MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ovima0 Structured version   Visualization version   GIF version

Theorem ovima0 7580
Description: An operation value is a member of the image plus null. (Contributed by Thierry Arnoux, 25-Jun-2019.)
Assertion
Ref Expression
ovima0 ((𝑋𝐴𝑌𝐵) → (𝑋𝑅𝑌) ∈ ((𝑅 “ (𝐴 × 𝐵)) ∪ {∅}))

Proof of Theorem ovima0
StepHypRef Expression
1 simpr 484 . . 3 (((𝑋𝐴𝑌𝐵) ∧ (𝑋𝑅𝑌) = ∅) → (𝑋𝑅𝑌) = ∅)
2 ssun2 4166 . . . 4 {∅} ⊆ ((𝑅 “ (𝐴 × 𝐵)) ∪ {∅})
3 0ex 5298 . . . . 5 ∅ ∈ V
43snid 4657 . . . 4 ∅ ∈ {∅}
52, 4sselii 3972 . . 3 ∅ ∈ ((𝑅 “ (𝐴 × 𝐵)) ∪ {∅})
61, 5eqeltrdi 2833 . 2 (((𝑋𝐴𝑌𝐵) ∧ (𝑋𝑅𝑌) = ∅) → (𝑋𝑅𝑌) ∈ ((𝑅 “ (𝐴 × 𝐵)) ∪ {∅}))
7 ssun1 4165 . . 3 (𝑅 “ (𝐴 × 𝐵)) ⊆ ((𝑅 “ (𝐴 × 𝐵)) ∪ {∅})
8 df-ov 7405 . . . 4 (𝑋𝑅𝑌) = (𝑅‘⟨𝑋, 𝑌⟩)
9 opelxpi 5704 . . . . 5 ((𝑋𝐴𝑌𝐵) → ⟨𝑋, 𝑌⟩ ∈ (𝐴 × 𝐵))
108eqeq1i 2729 . . . . . . 7 ((𝑋𝑅𝑌) = ∅ ↔ (𝑅‘⟨𝑋, 𝑌⟩) = ∅)
1110notbii 320 . . . . . 6 (¬ (𝑋𝑅𝑌) = ∅ ↔ ¬ (𝑅‘⟨𝑋, 𝑌⟩) = ∅)
1211biimpi 215 . . . . 5 (¬ (𝑋𝑅𝑌) = ∅ → ¬ (𝑅‘⟨𝑋, 𝑌⟩) = ∅)
13 eliman0 6922 . . . . 5 ((⟨𝑋, 𝑌⟩ ∈ (𝐴 × 𝐵) ∧ ¬ (𝑅‘⟨𝑋, 𝑌⟩) = ∅) → (𝑅‘⟨𝑋, 𝑌⟩) ∈ (𝑅 “ (𝐴 × 𝐵)))
149, 12, 13syl2an 595 . . . 4 (((𝑋𝐴𝑌𝐵) ∧ ¬ (𝑋𝑅𝑌) = ∅) → (𝑅‘⟨𝑋, 𝑌⟩) ∈ (𝑅 “ (𝐴 × 𝐵)))
158, 14eqeltrid 2829 . . 3 (((𝑋𝐴𝑌𝐵) ∧ ¬ (𝑋𝑅𝑌) = ∅) → (𝑋𝑅𝑌) ∈ (𝑅 “ (𝐴 × 𝐵)))
167, 15sselid 3973 . 2 (((𝑋𝐴𝑌𝐵) ∧ ¬ (𝑋𝑅𝑌) = ∅) → (𝑋𝑅𝑌) ∈ ((𝑅 “ (𝐴 × 𝐵)) ∪ {∅}))
176, 16pm2.61dan 810 1 ((𝑋𝐴𝑌𝐵) → (𝑋𝑅𝑌) ∈ ((𝑅 “ (𝐴 × 𝐵)) ∪ {∅}))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1533  wcel 2098  cun 3939  c0 4315  {csn 4621  cop 4627   × cxp 5665  cima 5670  cfv 6534  (class class class)co 7402
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-sep 5290  ax-nul 5297  ax-pr 5418
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-ne 2933  df-ral 3054  df-rex 3063  df-rab 3425  df-v 3468  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-nul 4316  df-if 4522  df-sn 4622  df-pr 4624  df-op 4628  df-uni 4901  df-br 5140  df-opab 5202  df-xp 5673  df-cnv 5675  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-iota 6486  df-fv 6542  df-ov 7405
This theorem is referenced by:  legval  28329
  Copyright terms: Public domain W3C validator