Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ovigg | Structured version Visualization version GIF version |
Description: The value of an operation class abstraction. Compared with ovig 7481, the condition (𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑆) is removed. (Contributed by FL, 24-Mar-2007.) (Revised by Mario Carneiro, 19-Dec-2013.) |
Ref | Expression |
---|---|
ovigg.1 | ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ∧ 𝑧 = 𝐶) → (𝜑 ↔ 𝜓)) |
ovigg.4 | ⊢ ∃*𝑧𝜑 |
ovigg.5 | ⊢ 𝐹 = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} |
Ref | Expression |
---|---|
ovigg | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) → (𝜓 → (𝐴𝐹𝐵) = 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ovigg.1 | . . 3 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ∧ 𝑧 = 𝐶) → (𝜑 ↔ 𝜓)) | |
2 | 1 | eloprabga 7444 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) → (〈〈𝐴, 𝐵〉, 𝐶〉 ∈ {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} ↔ 𝜓)) |
3 | df-ov 7340 | . . . 4 ⊢ (𝐴𝐹𝐵) = (𝐹‘〈𝐴, 𝐵〉) | |
4 | ovigg.5 | . . . . 5 ⊢ 𝐹 = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} | |
5 | 4 | fveq1i 6826 | . . . 4 ⊢ (𝐹‘〈𝐴, 𝐵〉) = ({〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑}‘〈𝐴, 𝐵〉) |
6 | 3, 5 | eqtri 2764 | . . 3 ⊢ (𝐴𝐹𝐵) = ({〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑}‘〈𝐴, 𝐵〉) |
7 | ovigg.4 | . . . . 5 ⊢ ∃*𝑧𝜑 | |
8 | 7 | funoprab 7458 | . . . 4 ⊢ Fun {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} |
9 | funopfv 6877 | . . . 4 ⊢ (Fun {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} → (〈〈𝐴, 𝐵〉, 𝐶〉 ∈ {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} → ({〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑}‘〈𝐴, 𝐵〉) = 𝐶)) | |
10 | 8, 9 | ax-mp 5 | . . 3 ⊢ (〈〈𝐴, 𝐵〉, 𝐶〉 ∈ {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} → ({〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑}‘〈𝐴, 𝐵〉) = 𝐶) |
11 | 6, 10 | eqtrid 2788 | . 2 ⊢ (〈〈𝐴, 𝐵〉, 𝐶〉 ∈ {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} → (𝐴𝐹𝐵) = 𝐶) |
12 | 2, 11 | syl6bir 253 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) → (𝜓 → (𝐴𝐹𝐵) = 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ w3a 1086 = wceq 1540 ∈ wcel 2105 ∃*wmo 2536 〈cop 4579 Fun wfun 6473 ‘cfv 6479 (class class class)co 7337 {coprab 7338 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-sep 5243 ax-nul 5250 ax-pr 5372 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ral 3062 df-rex 3071 df-rab 3404 df-v 3443 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4270 df-if 4474 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4853 df-br 5093 df-opab 5155 df-id 5518 df-xp 5626 df-rel 5627 df-cnv 5628 df-co 5629 df-dm 5630 df-iota 6431 df-fun 6481 df-fv 6487 df-ov 7340 df-oprab 7341 |
This theorem is referenced by: ovig 7481 joinval 18192 meetval 18206 |
Copyright terms: Public domain | W3C validator |