MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ovidig Structured version   Visualization version   GIF version

Theorem ovidig 7575
Description: The value of an operation class abstraction. Compare ovidi 7576. The condition (𝑥𝑅𝑦𝑆) is been removed. (Contributed by Mario Carneiro, 29-Dec-2014.)
Hypotheses
Ref Expression
ovidig.1 ∃*𝑧𝜑
ovidig.2 𝐹 = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑}
Assertion
Ref Expression
ovidig (𝜑 → (𝑥𝐹𝑦) = 𝑧)
Distinct variable group:   𝑥,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)   𝐹(𝑥,𝑦,𝑧)

Proof of Theorem ovidig
StepHypRef Expression
1 df-ov 7434 . 2 (𝑥𝐹𝑦) = (𝐹‘⟨𝑥, 𝑦⟩)
2 ovidig.1 . . . . 5 ∃*𝑧𝜑
32funoprab 7555 . . . 4 Fun {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑}
4 ovidig.2 . . . . 5 𝐹 = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑}
54funeqi 6589 . . . 4 (Fun 𝐹 ↔ Fun {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑})
63, 5mpbir 231 . . 3 Fun 𝐹
7 oprabidw 7462 . . . . 5 (⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∈ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} ↔ 𝜑)
87biimpri 228 . . . 4 (𝜑 → ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∈ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑})
98, 4eleqtrrdi 2850 . . 3 (𝜑 → ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∈ 𝐹)
10 funopfv 6959 . . 3 (Fun 𝐹 → (⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∈ 𝐹 → (𝐹‘⟨𝑥, 𝑦⟩) = 𝑧))
116, 9, 10mpsyl 68 . 2 (𝜑 → (𝐹‘⟨𝑥, 𝑦⟩) = 𝑧)
121, 11eqtrid 2787 1 (𝜑 → (𝑥𝐹𝑦) = 𝑧)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2106  ∃*wmo 2536  cop 4637  Fun wfun 6557  cfv 6563  (class class class)co 7431  {coprab 7432
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-iota 6516  df-fun 6565  df-fv 6571  df-ov 7434  df-oprab 7435
This theorem is referenced by:  ovidi  7576
  Copyright terms: Public domain W3C validator