Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lincval Structured version   Visualization version   GIF version

Theorem lincval 44458
Description: The value of a linear combination. (Contributed by AV, 30-Mar-2019.)
Assertion
Ref Expression
lincval ((𝑀𝑋𝑆 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) → (𝑆( linC ‘𝑀)𝑉) = (𝑀 Σg (𝑥𝑉 ↦ ((𝑆𝑥)( ·𝑠𝑀)𝑥))))
Distinct variable groups:   𝑥,𝑀   𝑥,𝑆   𝑥,𝑉
Allowed substitution hint:   𝑋(𝑥)

Proof of Theorem lincval
Dummy variables 𝑠 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lincop 44457 . . . 4 (𝑀𝑋 → ( linC ‘𝑀) = (𝑠 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑣), 𝑣 ∈ 𝒫 (Base‘𝑀) ↦ (𝑀 Σg (𝑥𝑣 ↦ ((𝑠𝑥)( ·𝑠𝑀)𝑥)))))
213ad2ant1 1129 . . 3 ((𝑀𝑋𝑆 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) → ( linC ‘𝑀) = (𝑠 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑣), 𝑣 ∈ 𝒫 (Base‘𝑀) ↦ (𝑀 Σg (𝑥𝑣 ↦ ((𝑠𝑥)( ·𝑠𝑀)𝑥)))))
32oveqd 7167 . 2 ((𝑀𝑋𝑆 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) → (𝑆( linC ‘𝑀)𝑉) = (𝑆(𝑠 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑣), 𝑣 ∈ 𝒫 (Base‘𝑀) ↦ (𝑀 Σg (𝑥𝑣 ↦ ((𝑠𝑥)( ·𝑠𝑀)𝑥))))𝑉))
4 simp2 1133 . . 3 ((𝑀𝑋𝑆 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) → 𝑆 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉))
5 simp3 1134 . . 3 ((𝑀𝑋𝑆 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) → 𝑉 ∈ 𝒫 (Base‘𝑀))
6 ovexd 7185 . . 3 ((𝑀𝑋𝑆 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) → (𝑀 Σg (𝑥𝑉 ↦ ((𝑆𝑥)( ·𝑠𝑀)𝑥))) ∈ V)
7 simpr 487 . . . . . 6 ((𝑠 = 𝑆𝑣 = 𝑉) → 𝑣 = 𝑉)
8 fveq1 6663 . . . . . . . 8 (𝑠 = 𝑆 → (𝑠𝑥) = (𝑆𝑥))
98oveq1d 7165 . . . . . . 7 (𝑠 = 𝑆 → ((𝑠𝑥)( ·𝑠𝑀)𝑥) = ((𝑆𝑥)( ·𝑠𝑀)𝑥))
109adantr 483 . . . . . 6 ((𝑠 = 𝑆𝑣 = 𝑉) → ((𝑠𝑥)( ·𝑠𝑀)𝑥) = ((𝑆𝑥)( ·𝑠𝑀)𝑥))
117, 10mpteq12dv 5143 . . . . 5 ((𝑠 = 𝑆𝑣 = 𝑉) → (𝑥𝑣 ↦ ((𝑠𝑥)( ·𝑠𝑀)𝑥)) = (𝑥𝑉 ↦ ((𝑆𝑥)( ·𝑠𝑀)𝑥)))
1211oveq2d 7166 . . . 4 ((𝑠 = 𝑆𝑣 = 𝑉) → (𝑀 Σg (𝑥𝑣 ↦ ((𝑠𝑥)( ·𝑠𝑀)𝑥))) = (𝑀 Σg (𝑥𝑉 ↦ ((𝑆𝑥)( ·𝑠𝑀)𝑥))))
13 oveq2 7158 . . . 4 (𝑣 = 𝑉 → ((Base‘(Scalar‘𝑀)) ↑m 𝑣) = ((Base‘(Scalar‘𝑀)) ↑m 𝑉))
14 eqid 2821 . . . 4 (𝑠 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑣), 𝑣 ∈ 𝒫 (Base‘𝑀) ↦ (𝑀 Σg (𝑥𝑣 ↦ ((𝑠𝑥)( ·𝑠𝑀)𝑥)))) = (𝑠 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑣), 𝑣 ∈ 𝒫 (Base‘𝑀) ↦ (𝑀 Σg (𝑥𝑣 ↦ ((𝑠𝑥)( ·𝑠𝑀)𝑥))))
1512, 13, 14ovmpox2 44383 . . 3 ((𝑆 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ 𝑉 ∈ 𝒫 (Base‘𝑀) ∧ (𝑀 Σg (𝑥𝑉 ↦ ((𝑆𝑥)( ·𝑠𝑀)𝑥))) ∈ V) → (𝑆(𝑠 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑣), 𝑣 ∈ 𝒫 (Base‘𝑀) ↦ (𝑀 Σg (𝑥𝑣 ↦ ((𝑠𝑥)( ·𝑠𝑀)𝑥))))𝑉) = (𝑀 Σg (𝑥𝑉 ↦ ((𝑆𝑥)( ·𝑠𝑀)𝑥))))
164, 5, 6, 15syl3anc 1367 . 2 ((𝑀𝑋𝑆 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) → (𝑆(𝑠 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑣), 𝑣 ∈ 𝒫 (Base‘𝑀) ↦ (𝑀 Σg (𝑥𝑣 ↦ ((𝑠𝑥)( ·𝑠𝑀)𝑥))))𝑉) = (𝑀 Σg (𝑥𝑉 ↦ ((𝑆𝑥)( ·𝑠𝑀)𝑥))))
173, 16eqtrd 2856 1 ((𝑀𝑋𝑆 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) → (𝑆( linC ‘𝑀)𝑉) = (𝑀 Σg (𝑥𝑉 ↦ ((𝑆𝑥)( ·𝑠𝑀)𝑥))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1083   = wceq 1533  wcel 2110  Vcvv 3494  𝒫 cpw 4538  cmpt 5138  cfv 6349  (class class class)co 7150  cmpo 7152  m cmap 8400  Basecbs 16477  Scalarcsca 16562   ·𝑠 cvsca 16563   Σg cgsu 16708   linC clinc 44453
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5182  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-op 4567  df-uni 4832  df-iun 4913  df-br 5059  df-opab 5121  df-mpt 5139  df-id 5454  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-ov 7153  df-oprab 7154  df-mpo 7155  df-1st 7683  df-2nd 7684  df-linc 44455
This theorem is referenced by:  lincfsuppcl  44462  linccl  44463  lincval0  44464  lincvalsng  44465  lincvalpr  44467  lincvalsc0  44470  linc0scn0  44472  lincdifsn  44473  linc1  44474  lincellss  44475  lincsum  44478  lincscm  44479  lindslinindimp2lem4  44510  lindslinindsimp2lem5  44511  snlindsntor  44520  lincresunit3lem2  44529  lincresunit3  44530  zlmodzxzldeplem3  44551
  Copyright terms: Public domain W3C validator