| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ovidig | Structured version Visualization version GIF version | ||
| Description: The value of an operation class abstraction. Compare ovidi 7535. The condition (𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑆) is been removed. (Contributed by Mario Carneiro, 29-Dec-2014.) |
| Ref | Expression |
|---|---|
| ovidig.1 | ⊢ ∃*𝑧𝜑 |
| ovidig.2 | ⊢ 𝐹 = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} |
| Ref | Expression |
|---|---|
| ovidig | ⊢ (𝜑 → (𝑥𝐹𝑦) = 𝑧) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ov 7393 | . 2 ⊢ (𝑥𝐹𝑦) = (𝐹‘〈𝑥, 𝑦〉) | |
| 2 | ovidig.1 | . . . . 5 ⊢ ∃*𝑧𝜑 | |
| 3 | 2 | funoprab 7514 | . . . 4 ⊢ Fun {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} |
| 4 | ovidig.2 | . . . . 5 ⊢ 𝐹 = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} | |
| 5 | 4 | funeqi 6540 | . . . 4 ⊢ (Fun 𝐹 ↔ Fun {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑}) |
| 6 | 3, 5 | mpbir 231 | . . 3 ⊢ Fun 𝐹 |
| 7 | oprabidw 7421 | . . . . 5 ⊢ (〈〈𝑥, 𝑦〉, 𝑧〉 ∈ {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} ↔ 𝜑) | |
| 8 | 7 | biimpri 228 | . . . 4 ⊢ (𝜑 → 〈〈𝑥, 𝑦〉, 𝑧〉 ∈ {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑}) |
| 9 | 8, 4 | eleqtrrdi 2840 | . . 3 ⊢ (𝜑 → 〈〈𝑥, 𝑦〉, 𝑧〉 ∈ 𝐹) |
| 10 | funopfv 6913 | . . 3 ⊢ (Fun 𝐹 → (〈〈𝑥, 𝑦〉, 𝑧〉 ∈ 𝐹 → (𝐹‘〈𝑥, 𝑦〉) = 𝑧)) | |
| 11 | 6, 9, 10 | mpsyl 68 | . 2 ⊢ (𝜑 → (𝐹‘〈𝑥, 𝑦〉) = 𝑧) |
| 12 | 1, 11 | eqtrid 2777 | 1 ⊢ (𝜑 → (𝑥𝐹𝑦) = 𝑧) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ∃*wmo 2532 〈cop 4598 Fun wfun 6508 ‘cfv 6514 (class class class)co 7390 {coprab 7391 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-iota 6467 df-fun 6516 df-fv 6522 df-ov 7393 df-oprab 7394 |
| This theorem is referenced by: ovidi 7535 |
| Copyright terms: Public domain | W3C validator |