![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ovelimab | Structured version Visualization version GIF version |
Description: Operation value in an image. (Contributed by Mario Carneiro, 23-Dec-2013.) (Revised by Mario Carneiro, 29-Jan-2014.) |
Ref | Expression |
---|---|
ovelimab | ⊢ ((𝐹 Fn 𝐴 ∧ (𝐵 × 𝐶) ⊆ 𝐴) → (𝐷 ∈ (𝐹 “ (𝐵 × 𝐶)) ↔ ∃𝑥 ∈ 𝐵 ∃𝑦 ∈ 𝐶 𝐷 = (𝑥𝐹𝑦))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvelimab 6976 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ (𝐵 × 𝐶) ⊆ 𝐴) → (𝐷 ∈ (𝐹 “ (𝐵 × 𝐶)) ↔ ∃𝑧 ∈ (𝐵 × 𝐶)(𝐹‘𝑧) = 𝐷)) | |
2 | fveq2 6902 | . . . . . 6 ⊢ (𝑧 = ⟨𝑥, 𝑦⟩ → (𝐹‘𝑧) = (𝐹‘⟨𝑥, 𝑦⟩)) | |
3 | df-ov 7429 | . . . . . 6 ⊢ (𝑥𝐹𝑦) = (𝐹‘⟨𝑥, 𝑦⟩) | |
4 | 2, 3 | eqtr4di 2786 | . . . . 5 ⊢ (𝑧 = ⟨𝑥, 𝑦⟩ → (𝐹‘𝑧) = (𝑥𝐹𝑦)) |
5 | 4 | eqeq1d 2730 | . . . 4 ⊢ (𝑧 = ⟨𝑥, 𝑦⟩ → ((𝐹‘𝑧) = 𝐷 ↔ (𝑥𝐹𝑦) = 𝐷)) |
6 | eqcom 2735 | . . . 4 ⊢ ((𝑥𝐹𝑦) = 𝐷 ↔ 𝐷 = (𝑥𝐹𝑦)) | |
7 | 5, 6 | bitrdi 286 | . . 3 ⊢ (𝑧 = ⟨𝑥, 𝑦⟩ → ((𝐹‘𝑧) = 𝐷 ↔ 𝐷 = (𝑥𝐹𝑦))) |
8 | 7 | rexxp 5849 | . 2 ⊢ (∃𝑧 ∈ (𝐵 × 𝐶)(𝐹‘𝑧) = 𝐷 ↔ ∃𝑥 ∈ 𝐵 ∃𝑦 ∈ 𝐶 𝐷 = (𝑥𝐹𝑦)) |
9 | 1, 8 | bitrdi 286 | 1 ⊢ ((𝐹 Fn 𝐴 ∧ (𝐵 × 𝐶) ⊆ 𝐴) → (𝐷 ∈ (𝐹 “ (𝐵 × 𝐶)) ↔ ∃𝑥 ∈ 𝐵 ∃𝑦 ∈ 𝐶 𝐷 = (𝑥𝐹𝑦))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 = wceq 1533 ∈ wcel 2098 ∃wrex 3067 ⊆ wss 3949 ⟨cop 4638 × cxp 5680 “ cima 5685 Fn wfn 6548 ‘cfv 6553 (class class class)co 7426 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2699 ax-sep 5303 ax-nul 5310 ax-pr 5433 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-ral 3059 df-rex 3068 df-rab 3431 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4327 df-if 4533 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4913 df-iun 5002 df-br 5153 df-opab 5215 df-id 5580 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-iota 6505 df-fun 6555 df-fn 6556 df-fv 6561 df-ov 7429 |
This theorem is referenced by: imaeqexov 7665 imaeqalov 7666 dfz2 12615 elq 12972 shsel 31144 ofrn2 32447 eulerpartlemgh 34031 aks6d1c2lem4 41630 |
Copyright terms: Public domain | W3C validator |