Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ovmpogad Structured version   Visualization version   GIF version

Theorem ovmpogad 42215
Description: Value of an operation given by a maps-to rule. Deduction form of ovmpoga 7550. (Contributed by SN, 14-Mar-2025.)
Hypotheses
Ref Expression
ovmpogad.f 𝐹 = (𝑥𝐶, 𝑦𝐷𝑅)
ovmpogad.s ((𝑥 = 𝐴𝑦 = 𝐵) → 𝑅 = 𝑆)
ovmpogad.1 (𝜑𝐴𝐶)
ovmpogad.2 (𝜑𝐵𝐷)
ovmpogad.v (𝜑𝑆𝑉)
Assertion
Ref Expression
ovmpogad (𝜑 → (𝐴𝐹𝐵) = 𝑆)
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦   𝑥,𝑆,𝑦   𝜑,𝑥,𝑦
Allowed substitution hints:   𝐶(𝑥,𝑦)   𝐷(𝑥,𝑦)   𝑅(𝑥,𝑦)   𝐹(𝑥,𝑦)   𝑉(𝑥,𝑦)

Proof of Theorem ovmpogad
StepHypRef Expression
1 ovmpogad.f . . 3 𝐹 = (𝑥𝐶, 𝑦𝐷𝑅)
21a1i 11 . 2 (𝜑𝐹 = (𝑥𝐶, 𝑦𝐷𝑅))
3 ovmpogad.s . . 3 ((𝑥 = 𝐴𝑦 = 𝐵) → 𝑅 = 𝑆)
43adantl 481 . 2 ((𝜑 ∧ (𝑥 = 𝐴𝑦 = 𝐵)) → 𝑅 = 𝑆)
5 ovmpogad.1 . 2 (𝜑𝐴𝐶)
6 ovmpogad.2 . 2 (𝜑𝐵𝐷)
7 ovmpogad.v . 2 (𝜑𝑆𝑉)
82, 4, 5, 6, 7ovmpod 7548 1 (𝜑 → (𝐴𝐹𝐵) = 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  (class class class)co 7394  cmpo 7396
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5259  ax-nul 5269  ax-pr 5395
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2880  df-ral 3047  df-rex 3056  df-rab 3412  df-v 3457  df-sbc 3762  df-dif 3925  df-un 3927  df-ss 3939  df-nul 4305  df-if 4497  df-sn 4598  df-pr 4600  df-op 4604  df-uni 4880  df-br 5116  df-opab 5178  df-id 5541  df-xp 5652  df-rel 5653  df-cnv 5654  df-co 5655  df-dm 5656  df-iota 6472  df-fun 6521  df-fv 6527  df-ov 7397  df-oprab 7398  df-mpo 7399
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator