MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ovelimab Structured version   Visualization version   GIF version

Theorem ovelimab 7450
Description: Operation value in an image. (Contributed by Mario Carneiro, 23-Dec-2013.) (Revised by Mario Carneiro, 29-Jan-2014.)
Assertion
Ref Expression
ovelimab ((𝐹 Fn 𝐴 ∧ (𝐵 × 𝐶) ⊆ 𝐴) → (𝐷 ∈ (𝐹 “ (𝐵 × 𝐶)) ↔ ∃𝑥𝐵𝑦𝐶 𝐷 = (𝑥𝐹𝑦)))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑥,𝐶,𝑦   𝑥,𝐷,𝑦   𝑥,𝐹,𝑦

Proof of Theorem ovelimab
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 fvelimab 6841 . 2 ((𝐹 Fn 𝐴 ∧ (𝐵 × 𝐶) ⊆ 𝐴) → (𝐷 ∈ (𝐹 “ (𝐵 × 𝐶)) ↔ ∃𝑧 ∈ (𝐵 × 𝐶)(𝐹𝑧) = 𝐷))
2 fveq2 6774 . . . . . 6 (𝑧 = ⟨𝑥, 𝑦⟩ → (𝐹𝑧) = (𝐹‘⟨𝑥, 𝑦⟩))
3 df-ov 7278 . . . . . 6 (𝑥𝐹𝑦) = (𝐹‘⟨𝑥, 𝑦⟩)
42, 3eqtr4di 2796 . . . . 5 (𝑧 = ⟨𝑥, 𝑦⟩ → (𝐹𝑧) = (𝑥𝐹𝑦))
54eqeq1d 2740 . . . 4 (𝑧 = ⟨𝑥, 𝑦⟩ → ((𝐹𝑧) = 𝐷 ↔ (𝑥𝐹𝑦) = 𝐷))
6 eqcom 2745 . . . 4 ((𝑥𝐹𝑦) = 𝐷𝐷 = (𝑥𝐹𝑦))
75, 6bitrdi 287 . . 3 (𝑧 = ⟨𝑥, 𝑦⟩ → ((𝐹𝑧) = 𝐷𝐷 = (𝑥𝐹𝑦)))
87rexxp 5751 . 2 (∃𝑧 ∈ (𝐵 × 𝐶)(𝐹𝑧) = 𝐷 ↔ ∃𝑥𝐵𝑦𝐶 𝐷 = (𝑥𝐹𝑦))
91, 8bitrdi 287 1 ((𝐹 Fn 𝐴 ∧ (𝐵 × 𝐶) ⊆ 𝐴) → (𝐷 ∈ (𝐹 “ (𝐵 × 𝐶)) ↔ ∃𝑥𝐵𝑦𝐶 𝐷 = (𝑥𝐹𝑦)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  wrex 3065  wss 3887  cop 4567   × cxp 5587  cima 5592   Fn wfn 6428  cfv 6433  (class class class)co 7275
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-fv 6441  df-ov 7278
This theorem is referenced by:  dfz2  12338  elq  12690  shsel  29676  ofrn2  30977  eulerpartlemgh  32345  addscllem1  34131
  Copyright terms: Public domain W3C validator