![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > psgnodpm | Structured version Visualization version GIF version |
Description: A permutation which is odd (i.e. not even) has sign -1. (Contributed by SO, 9-Jul-2018.) |
Ref | Expression |
---|---|
evpmss.s | β’ π = (SymGrpβπ·) |
evpmss.p | β’ π = (Baseβπ) |
psgnevpmb.n | β’ π = (pmSgnβπ·) |
Ref | Expression |
---|---|
psgnodpm | β’ ((π· β Fin β§ πΉ β (π β (pmEvenβπ·))) β (πβπΉ) = -1) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eldif 3953 | . . 3 β’ (πΉ β (π β (pmEvenβπ·)) β (πΉ β π β§ Β¬ πΉ β (pmEvenβπ·))) | |
2 | simpr 484 | . . . . . . . 8 β’ ((π· β Fin β§ πΉ β π) β πΉ β π) | |
3 | 2 | a1d 25 | . . . . . . 7 β’ ((π· β Fin β§ πΉ β π) β ((πβπΉ) = 1 β πΉ β π)) |
4 | 3 | ancrd 551 | . . . . . 6 β’ ((π· β Fin β§ πΉ β π) β ((πβπΉ) = 1 β (πΉ β π β§ (πβπΉ) = 1))) |
5 | evpmss.s | . . . . . . . 8 β’ π = (SymGrpβπ·) | |
6 | evpmss.p | . . . . . . . 8 β’ π = (Baseβπ) | |
7 | psgnevpmb.n | . . . . . . . 8 β’ π = (pmSgnβπ·) | |
8 | 5, 6, 7 | psgnevpmb 21475 | . . . . . . 7 β’ (π· β Fin β (πΉ β (pmEvenβπ·) β (πΉ β π β§ (πβπΉ) = 1))) |
9 | 8 | adantr 480 | . . . . . 6 β’ ((π· β Fin β§ πΉ β π) β (πΉ β (pmEvenβπ·) β (πΉ β π β§ (πβπΉ) = 1))) |
10 | 4, 9 | sylibrd 259 | . . . . 5 β’ ((π· β Fin β§ πΉ β π) β ((πβπΉ) = 1 β πΉ β (pmEvenβπ·))) |
11 | 10 | con3d 152 | . . . 4 β’ ((π· β Fin β§ πΉ β π) β (Β¬ πΉ β (pmEvenβπ·) β Β¬ (πβπΉ) = 1)) |
12 | 11 | impr 454 | . . 3 β’ ((π· β Fin β§ (πΉ β π β§ Β¬ πΉ β (pmEvenβπ·))) β Β¬ (πβπΉ) = 1) |
13 | 1, 12 | sylan2b 593 | . 2 β’ ((π· β Fin β§ πΉ β (π β (pmEvenβπ·))) β Β¬ (πβπΉ) = 1) |
14 | eqid 2726 | . . . . . . 7 β’ ((mulGrpββfld) βΎs {1, -1}) = ((mulGrpββfld) βΎs {1, -1}) | |
15 | 5, 7, 14 | psgnghm2 21469 | . . . . . 6 β’ (π· β Fin β π β (π GrpHom ((mulGrpββfld) βΎs {1, -1}))) |
16 | 15 | adantr 480 | . . . . 5 β’ ((π· β Fin β§ πΉ β (π β (pmEvenβπ·))) β π β (π GrpHom ((mulGrpββfld) βΎs {1, -1}))) |
17 | 14 | cnmsgnbas 21466 | . . . . . 6 β’ {1, -1} = (Baseβ((mulGrpββfld) βΎs {1, -1})) |
18 | 6, 17 | ghmf 19142 | . . . . 5 β’ (π β (π GrpHom ((mulGrpββfld) βΎs {1, -1})) β π:πβΆ{1, -1}) |
19 | 16, 18 | syl 17 | . . . 4 β’ ((π· β Fin β§ πΉ β (π β (pmEvenβπ·))) β π:πβΆ{1, -1}) |
20 | eldifi 4121 | . . . . 5 β’ (πΉ β (π β (pmEvenβπ·)) β πΉ β π) | |
21 | 20 | adantl 481 | . . . 4 β’ ((π· β Fin β§ πΉ β (π β (pmEvenβπ·))) β πΉ β π) |
22 | 19, 21 | ffvelcdmd 7080 | . . 3 β’ ((π· β Fin β§ πΉ β (π β (pmEvenβπ·))) β (πβπΉ) β {1, -1}) |
23 | fvex 6897 | . . . 4 β’ (πβπΉ) β V | |
24 | 23 | elpr 4646 | . . 3 β’ ((πβπΉ) β {1, -1} β ((πβπΉ) = 1 β¨ (πβπΉ) = -1)) |
25 | 22, 24 | sylib 217 | . 2 β’ ((π· β Fin β§ πΉ β (π β (pmEvenβπ·))) β ((πβπΉ) = 1 β¨ (πβπΉ) = -1)) |
26 | orel1 885 | . 2 β’ (Β¬ (πβπΉ) = 1 β (((πβπΉ) = 1 β¨ (πβπΉ) = -1) β (πβπΉ) = -1)) | |
27 | 13, 25, 26 | sylc 65 | 1 β’ ((π· β Fin β§ πΉ β (π β (pmEvenβπ·))) β (πβπΉ) = -1) |
Colors of variables: wff setvar class |
