Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lincval Structured version   Visualization version   GIF version

Theorem lincval 48138
Description: The value of a linear combination. (Contributed by AV, 30-Mar-2019.)
Assertion
Ref Expression
lincval ((𝑀𝑋𝑆 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) → (𝑆( linC ‘𝑀)𝑉) = (𝑀 Σg (𝑥𝑉 ↦ ((𝑆𝑥)( ·𝑠𝑀)𝑥))))
Distinct variable groups:   𝑥,𝑀   𝑥,𝑆   𝑥,𝑉
Allowed substitution hint:   𝑋(𝑥)

Proof of Theorem lincval
Dummy variables 𝑠 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lincop 48137 . . . 4 (𝑀𝑋 → ( linC ‘𝑀) = (𝑠 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑣), 𝑣 ∈ 𝒫 (Base‘𝑀) ↦ (𝑀 Σg (𝑥𝑣 ↦ ((𝑠𝑥)( ·𝑠𝑀)𝑥)))))
213ad2ant1 1133 . . 3 ((𝑀𝑋𝑆 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) → ( linC ‘𝑀) = (𝑠 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑣), 𝑣 ∈ 𝒫 (Base‘𝑀) ↦ (𝑀 Σg (𝑥𝑣 ↦ ((𝑠𝑥)( ·𝑠𝑀)𝑥)))))
32oveqd 7465 . 2 ((𝑀𝑋𝑆 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) → (𝑆( linC ‘𝑀)𝑉) = (𝑆(𝑠 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑣), 𝑣 ∈ 𝒫 (Base‘𝑀) ↦ (𝑀 Σg (𝑥𝑣 ↦ ((𝑠𝑥)( ·𝑠𝑀)𝑥))))𝑉))
4 simp2 1137 . . 3 ((𝑀𝑋𝑆 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) → 𝑆 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉))
5 simp3 1138 . . 3 ((𝑀𝑋𝑆 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) → 𝑉 ∈ 𝒫 (Base‘𝑀))
6 ovexd 7483 . . 3 ((𝑀𝑋𝑆 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) → (𝑀 Σg (𝑥𝑉 ↦ ((𝑆𝑥)( ·𝑠𝑀)𝑥))) ∈ V)
7 simpr 484 . . . . . 6 ((𝑠 = 𝑆𝑣 = 𝑉) → 𝑣 = 𝑉)
8 fveq1 6919 . . . . . . . 8 (𝑠 = 𝑆 → (𝑠𝑥) = (𝑆𝑥))
98oveq1d 7463 . . . . . . 7 (𝑠 = 𝑆 → ((𝑠𝑥)( ·𝑠𝑀)𝑥) = ((𝑆𝑥)( ·𝑠𝑀)𝑥))
109adantr 480 . . . . . 6 ((𝑠 = 𝑆𝑣 = 𝑉) → ((𝑠𝑥)( ·𝑠𝑀)𝑥) = ((𝑆𝑥)( ·𝑠𝑀)𝑥))
117, 10mpteq12dv 5257 . . . . 5 ((𝑠 = 𝑆𝑣 = 𝑉) → (𝑥𝑣 ↦ ((𝑠𝑥)( ·𝑠𝑀)𝑥)) = (𝑥𝑉 ↦ ((𝑆𝑥)( ·𝑠𝑀)𝑥)))
1211oveq2d 7464 . . . 4 ((𝑠 = 𝑆𝑣 = 𝑉) → (𝑀 Σg (𝑥𝑣 ↦ ((𝑠𝑥)( ·𝑠𝑀)𝑥))) = (𝑀 Σg (𝑥𝑉 ↦ ((𝑆𝑥)( ·𝑠𝑀)𝑥))))
13 oveq2 7456 . . . 4 (𝑣 = 𝑉 → ((Base‘(Scalar‘𝑀)) ↑m 𝑣) = ((Base‘(Scalar‘𝑀)) ↑m 𝑉))
14 eqid 2740 . . . 4 (𝑠 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑣), 𝑣 ∈ 𝒫 (Base‘𝑀) ↦ (𝑀 Σg (𝑥𝑣 ↦ ((𝑠𝑥)( ·𝑠𝑀)𝑥)))) = (𝑠 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑣), 𝑣 ∈ 𝒫 (Base‘𝑀) ↦ (𝑀 Σg (𝑥𝑣 ↦ ((𝑠𝑥)( ·𝑠𝑀)𝑥))))
1512, 13, 14ovmpox2 48065 . . 3 ((𝑆 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ 𝑉 ∈ 𝒫 (Base‘𝑀) ∧ (𝑀 Σg (𝑥𝑉 ↦ ((𝑆𝑥)( ·𝑠𝑀)𝑥))) ∈ V) → (𝑆(𝑠 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑣), 𝑣 ∈ 𝒫 (Base‘𝑀) ↦ (𝑀 Σg (𝑥𝑣 ↦ ((𝑠𝑥)( ·𝑠𝑀)𝑥))))𝑉) = (𝑀 Σg (𝑥𝑉 ↦ ((𝑆𝑥)( ·𝑠𝑀)𝑥))))
164, 5, 6, 15syl3anc 1371 . 2 ((𝑀𝑋𝑆 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) → (𝑆(𝑠 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑣), 𝑣 ∈ 𝒫 (Base‘𝑀) ↦ (𝑀 Σg (𝑥𝑣 ↦ ((𝑠𝑥)( ·𝑠𝑀)𝑥))))𝑉) = (𝑀 Σg (𝑥𝑉 ↦ ((𝑆𝑥)( ·𝑠𝑀)𝑥))))
173, 16eqtrd 2780 1 ((𝑀𝑋𝑆 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) → (𝑆( linC ‘𝑀)𝑉) = (𝑀 Σg (𝑥𝑉 ↦ ((𝑆𝑥)( ·𝑠𝑀)𝑥))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1537  wcel 2108  Vcvv 3488  𝒫 cpw 4622  cmpt 5249  cfv 6573  (class class class)co 7448  cmpo 7450  m cmap 8884  Basecbs 17258  Scalarcsca 17314   ·𝑠 cvsca 17315   Σg cgsu 17500   linC clinc 48133
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-1st 8030  df-2nd 8031  df-linc 48135
This theorem is referenced by:  lincfsuppcl  48142  linccl  48143  lincval0  48144  lincvalsng  48145  lincvalpr  48147  lincvalsc0  48150  linc0scn0  48152  lincdifsn  48153  linc1  48154  lincellss  48155  lincsum  48158  lincscm  48159  lindslinindimp2lem4  48190  lindslinindsimp2lem5  48191  snlindsntor  48200  lincresunit3lem2  48209  lincresunit3  48210  zlmodzxzldeplem3  48231
  Copyright terms: Public domain W3C validator