ (𝑆 GrpHom ((mulGrp‘ℂfld) ↾s {1, -1}))) |
16 | 15 | adantr 479 | . . . . 5 ⊢ ((𝐷 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝐷))) → 𝑁 ∈ (𝑆 GrpHom ((mulGrp‘ℂfld) ↾s {1, -1}))) |
17 | 14 | cnmsgnbas 21527 | . . . . . 6 ⊢ {1, -1} = (Base‘((mulGrp‘ℂfld) ↾s {1, -1})) |
18 | 6, 17 | ghmf 19183 | . . . . 5 ⊢ (𝑁 ∈ (𝑆 GrpHom ((mulGrp‘ℂfld) ↾s {1, -1})) → 𝑁:𝑃⟶{1, -1}) |
19 | 16, 18 | syl 17 | . . . 4 ⊢ ((𝐷 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝐷))) → 𝑁:𝑃⟶{1, -1}) |
20 | eldifi 4123 | . . . . 5 ⊢ (𝐹 ∈ (𝑃 ∖ (pmEven‘𝐷)) → 𝐹 ∈ 𝑃) | |
21 | 20 | adantl 480 | . . . 4 ⊢ ((𝐷 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝐷))) → 𝐹 ∈ 𝑃) |
22 | 19, 21 | ffvelcdmd 7094 | . . 3 ⊢ ((𝐷 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝐷))) → (𝑁‘𝐹) ∈ {1, -1}) |
23 | fvex 6909 | . . . 4 ⊢ (𝑁‘𝐹) ∈ V | |
24 | 23 | elpr 4654 | . . 3 ⊢ ((𝑁‘𝐹) ∈ {1, -1} ↔ ((𝑁‘𝐹) = 1 ∨ (𝑁‘𝐹) = -1)) |
25 | 22, 24 | sylib 217 | . 2 ⊢ ((𝐷 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝐷))) → ((𝑁‘𝐹) = 1 ∨ (𝑁‘𝐹) = -1)) |
26 | orel1 886 | . 2 ⊢ (¬ (𝑁‘𝐹) = 1 → (((𝑁‘𝐹) = 1 ∨ (𝑁‘𝐹) = -1) → (𝑁‘𝐹) = -1)) | |
27 | 13, 25, 26 | sylc 65 | 1 ⊢ ((𝐷 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝐷))) → (𝑁‘𝐹) = -1) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 394 ∨ wo 845 = wceq 1533 ∈ wcel 2098 ∖ cdif 3941 {cpr 4632 ⟶wf 6545 ‘cfv 6549 (class class class)co 7419 Fincfn 8964 1c1 11141 -cneg 11477 Basecbs 17183 ↾s cress 17212 GrpHom cghm 19175 SymGrpcsymg 19333 pmSgncpsgn 19456 pmEvencevpm 19457 mulGrpcmgp 20086 ℂfldccnfld 21296 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5365 ax-pr 5429 ax-un 7741 ax-cnex 11196 ax-resscn 11197 ax-1cn 11198 ax-icn 11199 ax-addcl 11200 ax-addrcl 11201 ax-mulcl 11202 ax-mulrcl 11203 ax-mulcom 11204 ax-addass 11205 ax-mulass 11206 ax-distr 11207 ax-i2m1 11208 ax-1ne0 11209 ax-1rid 11210 ax-rnegex 11211 ax-rrecex 11212 ax-cnre 11213 ax-pre-lttri 11214 ax-pre-lttrn 11215 ax-pre-ltadd 11216 ax-pre-mulgt0 11217 ax-addf 11219 ax-mulf 11220 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-xor 1505 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3419 df-v 3463 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3964 df-nul 4323 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-tp 4635 df-op 4637 df-ot 4639 df-uni 4910 df-int 4951 df-iun 4999 df-iin 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-se 5634 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6307 df-ord 6374 df-on 6375 df-lim 6376 df-suc 6377 df-iota 6501 df-fun 6551 df-fn 6552 df-f 6553 df-f1 6554 df-fo 6555 df-f1o 6556 df-fv 6557 df-isom 6558 df-riota 7375 df-ov 7422 df-oprab 7423 df-mpo 7424 df-om 7872 df-1st 7994 df-2nd 7995 df-tpos 8232 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-1o 8487 df-2o 8488 df-er 8725 df-map 8847 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-card 9964 df-pnf 11282 df-mnf 11283 df-xr 11284 df-ltxr 11285 df-le 11286 df-sub 11478 df-neg 11479 df-div 11904 df-nn 12246 df-2 12308 df-3 12309 df-4 12310 df-5 12311 df-6 12312 df-7 12313 df-8 12314 df-9 12315 df-n0 12506 df-xnn0 12578 df-z 12592 df-dec 12711 df-uz 12856 df-rp 13010 df-fz 13520 df-fzo 13663 df-seq 14003 df-exp 14063 df-hash 14326 df-word 14501 df-lsw 14549 df-concat 14557 df-s1 14582 df-substr 14627 df-pfx 14657 df-splice 14736 df-reverse 14745 df-s2 14835 df-struct 17119 df-sets 17136 df-slot 17154 df-ndx 17166 df-base 17184 df-ress 17213 df-plusg 17249 df-mulr 17250 df-starv 17251 df-tset 17255 df-ple 17256 df-ds 17258 df-unif 17259 df-0g 17426 df-gsum 17427 df-mre 17569 df-mrc 17570 df-acs 17572 df-mgm 18603 df-sgrp 18682 df-mnd 18698 df-mhm 18743 df-submnd 18744 df-efmnd 18829 df-grp 18901 df-minusg 18902 df-subg 19086 df-ghm 19176 df-gim 19222 df-oppg 19309 df-symg 19334 df-pmtr 19409 df-psgn 19458 df-evpm 19459 df-cmn 19749 df-abl 19750 df-mgp 20087 df-rng 20105 df-ur 20134 df-ring 20187 df-cring 20188 df-oppr 20285 df-dvdsr 20308 df-unit 20309 df-invr 20339 df-dvr 20352 df-drng 20638 df-cnfld 21297 |
This theorem is referenced by: zrhpsgnodpm 21541 evpmodpmf1o 21545 odpmco 32899 |
Copyright terms: Public domain | W3C validator |