| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ovima0 | Structured version Visualization version GIF version | ||
| Description: An operation value is a member of the image plus null. (Contributed by Thierry Arnoux, 25-Jun-2019.) |
| Ref | Expression |
|---|---|
| ovima0 | ⊢ ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵) → (𝑋𝑅𝑌) ∈ ((𝑅 “ (𝐴 × 𝐵)) ∪ {∅})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr 484 | . . 3 ⊢ (((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵) ∧ (𝑋𝑅𝑌) = ∅) → (𝑋𝑅𝑌) = ∅) | |
| 2 | ssun2 4129 | . . . 4 ⊢ {∅} ⊆ ((𝑅 “ (𝐴 × 𝐵)) ∪ {∅}) | |
| 3 | 0ex 5245 | . . . . 5 ⊢ ∅ ∈ V | |
| 4 | 3 | snid 4615 | . . . 4 ⊢ ∅ ∈ {∅} |
| 5 | 2, 4 | sselii 3931 | . . 3 ⊢ ∅ ∈ ((𝑅 “ (𝐴 × 𝐵)) ∪ {∅}) |
| 6 | 1, 5 | eqeltrdi 2839 | . 2 ⊢ (((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵) ∧ (𝑋𝑅𝑌) = ∅) → (𝑋𝑅𝑌) ∈ ((𝑅 “ (𝐴 × 𝐵)) ∪ {∅})) |
| 7 | ssun1 4128 | . . 3 ⊢ (𝑅 “ (𝐴 × 𝐵)) ⊆ ((𝑅 “ (𝐴 × 𝐵)) ∪ {∅}) | |
| 8 | df-ov 7349 | . . . 4 ⊢ (𝑋𝑅𝑌) = (𝑅‘〈𝑋, 𝑌〉) | |
| 9 | opelxpi 5653 | . . . . 5 ⊢ ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵) → 〈𝑋, 𝑌〉 ∈ (𝐴 × 𝐵)) | |
| 10 | 8 | eqeq1i 2736 | . . . . . . 7 ⊢ ((𝑋𝑅𝑌) = ∅ ↔ (𝑅‘〈𝑋, 𝑌〉) = ∅) |
| 11 | 10 | notbii 320 | . . . . . 6 ⊢ (¬ (𝑋𝑅𝑌) = ∅ ↔ ¬ (𝑅‘〈𝑋, 𝑌〉) = ∅) |
| 12 | 11 | biimpi 216 | . . . . 5 ⊢ (¬ (𝑋𝑅𝑌) = ∅ → ¬ (𝑅‘〈𝑋, 𝑌〉) = ∅) |
| 13 | eliman0 6859 | . . . . 5 ⊢ ((〈𝑋, 𝑌〉 ∈ (𝐴 × 𝐵) ∧ ¬ (𝑅‘〈𝑋, 𝑌〉) = ∅) → (𝑅‘〈𝑋, 𝑌〉) ∈ (𝑅 “ (𝐴 × 𝐵))) | |
| 14 | 9, 12, 13 | syl2an 596 | . . . 4 ⊢ (((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵) ∧ ¬ (𝑋𝑅𝑌) = ∅) → (𝑅‘〈𝑋, 𝑌〉) ∈ (𝑅 “ (𝐴 × 𝐵))) |
| 15 | 8, 14 | eqeltrid 2835 | . . 3 ⊢ (((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵) ∧ ¬ (𝑋𝑅𝑌) = ∅) → (𝑋𝑅𝑌) ∈ (𝑅 “ (𝐴 × 𝐵))) |
| 16 | 7, 15 | sselid 3932 | . 2 ⊢ (((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵) ∧ ¬ (𝑋𝑅𝑌) = ∅) → (𝑋𝑅𝑌) ∈ ((𝑅 “ (𝐴 × 𝐵)) ∪ {∅})) |
| 17 | 6, 16 | pm2.61dan 812 | 1 ⊢ ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵) → (𝑋𝑅𝑌) ∈ ((𝑅 “ (𝐴 × 𝐵)) ∪ {∅})) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∪ cun 3900 ∅c0 4283 {csn 4576 〈cop 4582 × cxp 5614 “ cima 5619 ‘cfv 6481 (class class class)co 7346 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-xp 5622 df-cnv 5624 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-iota 6437 df-fv 6489 df-ov 7349 |
| This theorem is referenced by: legval 28563 |
| Copyright terms: Public domain | W3C validator |