![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ovima0 | Structured version Visualization version GIF version |
Description: An operation value is a member of the image plus null. (Contributed by Thierry Arnoux, 25-Jun-2019.) |
Ref | Expression |
---|---|
ovima0 | ⊢ ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵) → (𝑋𝑅𝑌) ∈ ((𝑅 “ (𝐴 × 𝐵)) ∪ {∅})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 484 | . . 3 ⊢ (((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵) ∧ (𝑋𝑅𝑌) = ∅) → (𝑋𝑅𝑌) = ∅) | |
2 | ssun2 4173 | . . . 4 ⊢ {∅} ⊆ ((𝑅 “ (𝐴 × 𝐵)) ∪ {∅}) | |
3 | 0ex 5307 | . . . . 5 ⊢ ∅ ∈ V | |
4 | 3 | snid 4665 | . . . 4 ⊢ ∅ ∈ {∅} |
5 | 2, 4 | sselii 3977 | . . 3 ⊢ ∅ ∈ ((𝑅 “ (𝐴 × 𝐵)) ∪ {∅}) |
6 | 1, 5 | eqeltrdi 2837 | . 2 ⊢ (((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵) ∧ (𝑋𝑅𝑌) = ∅) → (𝑋𝑅𝑌) ∈ ((𝑅 “ (𝐴 × 𝐵)) ∪ {∅})) |
7 | ssun1 4172 | . . 3 ⊢ (𝑅 “ (𝐴 × 𝐵)) ⊆ ((𝑅 “ (𝐴 × 𝐵)) ∪ {∅}) | |
8 | df-ov 7423 | . . . 4 ⊢ (𝑋𝑅𝑌) = (𝑅‘⟨𝑋, 𝑌⟩) | |
9 | opelxpi 5715 | . . . . 5 ⊢ ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵) → ⟨𝑋, 𝑌⟩ ∈ (𝐴 × 𝐵)) | |
10 | 8 | eqeq1i 2733 | . . . . . . 7 ⊢ ((𝑋𝑅𝑌) = ∅ ↔ (𝑅‘⟨𝑋, 𝑌⟩) = ∅) |
11 | 10 | notbii 320 | . . . . . 6 ⊢ (¬ (𝑋𝑅𝑌) = ∅ ↔ ¬ (𝑅‘⟨𝑋, 𝑌⟩) = ∅) |
12 | 11 | biimpi 215 | . . . . 5 ⊢ (¬ (𝑋𝑅𝑌) = ∅ → ¬ (𝑅‘⟨𝑋, 𝑌⟩) = ∅) |
13 | eliman0 6937 | . . . . 5 ⊢ ((⟨𝑋, 𝑌⟩ ∈ (𝐴 × 𝐵) ∧ ¬ (𝑅‘⟨𝑋, 𝑌⟩) = ∅) → (𝑅‘⟨𝑋, 𝑌⟩) ∈ (𝑅 “ (𝐴 × 𝐵))) | |
14 | 9, 12, 13 | syl2an 595 | . . . 4 ⊢ (((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵) ∧ ¬ (𝑋𝑅𝑌) = ∅) → (𝑅‘⟨𝑋, 𝑌⟩) ∈ (𝑅 “ (𝐴 × 𝐵))) |
15 | 8, 14 | eqeltrid 2833 | . . 3 ⊢ (((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵) ∧ ¬ (𝑋𝑅𝑌) = ∅) → (𝑋𝑅𝑌) ∈ (𝑅 “ (𝐴 × 𝐵))) |
16 | 7, 15 | sselid 3978 | . 2 ⊢ (((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵) ∧ ¬ (𝑋𝑅𝑌) = ∅) → (𝑋𝑅𝑌) ∈ ((𝑅 “ (𝐴 × 𝐵)) ∪ {∅})) |
17 | 6, 16 | pm2.61dan 812 | 1 ⊢ ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵) → (𝑋𝑅𝑌) ∈ ((𝑅 “ (𝐴 × 𝐵)) ∪ {∅})) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1534 ∈ wcel 2099 ∪ cun 3945 ∅c0 4323 {csn 4629 ⟨cop 4635 × cxp 5676 “ cima 5681 ‘cfv 6548 (class class class)co 7420 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-sep 5299 ax-nul 5306 ax-pr 5429 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-ne 2938 df-ral 3059 df-rex 3068 df-rab 3430 df-v 3473 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-br 5149 df-opab 5211 df-xp 5684 df-cnv 5686 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-iota 6500 df-fv 6556 df-ov 7423 |
This theorem is referenced by: legval 28401 |
Copyright terms: Public domain | W3C validator |