MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ovidig Structured version   Visualization version   GIF version

Theorem ovidig 7550
Description: The value of an operation class abstraction. Compare ovidi 7551. The condition (𝑥𝑅𝑦𝑆) is been removed. (Contributed by Mario Carneiro, 29-Dec-2014.)
Hypotheses
Ref Expression
ovidig.1 ∃*𝑧𝜑
ovidig.2 𝐹 = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑}
Assertion
Ref Expression
ovidig (𝜑 → (𝑥𝐹𝑦) = 𝑧)
Distinct variable group:   𝑥,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)   𝐹(𝑥,𝑦,𝑧)

Proof of Theorem ovidig
StepHypRef Expression
1 df-ov 7412 . 2 (𝑥𝐹𝑦) = (𝐹‘⟨𝑥, 𝑦⟩)
2 ovidig.1 . . . . 5 ∃*𝑧𝜑
32funoprab 7530 . . . 4 Fun {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑}
4 ovidig.2 . . . . 5 𝐹 = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑}
54funeqi 6570 . . . 4 (Fun 𝐹 ↔ Fun {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑})
63, 5mpbir 230 . . 3 Fun 𝐹
7 oprabidw 7440 . . . . 5 (⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∈ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} ↔ 𝜑)
87biimpri 227 . . . 4 (𝜑 → ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∈ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑})
98, 4eleqtrrdi 2845 . . 3 (𝜑 → ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∈ 𝐹)
10 funopfv 6944 . . 3 (Fun 𝐹 → (⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∈ 𝐹 → (𝐹‘⟨𝑥, 𝑦⟩) = 𝑧))
116, 9, 10mpsyl 68 . 2 (𝜑 → (𝐹‘⟨𝑥, 𝑦⟩) = 𝑧)
121, 11eqtrid 2785 1 (𝜑 → (𝑥𝐹𝑦) = 𝑧)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1542  wcel 2107  ∃*wmo 2533  cop 4635  Fun wfun 6538  cfv 6544  (class class class)co 7409  {coprab 7410
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pr 5428
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-br 5150  df-opab 5212  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-iota 6496  df-fun 6546  df-fv 6552  df-ov 7412  df-oprab 7413
This theorem is referenced by:  ovidi  7551
  Copyright terms: Public domain W3C validator