Syntax hints: Β¬ wn 3 β wi 4 β wb 205 β§ wa 395 β¨ wo 844 = wceq 1533 β wcel 2098 β cdif 3940 {cpr 4625 βΆwf 6532 βcfv 6536 (class class class)co 7404 Fincfn 8938 1c1 11110 -cneg 11446 Basecbs 17150 βΎs cress 17179 GrpHom cghm 19135 SymGrpcsymg 19283 pmSgncpsgn 19406 pmEvencevpm 19407 mulGrpcmgp 20036 βfldccnfld 21235 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7721 ax-cnex 11165 ax-resscn 11166 ax-1cn 11167 ax-icn 11168 ax-addcl 11169 ax-addrcl 11170 ax-mulcl 11171 ax-mulrcl 11172 ax-mulcom 11173 ax-addass 11174 ax-mulass 11175 ax-distr 11176 ax-i2m1 11177 ax-1ne0 11178 ax-1rid 11179 ax-rnegex 11180 ax-rrecex 11181 ax-cnre 11182 ax-pre-lttri 11183 ax-pre-lttrn 11184 ax-pre-ltadd 11185 ax-pre-mulgt0 11186 ax-addf 11188 ax-mulf 11189 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-xor 1505 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-nel 3041 df-ral 3056 df-rex 3065 df-rmo 3370 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-pss 3962 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-tp 4628 df-op 4630 df-ot 4632 df-uni 4903 df-int 4944 df-iun 4992 df-iin 4993 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-se 5625 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-pred 6293 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6488 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-isom 6545 df-riota 7360 df-ov 7407 df-oprab 7408 df-mpo 7409 df-om 7852 df-1st 7971 df-2nd 7972 df-tpos 8209 df-frecs 8264 df-wrecs 8295 df-recs 8369 df-rdg 8408 df-1o 8464 df-2o 8465 df-er 8702 df-map 8821 df-en 8939 df-dom 8940 df-sdom 8941 df-fin 8942 df-card 9933 df-pnf 11251 df-mnf 11252 df-xr 11253 df-ltxr 11254 df-le 11255 df-sub 11447 df-neg 11448 df-div 11873 df-nn 12214 df-2 12276 df-3 12277 df-4 12278 df-5 12279 df-6 12280 df-7 12281 df-8 12282 df-9 12283 df-n0 12474 df-xnn0 12546 df-z 12560 df-dec 12679 df-uz 12824 df-rp 12978 df-fz 13488 df-fzo 13631 df-seq 13970 df-exp 14030 df-hash 14293 df-word 14468 df-lsw 14516 df-concat 14524 df-s1 14549 df-substr 14594 df-pfx 14624 df-splice 14703 df-reverse 14712 df-s2 14802 df-struct 17086 df-sets 17103 df-slot 17121 df-ndx 17133 df-base 17151 df-ress 17180 df-plusg 17216 df-mulr 17217 df-starv 17218 df-tset 17222 df-ple 17223 df-ds 17225 df-unif 17226 df-0g 17393 df-gsum 17394 df-mre 17536 df-mrc 17537 df-acs 17539 df-mgm 18570 df-sgrp 18649 df-mnd 18665 df-mhm 18710 df-submnd 18711 df-efmnd 18791 df-grp 18863 df-minusg 18864 df-subg 19047 df-ghm 19136 df-gim 19181 df-oppg 19259 df-symg 19284 df-pmtr 19359 df-psgn 19408 df-evpm 19409 df-cmn 19699 df-abl 19700 df-mgp 20037 df-rng 20055 df-ur 20084 df-ring 20137 df-cring 20138 df-oppr 20233 df-dvdsr 20256 df-unit 20257 df-invr 20287 df-dvr 20300 df-drng 20586 df-cnfld 21236 |
This theorem is referenced by: zrhpsgnodpm 21480 evpmodpmf1o 21484 odpmco 32750 |
Copyright terms: Public domain | W3C validator |