![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ovidig | Structured version Visualization version GIF version |
Description: The value of an operation class abstraction. Compare ovidi 7576. The condition (𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑆) is been removed. (Contributed by Mario Carneiro, 29-Dec-2014.) |
Ref | Expression |
---|---|
ovidig.1 | ⊢ ∃*𝑧𝜑 |
ovidig.2 | ⊢ 𝐹 = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} |
Ref | Expression |
---|---|
ovidig | ⊢ (𝜑 → (𝑥𝐹𝑦) = 𝑧) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ov 7434 | . 2 ⊢ (𝑥𝐹𝑦) = (𝐹‘〈𝑥, 𝑦〉) | |
2 | ovidig.1 | . . . . 5 ⊢ ∃*𝑧𝜑 | |
3 | 2 | funoprab 7555 | . . . 4 ⊢ Fun {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} |
4 | ovidig.2 | . . . . 5 ⊢ 𝐹 = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} | |
5 | 4 | funeqi 6589 | . . . 4 ⊢ (Fun 𝐹 ↔ Fun {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑}) |
6 | 3, 5 | mpbir 231 | . . 3 ⊢ Fun 𝐹 |
7 | oprabidw 7462 | . . . . 5 ⊢ (〈〈𝑥, 𝑦〉, 𝑧〉 ∈ {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} ↔ 𝜑) | |
8 | 7 | biimpri 228 | . . . 4 ⊢ (𝜑 → 〈〈𝑥, 𝑦〉, 𝑧〉 ∈ {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑}) |
9 | 8, 4 | eleqtrrdi 2850 | . . 3 ⊢ (𝜑 → 〈〈𝑥, 𝑦〉, 𝑧〉 ∈ 𝐹) |
10 | funopfv 6959 | . . 3 ⊢ (Fun 𝐹 → (〈〈𝑥, 𝑦〉, 𝑧〉 ∈ 𝐹 → (𝐹‘〈𝑥, 𝑦〉) = 𝑧)) | |
11 | 6, 9, 10 | mpsyl 68 | . 2 ⊢ (𝜑 → (𝐹‘〈𝑥, 𝑦〉) = 𝑧) |
12 | 1, 11 | eqtrid 2787 | 1 ⊢ (𝜑 → (𝑥𝐹𝑦) = 𝑧) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2106 ∃*wmo 2536 〈cop 4637 Fun wfun 6557 ‘cfv 6563 (class class class)co 7431 {coprab 7432 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-iota 6516 df-fun 6565 df-fv 6571 df-ov 7434 df-oprab 7435 |
This theorem is referenced by: ovidi 7576 |
Copyright terms: Public domain | W3C validator |