| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | lincop 48330 | . . . 4
⊢ (𝑀 ∈ 𝑋 → ( linC ‘𝑀) = (𝑠 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑣), 𝑣 ∈ 𝒫 (Base‘𝑀) ↦ (𝑀 Σg (𝑥 ∈ 𝑣 ↦ ((𝑠‘𝑥)( ·𝑠
‘𝑀)𝑥))))) | 
| 2 | 1 | 3ad2ant1 1133 | . . 3
⊢ ((𝑀 ∈ 𝑋 ∧ 𝑆 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) → ( linC ‘𝑀) = (𝑠 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑣), 𝑣 ∈ 𝒫 (Base‘𝑀) ↦ (𝑀 Σg (𝑥 ∈ 𝑣 ↦ ((𝑠‘𝑥)( ·𝑠
‘𝑀)𝑥))))) | 
| 3 | 2 | oveqd 7449 | . 2
⊢ ((𝑀 ∈ 𝑋 ∧ 𝑆 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) → (𝑆( linC ‘𝑀)𝑉) = (𝑆(𝑠 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑣), 𝑣 ∈ 𝒫 (Base‘𝑀) ↦ (𝑀 Σg (𝑥 ∈ 𝑣 ↦ ((𝑠‘𝑥)( ·𝑠
‘𝑀)𝑥))))𝑉)) | 
| 4 |  | simp2 1137 | . . 3
⊢ ((𝑀 ∈ 𝑋 ∧ 𝑆 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) → 𝑆 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉)) | 
| 5 |  | simp3 1138 | . . 3
⊢ ((𝑀 ∈ 𝑋 ∧ 𝑆 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) → 𝑉 ∈ 𝒫 (Base‘𝑀)) | 
| 6 |  | ovexd 7467 | . . 3
⊢ ((𝑀 ∈ 𝑋 ∧ 𝑆 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) → (𝑀 Σg (𝑥 ∈ 𝑉 ↦ ((𝑆‘𝑥)( ·𝑠
‘𝑀)𝑥))) ∈ V) | 
| 7 |  | simpr 484 | . . . . . 6
⊢ ((𝑠 = 𝑆 ∧ 𝑣 = 𝑉) → 𝑣 = 𝑉) | 
| 8 |  | fveq1 6904 | . . . . . . . 8
⊢ (𝑠 = 𝑆 → (𝑠‘𝑥) = (𝑆‘𝑥)) | 
| 9 | 8 | oveq1d 7447 | . . . . . . 7
⊢ (𝑠 = 𝑆 → ((𝑠‘𝑥)( ·𝑠
‘𝑀)𝑥) = ((𝑆‘𝑥)( ·𝑠
‘𝑀)𝑥)) | 
| 10 | 9 | adantr 480 | . . . . . 6
⊢ ((𝑠 = 𝑆 ∧ 𝑣 = 𝑉) → ((𝑠‘𝑥)( ·𝑠
‘𝑀)𝑥) = ((𝑆‘𝑥)( ·𝑠
‘𝑀)𝑥)) | 
| 11 | 7, 10 | mpteq12dv 5232 | . . . . 5
⊢ ((𝑠 = 𝑆 ∧ 𝑣 = 𝑉) → (𝑥 ∈ 𝑣 ↦ ((𝑠‘𝑥)( ·𝑠
‘𝑀)𝑥)) = (𝑥 ∈ 𝑉 ↦ ((𝑆‘𝑥)( ·𝑠
‘𝑀)𝑥))) | 
| 12 | 11 | oveq2d 7448 | . . . 4
⊢ ((𝑠 = 𝑆 ∧ 𝑣 = 𝑉) → (𝑀 Σg (𝑥 ∈ 𝑣 ↦ ((𝑠‘𝑥)( ·𝑠
‘𝑀)𝑥))) = (𝑀 Σg (𝑥 ∈ 𝑉 ↦ ((𝑆‘𝑥)( ·𝑠
‘𝑀)𝑥)))) | 
| 13 |  | oveq2 7440 | . . . 4
⊢ (𝑣 = 𝑉 → ((Base‘(Scalar‘𝑀)) ↑m 𝑣) =
((Base‘(Scalar‘𝑀)) ↑m 𝑉)) | 
| 14 |  | eqid 2736 | . . . 4
⊢ (𝑠 ∈
((Base‘(Scalar‘𝑀)) ↑m 𝑣), 𝑣 ∈ 𝒫 (Base‘𝑀) ↦ (𝑀 Σg (𝑥 ∈ 𝑣 ↦ ((𝑠‘𝑥)( ·𝑠
‘𝑀)𝑥)))) = (𝑠 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑣), 𝑣 ∈ 𝒫 (Base‘𝑀) ↦ (𝑀 Σg (𝑥 ∈ 𝑣 ↦ ((𝑠‘𝑥)( ·𝑠
‘𝑀)𝑥)))) | 
| 15 | 12, 13, 14 | ovmpox2 48262 | . . 3
⊢ ((𝑆 ∈
((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ 𝑉 ∈ 𝒫 (Base‘𝑀) ∧ (𝑀 Σg (𝑥 ∈ 𝑉 ↦ ((𝑆‘𝑥)( ·𝑠
‘𝑀)𝑥))) ∈ V) → (𝑆(𝑠 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑣), 𝑣 ∈ 𝒫 (Base‘𝑀) ↦ (𝑀 Σg (𝑥 ∈ 𝑣 ↦ ((𝑠‘𝑥)( ·𝑠
‘𝑀)𝑥))))𝑉) = (𝑀 Σg (𝑥 ∈ 𝑉 ↦ ((𝑆‘𝑥)( ·𝑠
‘𝑀)𝑥)))) | 
| 16 | 4, 5, 6, 15 | syl3anc 1372 | . 2
⊢ ((𝑀 ∈ 𝑋 ∧ 𝑆 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) → (𝑆(𝑠 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑣), 𝑣 ∈ 𝒫 (Base‘𝑀) ↦ (𝑀 Σg (𝑥 ∈ 𝑣 ↦ ((𝑠‘𝑥)( ·𝑠
‘𝑀)𝑥))))𝑉) = (𝑀 Σg (𝑥 ∈ 𝑉 ↦ ((𝑆‘𝑥)( ·𝑠
‘𝑀)𝑥)))) | 
| 17 | 3, 16 | eqtrd 2776 | 1
⊢ ((𝑀 ∈ 𝑋 ∧ 𝑆 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) → (𝑆( linC ‘𝑀)𝑉) = (𝑀 Σg (𝑥 ∈ 𝑉 ↦ ((𝑆‘𝑥)( ·𝑠
‘𝑀)𝑥)))) |