![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ovelimab | Structured version Visualization version GIF version |
Description: Operation value in an image. (Contributed by Mario Carneiro, 23-Dec-2013.) (Revised by Mario Carneiro, 29-Jan-2014.) |
Ref | Expression |
---|---|
ovelimab | ⊢ ((𝐹 Fn 𝐴 ∧ (𝐵 × 𝐶) ⊆ 𝐴) → (𝐷 ∈ (𝐹 “ (𝐵 × 𝐶)) ↔ ∃𝑥 ∈ 𝐵 ∃𝑦 ∈ 𝐶 𝐷 = (𝑥𝐹𝑦))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvelimab 6918 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ (𝐵 × 𝐶) ⊆ 𝐴) → (𝐷 ∈ (𝐹 “ (𝐵 × 𝐶)) ↔ ∃𝑧 ∈ (𝐵 × 𝐶)(𝐹‘𝑧) = 𝐷)) | |
2 | fveq2 6846 | . . . . . 6 ⊢ (𝑧 = ⟨𝑥, 𝑦⟩ → (𝐹‘𝑧) = (𝐹‘⟨𝑥, 𝑦⟩)) | |
3 | df-ov 7364 | . . . . . 6 ⊢ (𝑥𝐹𝑦) = (𝐹‘⟨𝑥, 𝑦⟩) | |
4 | 2, 3 | eqtr4di 2791 | . . . . 5 ⊢ (𝑧 = ⟨𝑥, 𝑦⟩ → (𝐹‘𝑧) = (𝑥𝐹𝑦)) |
5 | 4 | eqeq1d 2735 | . . . 4 ⊢ (𝑧 = ⟨𝑥, 𝑦⟩ → ((𝐹‘𝑧) = 𝐷 ↔ (𝑥𝐹𝑦) = 𝐷)) |
6 | eqcom 2740 | . . . 4 ⊢ ((𝑥𝐹𝑦) = 𝐷 ↔ 𝐷 = (𝑥𝐹𝑦)) | |
7 | 5, 6 | bitrdi 287 | . . 3 ⊢ (𝑧 = ⟨𝑥, 𝑦⟩ → ((𝐹‘𝑧) = 𝐷 ↔ 𝐷 = (𝑥𝐹𝑦))) |
8 | 7 | rexxp 5802 | . 2 ⊢ (∃𝑧 ∈ (𝐵 × 𝐶)(𝐹‘𝑧) = 𝐷 ↔ ∃𝑥 ∈ 𝐵 ∃𝑦 ∈ 𝐶 𝐷 = (𝑥𝐹𝑦)) |
9 | 1, 8 | bitrdi 287 | 1 ⊢ ((𝐹 Fn 𝐴 ∧ (𝐵 × 𝐶) ⊆ 𝐴) → (𝐷 ∈ (𝐹 “ (𝐵 × 𝐶)) ↔ ∃𝑥 ∈ 𝐵 ∃𝑦 ∈ 𝐶 𝐷 = (𝑥𝐹𝑦))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 = wceq 1542 ∈ wcel 2107 ∃wrex 3070 ⊆ wss 3914 ⟨cop 4596 × cxp 5635 “ cima 5640 Fn wfn 6495 ‘cfv 6500 (class class class)co 7361 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5260 ax-nul 5267 ax-pr 5388 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3407 df-v 3449 df-sbc 3744 df-csb 3860 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4287 df-if 4491 df-sn 4591 df-pr 4593 df-op 4597 df-uni 4870 df-iun 4960 df-br 5110 df-opab 5172 df-id 5535 df-xp 5643 df-rel 5644 df-cnv 5645 df-co 5646 df-dm 5647 df-rn 5648 df-res 5649 df-ima 5650 df-iota 6452 df-fun 6502 df-fn 6503 df-fv 6508 df-ov 7364 |
This theorem is referenced by: imaeqexov 7596 imaeqalov 7597 dfz2 12526 elq 12883 shsel 30305 ofrn2 31609 eulerpartlemgh 33042 |
Copyright terms: Public domain | W3C validator |