![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ovelimab | Structured version Visualization version GIF version |
Description: Operation value in an image. (Contributed by Mario Carneiro, 23-Dec-2013.) (Revised by Mario Carneiro, 29-Jan-2014.) |
Ref | Expression |
---|---|
ovelimab | ⊢ ((𝐹 Fn 𝐴 ∧ (𝐵 × 𝐶) ⊆ 𝐴) → (𝐷 ∈ (𝐹 “ (𝐵 × 𝐶)) ↔ ∃𝑥 ∈ 𝐵 ∃𝑦 ∈ 𝐶 𝐷 = (𝑥𝐹𝑦))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvelimab 6513 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ (𝐵 × 𝐶) ⊆ 𝐴) → (𝐷 ∈ (𝐹 “ (𝐵 × 𝐶)) ↔ ∃𝑧 ∈ (𝐵 × 𝐶)(𝐹‘𝑧) = 𝐷)) | |
2 | fveq2 6446 | . . . . . 6 ⊢ (𝑧 = 〈𝑥, 𝑦〉 → (𝐹‘𝑧) = (𝐹‘〈𝑥, 𝑦〉)) | |
3 | df-ov 6925 | . . . . . 6 ⊢ (𝑥𝐹𝑦) = (𝐹‘〈𝑥, 𝑦〉) | |
4 | 2, 3 | syl6eqr 2832 | . . . . 5 ⊢ (𝑧 = 〈𝑥, 𝑦〉 → (𝐹‘𝑧) = (𝑥𝐹𝑦)) |
5 | 4 | eqeq1d 2780 | . . . 4 ⊢ (𝑧 = 〈𝑥, 𝑦〉 → ((𝐹‘𝑧) = 𝐷 ↔ (𝑥𝐹𝑦) = 𝐷)) |
6 | eqcom 2785 | . . . 4 ⊢ ((𝑥𝐹𝑦) = 𝐷 ↔ 𝐷 = (𝑥𝐹𝑦)) | |
7 | 5, 6 | syl6bb 279 | . . 3 ⊢ (𝑧 = 〈𝑥, 𝑦〉 → ((𝐹‘𝑧) = 𝐷 ↔ 𝐷 = (𝑥𝐹𝑦))) |
8 | 7 | rexxp 5510 | . 2 ⊢ (∃𝑧 ∈ (𝐵 × 𝐶)(𝐹‘𝑧) = 𝐷 ↔ ∃𝑥 ∈ 𝐵 ∃𝑦 ∈ 𝐶 𝐷 = (𝑥𝐹𝑦)) |
9 | 1, 8 | syl6bb 279 | 1 ⊢ ((𝐹 Fn 𝐴 ∧ (𝐵 × 𝐶) ⊆ 𝐴) → (𝐷 ∈ (𝐹 “ (𝐵 × 𝐶)) ↔ ∃𝑥 ∈ 𝐵 ∃𝑦 ∈ 𝐶 𝐷 = (𝑥𝐹𝑦))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 386 = wceq 1601 ∈ wcel 2107 ∃wrex 3091 ⊆ wss 3792 〈cop 4404 × cxp 5353 “ cima 5358 Fn wfn 6130 ‘cfv 6135 (class class class)co 6922 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-sep 5017 ax-nul 5025 ax-pr 5138 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2551 df-eu 2587 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ral 3095 df-rex 3096 df-rab 3099 df-v 3400 df-sbc 3653 df-csb 3752 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-nul 4142 df-if 4308 df-sn 4399 df-pr 4401 df-op 4405 df-uni 4672 df-iun 4755 df-br 4887 df-opab 4949 df-id 5261 df-xp 5361 df-rel 5362 df-cnv 5363 df-co 5364 df-dm 5365 df-rn 5366 df-res 5367 df-ima 5368 df-iota 6099 df-fun 6137 df-fn 6138 df-fv 6143 df-ov 6925 |
This theorem is referenced by: dfz2 11746 elq 12097 shsel 28745 ofrn2 30007 eulerpartlemgh 31038 |
Copyright terms: Public domain | W3C validator |