Step | Hyp | Ref
| Expression |
1 | | lincop 45749 |
. . . 4
⊢ (𝑀 ∈ 𝑋 → ( linC ‘𝑀) = (𝑠 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑣), 𝑣 ∈ 𝒫 (Base‘𝑀) ↦ (𝑀 Σg (𝑥 ∈ 𝑣 ↦ ((𝑠‘𝑥)( ·𝑠
‘𝑀)𝑥))))) |
2 | 1 | 3ad2ant1 1132 |
. . 3
⊢ ((𝑀 ∈ 𝑋 ∧ 𝑆 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) → ( linC ‘𝑀) = (𝑠 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑣), 𝑣 ∈ 𝒫 (Base‘𝑀) ↦ (𝑀 Σg (𝑥 ∈ 𝑣 ↦ ((𝑠‘𝑥)( ·𝑠
‘𝑀)𝑥))))) |
3 | 2 | oveqd 7292 |
. 2
⊢ ((𝑀 ∈ 𝑋 ∧ 𝑆 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) → (𝑆( linC ‘𝑀)𝑉) = (𝑆(𝑠 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑣), 𝑣 ∈ 𝒫 (Base‘𝑀) ↦ (𝑀 Σg (𝑥 ∈ 𝑣 ↦ ((𝑠‘𝑥)( ·𝑠
‘𝑀)𝑥))))𝑉)) |
4 | | simp2 1136 |
. . 3
⊢ ((𝑀 ∈ 𝑋 ∧ 𝑆 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) → 𝑆 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉)) |
5 | | simp3 1137 |
. . 3
⊢ ((𝑀 ∈ 𝑋 ∧ 𝑆 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) → 𝑉 ∈ 𝒫 (Base‘𝑀)) |
6 | | ovexd 7310 |
. . 3
⊢ ((𝑀 ∈ 𝑋 ∧ 𝑆 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) → (𝑀 Σg (𝑥 ∈ 𝑉 ↦ ((𝑆‘𝑥)( ·𝑠
‘𝑀)𝑥))) ∈ V) |
7 | | simpr 485 |
. . . . . 6
⊢ ((𝑠 = 𝑆 ∧ 𝑣 = 𝑉) → 𝑣 = 𝑉) |
8 | | fveq1 6773 |
. . . . . . . 8
⊢ (𝑠 = 𝑆 → (𝑠‘𝑥) = (𝑆‘𝑥)) |
9 | 8 | oveq1d 7290 |
. . . . . . 7
⊢ (𝑠 = 𝑆 → ((𝑠‘𝑥)( ·𝑠
‘𝑀)𝑥) = ((𝑆‘𝑥)( ·𝑠
‘𝑀)𝑥)) |
10 | 9 | adantr 481 |
. . . . . 6
⊢ ((𝑠 = 𝑆 ∧ 𝑣 = 𝑉) → ((𝑠‘𝑥)( ·𝑠
‘𝑀)𝑥) = ((𝑆‘𝑥)( ·𝑠
‘𝑀)𝑥)) |
11 | 7, 10 | mpteq12dv 5165 |
. . . . 5
⊢ ((𝑠 = 𝑆 ∧ 𝑣 = 𝑉) → (𝑥 ∈ 𝑣 ↦ ((𝑠‘𝑥)( ·𝑠
‘𝑀)𝑥)) = (𝑥 ∈ 𝑉 ↦ ((𝑆‘𝑥)( ·𝑠
‘𝑀)𝑥))) |
12 | 11 | oveq2d 7291 |
. . . 4
⊢ ((𝑠 = 𝑆 ∧ 𝑣 = 𝑉) → (𝑀 Σg (𝑥 ∈ 𝑣 ↦ ((𝑠‘𝑥)( ·𝑠
‘𝑀)𝑥))) = (𝑀 Σg (𝑥 ∈ 𝑉 ↦ ((𝑆‘𝑥)( ·𝑠
‘𝑀)𝑥)))) |
13 | | oveq2 7283 |
. . . 4
⊢ (𝑣 = 𝑉 → ((Base‘(Scalar‘𝑀)) ↑m 𝑣) =
((Base‘(Scalar‘𝑀)) ↑m 𝑉)) |
14 | | eqid 2738 |
. . . 4
⊢ (𝑠 ∈
((Base‘(Scalar‘𝑀)) ↑m 𝑣), 𝑣 ∈ 𝒫 (Base‘𝑀) ↦ (𝑀 Σg (𝑥 ∈ 𝑣 ↦ ((𝑠‘𝑥)( ·𝑠
‘𝑀)𝑥)))) = (𝑠 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑣), 𝑣 ∈ 𝒫 (Base‘𝑀) ↦ (𝑀 Σg (𝑥 ∈ 𝑣 ↦ ((𝑠‘𝑥)( ·𝑠
‘𝑀)𝑥)))) |
15 | 12, 13, 14 | ovmpox2 45676 |
. . 3
⊢ ((𝑆 ∈
((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ 𝑉 ∈ 𝒫 (Base‘𝑀) ∧ (𝑀 Σg (𝑥 ∈ 𝑉 ↦ ((𝑆‘𝑥)( ·𝑠
‘𝑀)𝑥))) ∈ V) → (𝑆(𝑠 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑣), 𝑣 ∈ 𝒫 (Base‘𝑀) ↦ (𝑀 Σg (𝑥 ∈ 𝑣 ↦ ((𝑠‘𝑥)( ·𝑠
‘𝑀)𝑥))))𝑉) = (𝑀 Σg (𝑥 ∈ 𝑉 ↦ ((𝑆‘𝑥)( ·𝑠
‘𝑀)𝑥)))) |
16 | 4, 5, 6, 15 | syl3anc 1370 |
. 2
⊢ ((𝑀 ∈ 𝑋 ∧ 𝑆 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) → (𝑆(𝑠 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑣), 𝑣 ∈ 𝒫 (Base‘𝑀) ↦ (𝑀 Σg (𝑥 ∈ 𝑣 ↦ ((𝑠‘𝑥)( ·𝑠
‘𝑀)𝑥))))𝑉) = (𝑀 Σg (𝑥 ∈ 𝑉 ↦ ((𝑆‘𝑥)( ·𝑠
‘𝑀)𝑥)))) |
17 | 3, 16 | eqtrd 2778 |
1
⊢ ((𝑀 ∈ 𝑋 ∧ 𝑆 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) → (𝑆( linC ‘𝑀)𝑉) = (𝑀 Σg (𝑥 ∈ 𝑉 ↦ ((𝑆‘𝑥)( ·𝑠
‘𝑀)𝑥)))) |