Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lincval Structured version   Visualization version   GIF version

Theorem lincval 48402
Description: The value of a linear combination. (Contributed by AV, 30-Mar-2019.)
Assertion
Ref Expression
lincval ((𝑀𝑋𝑆 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) → (𝑆( linC ‘𝑀)𝑉) = (𝑀 Σg (𝑥𝑉 ↦ ((𝑆𝑥)( ·𝑠𝑀)𝑥))))
Distinct variable groups:   𝑥,𝑀   𝑥,𝑆   𝑥,𝑉
Allowed substitution hint:   𝑋(𝑥)

Proof of Theorem lincval
Dummy variables 𝑠 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lincop 48401 . . . 4 (𝑀𝑋 → ( linC ‘𝑀) = (𝑠 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑣), 𝑣 ∈ 𝒫 (Base‘𝑀) ↦ (𝑀 Σg (𝑥𝑣 ↦ ((𝑠𝑥)( ·𝑠𝑀)𝑥)))))
213ad2ant1 1133 . . 3 ((𝑀𝑋𝑆 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) → ( linC ‘𝑀) = (𝑠 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑣), 𝑣 ∈ 𝒫 (Base‘𝑀) ↦ (𝑀 Σg (𝑥𝑣 ↦ ((𝑠𝑥)( ·𝑠𝑀)𝑥)))))
32oveqd 7407 . 2 ((𝑀𝑋𝑆 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) → (𝑆( linC ‘𝑀)𝑉) = (𝑆(𝑠 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑣), 𝑣 ∈ 𝒫 (Base‘𝑀) ↦ (𝑀 Σg (𝑥𝑣 ↦ ((𝑠𝑥)( ·𝑠𝑀)𝑥))))𝑉))
4 simp2 1137 . . 3 ((𝑀𝑋𝑆 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) → 𝑆 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉))
5 simp3 1138 . . 3 ((𝑀𝑋𝑆 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) → 𝑉 ∈ 𝒫 (Base‘𝑀))
6 ovexd 7425 . . 3 ((𝑀𝑋𝑆 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) → (𝑀 Σg (𝑥𝑉 ↦ ((𝑆𝑥)( ·𝑠𝑀)𝑥))) ∈ V)
7 simpr 484 . . . . . 6 ((𝑠 = 𝑆𝑣 = 𝑉) → 𝑣 = 𝑉)
8 fveq1 6860 . . . . . . . 8 (𝑠 = 𝑆 → (𝑠𝑥) = (𝑆𝑥))
98oveq1d 7405 . . . . . . 7 (𝑠 = 𝑆 → ((𝑠𝑥)( ·𝑠𝑀)𝑥) = ((𝑆𝑥)( ·𝑠𝑀)𝑥))
109adantr 480 . . . . . 6 ((𝑠 = 𝑆𝑣 = 𝑉) → ((𝑠𝑥)( ·𝑠𝑀)𝑥) = ((𝑆𝑥)( ·𝑠𝑀)𝑥))
117, 10mpteq12dv 5197 . . . . 5 ((𝑠 = 𝑆𝑣 = 𝑉) → (𝑥𝑣 ↦ ((𝑠𝑥)( ·𝑠𝑀)𝑥)) = (𝑥𝑉 ↦ ((𝑆𝑥)( ·𝑠𝑀)𝑥)))
1211oveq2d 7406 . . . 4 ((𝑠 = 𝑆𝑣 = 𝑉) → (𝑀 Σg (𝑥𝑣 ↦ ((𝑠𝑥)( ·𝑠𝑀)𝑥))) = (𝑀 Σg (𝑥𝑉 ↦ ((𝑆𝑥)( ·𝑠𝑀)𝑥))))
13 oveq2 7398 . . . 4 (𝑣 = 𝑉 → ((Base‘(Scalar‘𝑀)) ↑m 𝑣) = ((Base‘(Scalar‘𝑀)) ↑m 𝑉))
14 eqid 2730 . . . 4 (𝑠 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑣), 𝑣 ∈ 𝒫 (Base‘𝑀) ↦ (𝑀 Σg (𝑥𝑣 ↦ ((𝑠𝑥)( ·𝑠𝑀)𝑥)))) = (𝑠 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑣), 𝑣 ∈ 𝒫 (Base‘𝑀) ↦ (𝑀 Σg (𝑥𝑣 ↦ ((𝑠𝑥)( ·𝑠𝑀)𝑥))))
1512, 13, 14ovmpox2 48333 . . 3 ((𝑆 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ 𝑉 ∈ 𝒫 (Base‘𝑀) ∧ (𝑀 Σg (𝑥𝑉 ↦ ((𝑆𝑥)( ·𝑠𝑀)𝑥))) ∈ V) → (𝑆(𝑠 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑣), 𝑣 ∈ 𝒫 (Base‘𝑀) ↦ (𝑀 Σg (𝑥𝑣 ↦ ((𝑠𝑥)( ·𝑠𝑀)𝑥))))𝑉) = (𝑀 Σg (𝑥𝑉 ↦ ((𝑆𝑥)( ·𝑠𝑀)𝑥))))
164, 5, 6, 15syl3anc 1373 . 2 ((𝑀𝑋𝑆 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) → (𝑆(𝑠 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑣), 𝑣 ∈ 𝒫 (Base‘𝑀) ↦ (𝑀 Σg (𝑥𝑣 ↦ ((𝑠𝑥)( ·𝑠𝑀)𝑥))))𝑉) = (𝑀 Σg (𝑥𝑉 ↦ ((𝑆𝑥)( ·𝑠𝑀)𝑥))))
173, 16eqtrd 2765 1 ((𝑀𝑋𝑆 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) → (𝑆( linC ‘𝑀)𝑉) = (𝑀 Σg (𝑥𝑉 ↦ ((𝑆𝑥)( ·𝑠𝑀)𝑥))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  Vcvv 3450  𝒫 cpw 4566  cmpt 5191  cfv 6514  (class class class)co 7390  cmpo 7392  m cmap 8802  Basecbs 17186  Scalarcsca 17230   ·𝑠 cvsca 17231   Σg cgsu 17410   linC clinc 48397
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-1st 7971  df-2nd 7972  df-linc 48399
This theorem is referenced by:  lincfsuppcl  48406  linccl  48407  lincval0  48408  lincvalsng  48409  lincvalpr  48411  lincvalsc0  48414  linc0scn0  48416  lincdifsn  48417  linc1  48418  lincellss  48419  lincsum  48422  lincscm  48423  lindslinindimp2lem4  48454  lindslinindsimp2lem5  48455  snlindsntor  48464  lincresunit3lem2  48473  lincresunit3  48474  zlmodzxzldeplem3  48495
  Copyright terms: Public domain W3C validator