Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ovmpogad Structured version   Visualization version   GIF version

Theorem ovmpogad 42276
Description: Value of an operation given by a maps-to rule. Deduction form of ovmpoga 7588. (Contributed by SN, 14-Mar-2025.)
Hypotheses
Ref Expression
ovmpogad.f 𝐹 = (𝑥𝐶, 𝑦𝐷𝑅)
ovmpogad.s ((𝑥 = 𝐴𝑦 = 𝐵) → 𝑅 = 𝑆)
ovmpogad.1 (𝜑𝐴𝐶)
ovmpogad.2 (𝜑𝐵𝐷)
ovmpogad.v (𝜑𝑆𝑉)
Assertion
Ref Expression
ovmpogad (𝜑 → (𝐴𝐹𝐵) = 𝑆)
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦   𝑥,𝑆,𝑦   𝜑,𝑥,𝑦
Allowed substitution hints:   𝐶(𝑥,𝑦)   𝐷(𝑥,𝑦)   𝑅(𝑥,𝑦)   𝐹(𝑥,𝑦)   𝑉(𝑥,𝑦)

Proof of Theorem ovmpogad
StepHypRef Expression
1 ovmpogad.f . . 3 𝐹 = (𝑥𝐶, 𝑦𝐷𝑅)
21a1i 11 . 2 (𝜑𝐹 = (𝑥𝐶, 𝑦𝐷𝑅))
3 ovmpogad.s . . 3 ((𝑥 = 𝐴𝑦 = 𝐵) → 𝑅 = 𝑆)
43adantl 481 . 2 ((𝜑 ∧ (𝑥 = 𝐴𝑦 = 𝐵)) → 𝑅 = 𝑆)
5 ovmpogad.1 . 2 (𝜑𝐴𝐶)
6 ovmpogad.2 . 2 (𝜑𝐵𝐷)
7 ovmpogad.v . 2 (𝜑𝑆𝑉)
82, 4, 5, 6, 7ovmpod 7586 1 (𝜑 → (𝐴𝐹𝐵) = 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2107  (class class class)co 7432  cmpo 7434
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-sep 5295  ax-nul 5305  ax-pr 5431
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ral 3061  df-rex 3070  df-rab 3436  df-v 3481  df-sbc 3788  df-dif 3953  df-un 3955  df-ss 3967  df-nul 4333  df-if 4525  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-br 5143  df-opab 5205  df-id 5577  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-iota 6513  df-fun 6562  df-fv 6568  df-ov 7435  df-oprab 7436  df-mpo 7437
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator