| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ovelimab | Structured version Visualization version GIF version | ||
| Description: Operation value in an image. (Contributed by Mario Carneiro, 23-Dec-2013.) (Revised by Mario Carneiro, 29-Jan-2014.) |
| Ref | Expression |
|---|---|
| ovelimab | ⊢ ((𝐹 Fn 𝐴 ∧ (𝐵 × 𝐶) ⊆ 𝐴) → (𝐷 ∈ (𝐹 “ (𝐵 × 𝐶)) ↔ ∃𝑥 ∈ 𝐵 ∃𝑦 ∈ 𝐶 𝐷 = (𝑥𝐹𝑦))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvelimab 6961 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ (𝐵 × 𝐶) ⊆ 𝐴) → (𝐷 ∈ (𝐹 “ (𝐵 × 𝐶)) ↔ ∃𝑧 ∈ (𝐵 × 𝐶)(𝐹‘𝑧) = 𝐷)) | |
| 2 | fveq2 6886 | . . . . . 6 ⊢ (𝑧 = 〈𝑥, 𝑦〉 → (𝐹‘𝑧) = (𝐹‘〈𝑥, 𝑦〉)) | |
| 3 | df-ov 7416 | . . . . . 6 ⊢ (𝑥𝐹𝑦) = (𝐹‘〈𝑥, 𝑦〉) | |
| 4 | 2, 3 | eqtr4di 2787 | . . . . 5 ⊢ (𝑧 = 〈𝑥, 𝑦〉 → (𝐹‘𝑧) = (𝑥𝐹𝑦)) |
| 5 | 4 | eqeq1d 2736 | . . . 4 ⊢ (𝑧 = 〈𝑥, 𝑦〉 → ((𝐹‘𝑧) = 𝐷 ↔ (𝑥𝐹𝑦) = 𝐷)) |
| 6 | eqcom 2741 | . . . 4 ⊢ ((𝑥𝐹𝑦) = 𝐷 ↔ 𝐷 = (𝑥𝐹𝑦)) | |
| 7 | 5, 6 | bitrdi 287 | . . 3 ⊢ (𝑧 = 〈𝑥, 𝑦〉 → ((𝐹‘𝑧) = 𝐷 ↔ 𝐷 = (𝑥𝐹𝑦))) |
| 8 | 7 | rexxp 5833 | . 2 ⊢ (∃𝑧 ∈ (𝐵 × 𝐶)(𝐹‘𝑧) = 𝐷 ↔ ∃𝑥 ∈ 𝐵 ∃𝑦 ∈ 𝐶 𝐷 = (𝑥𝐹𝑦)) |
| 9 | 1, 8 | bitrdi 287 | 1 ⊢ ((𝐹 Fn 𝐴 ∧ (𝐵 × 𝐶) ⊆ 𝐴) → (𝐷 ∈ (𝐹 “ (𝐵 × 𝐶)) ↔ ∃𝑥 ∈ 𝐵 ∃𝑦 ∈ 𝐶 𝐷 = (𝑥𝐹𝑦))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ∃wrex 3059 ⊆ wss 3931 〈cop 4612 × cxp 5663 “ cima 5668 Fn wfn 6536 ‘cfv 6541 (class class class)co 7413 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pr 5412 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-iun 4973 df-br 5124 df-opab 5186 df-id 5558 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-iota 6494 df-fun 6543 df-fn 6544 df-fv 6549 df-ov 7416 |
| This theorem is referenced by: imaeqexov 7653 imaeqalov 7654 dfz2 12615 elq 12974 elzs 28306 shsel 31261 ofrn2 32585 eulerpartlemgh 34339 aks6d1c2lem4 42087 |
| Copyright terms: Public domain | W3C validator |