MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ovima0 Structured version   Visualization version   GIF version

Theorem ovima0 7629
Description: An operation value is a member of the image plus null. (Contributed by Thierry Arnoux, 25-Jun-2019.)
Assertion
Ref Expression
ovima0 ((𝑋𝐴𝑌𝐵) → (𝑋𝑅𝑌) ∈ ((𝑅 “ (𝐴 × 𝐵)) ∪ {∅}))

Proof of Theorem ovima0
StepHypRef Expression
1 simpr 484 . . 3 (((𝑋𝐴𝑌𝐵) ∧ (𝑋𝑅𝑌) = ∅) → (𝑋𝑅𝑌) = ∅)
2 ssun2 4202 . . . 4 {∅} ⊆ ((𝑅 “ (𝐴 × 𝐵)) ∪ {∅})
3 0ex 5325 . . . . 5 ∅ ∈ V
43snid 4684 . . . 4 ∅ ∈ {∅}
52, 4sselii 4005 . . 3 ∅ ∈ ((𝑅 “ (𝐴 × 𝐵)) ∪ {∅})
61, 5eqeltrdi 2852 . 2 (((𝑋𝐴𝑌𝐵) ∧ (𝑋𝑅𝑌) = ∅) → (𝑋𝑅𝑌) ∈ ((𝑅 “ (𝐴 × 𝐵)) ∪ {∅}))
7 ssun1 4201 . . 3 (𝑅 “ (𝐴 × 𝐵)) ⊆ ((𝑅 “ (𝐴 × 𝐵)) ∪ {∅})
8 df-ov 7451 . . . 4 (𝑋𝑅𝑌) = (𝑅‘⟨𝑋, 𝑌⟩)
9 opelxpi 5737 . . . . 5 ((𝑋𝐴𝑌𝐵) → ⟨𝑋, 𝑌⟩ ∈ (𝐴 × 𝐵))
108eqeq1i 2745 . . . . . . 7 ((𝑋𝑅𝑌) = ∅ ↔ (𝑅‘⟨𝑋, 𝑌⟩) = ∅)
1110notbii 320 . . . . . 6 (¬ (𝑋𝑅𝑌) = ∅ ↔ ¬ (𝑅‘⟨𝑋, 𝑌⟩) = ∅)
1211biimpi 216 . . . . 5 (¬ (𝑋𝑅𝑌) = ∅ → ¬ (𝑅‘⟨𝑋, 𝑌⟩) = ∅)
13 eliman0 6960 . . . . 5 ((⟨𝑋, 𝑌⟩ ∈ (𝐴 × 𝐵) ∧ ¬ (𝑅‘⟨𝑋, 𝑌⟩) = ∅) → (𝑅‘⟨𝑋, 𝑌⟩) ∈ (𝑅 “ (𝐴 × 𝐵)))
149, 12, 13syl2an 595 . . . 4 (((𝑋𝐴𝑌𝐵) ∧ ¬ (𝑋𝑅𝑌) = ∅) → (𝑅‘⟨𝑋, 𝑌⟩) ∈ (𝑅 “ (𝐴 × 𝐵)))
158, 14eqeltrid 2848 . . 3 (((𝑋𝐴𝑌𝐵) ∧ ¬ (𝑋𝑅𝑌) = ∅) → (𝑋𝑅𝑌) ∈ (𝑅 “ (𝐴 × 𝐵)))
167, 15sselid 4006 . 2 (((𝑋𝐴𝑌𝐵) ∧ ¬ (𝑋𝑅𝑌) = ∅) → (𝑋𝑅𝑌) ∈ ((𝑅 “ (𝐴 × 𝐵)) ∪ {∅}))
176, 16pm2.61dan 812 1 ((𝑋𝐴𝑌𝐵) → (𝑋𝑅𝑌) ∈ ((𝑅 “ (𝐴 × 𝐵)) ∪ {∅}))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1537  wcel 2108  cun 3974  c0 4352  {csn 4648  cop 4654   × cxp 5698  cima 5703  cfv 6573  (class class class)co 7448
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-xp 5706  df-cnv 5708  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fv 6581  df-ov 7451
This theorem is referenced by:  legval  28610
  Copyright terms: Public domain W3C validator