Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lincval Structured version   Visualization version   GIF version

Theorem lincval 48398
Description: The value of a linear combination. (Contributed by AV, 30-Mar-2019.)
Assertion
Ref Expression
lincval ((𝑀𝑋𝑆 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) → (𝑆( linC ‘𝑀)𝑉) = (𝑀 Σg (𝑥𝑉 ↦ ((𝑆𝑥)( ·𝑠𝑀)𝑥))))
Distinct variable groups:   𝑥,𝑀   𝑥,𝑆   𝑥,𝑉
Allowed substitution hint:   𝑋(𝑥)

Proof of Theorem lincval
Dummy variables 𝑠 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lincop 48397 . . . 4 (𝑀𝑋 → ( linC ‘𝑀) = (𝑠 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑣), 𝑣 ∈ 𝒫 (Base‘𝑀) ↦ (𝑀 Σg (𝑥𝑣 ↦ ((𝑠𝑥)( ·𝑠𝑀)𝑥)))))
213ad2ant1 1133 . . 3 ((𝑀𝑋𝑆 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) → ( linC ‘𝑀) = (𝑠 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑣), 𝑣 ∈ 𝒫 (Base‘𝑀) ↦ (𝑀 Σg (𝑥𝑣 ↦ ((𝑠𝑥)( ·𝑠𝑀)𝑥)))))
32oveqd 7404 . 2 ((𝑀𝑋𝑆 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) → (𝑆( linC ‘𝑀)𝑉) = (𝑆(𝑠 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑣), 𝑣 ∈ 𝒫 (Base‘𝑀) ↦ (𝑀 Σg (𝑥𝑣 ↦ ((𝑠𝑥)( ·𝑠𝑀)𝑥))))𝑉))
4 simp2 1137 . . 3 ((𝑀𝑋𝑆 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) → 𝑆 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉))
5 simp3 1138 . . 3 ((𝑀𝑋𝑆 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) → 𝑉 ∈ 𝒫 (Base‘𝑀))
6 ovexd 7422 . . 3 ((𝑀𝑋𝑆 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) → (𝑀 Σg (𝑥𝑉 ↦ ((𝑆𝑥)( ·𝑠𝑀)𝑥))) ∈ V)
7 simpr 484 . . . . . 6 ((𝑠 = 𝑆𝑣 = 𝑉) → 𝑣 = 𝑉)
8 fveq1 6857 . . . . . . . 8 (𝑠 = 𝑆 → (𝑠𝑥) = (𝑆𝑥))
98oveq1d 7402 . . . . . . 7 (𝑠 = 𝑆 → ((𝑠𝑥)( ·𝑠𝑀)𝑥) = ((𝑆𝑥)( ·𝑠𝑀)𝑥))
109adantr 480 . . . . . 6 ((𝑠 = 𝑆𝑣 = 𝑉) → ((𝑠𝑥)( ·𝑠𝑀)𝑥) = ((𝑆𝑥)( ·𝑠𝑀)𝑥))
117, 10mpteq12dv 5194 . . . . 5 ((𝑠 = 𝑆𝑣 = 𝑉) → (𝑥𝑣 ↦ ((𝑠𝑥)( ·𝑠𝑀)𝑥)) = (𝑥𝑉 ↦ ((𝑆𝑥)( ·𝑠𝑀)𝑥)))
1211oveq2d 7403 . . . 4 ((𝑠 = 𝑆𝑣 = 𝑉) → (𝑀 Σg (𝑥𝑣 ↦ ((𝑠𝑥)( ·𝑠𝑀)𝑥))) = (𝑀 Σg (𝑥𝑉 ↦ ((𝑆𝑥)( ·𝑠𝑀)𝑥))))
13 oveq2 7395 . . . 4 (𝑣 = 𝑉 → ((Base‘(Scalar‘𝑀)) ↑m 𝑣) = ((Base‘(Scalar‘𝑀)) ↑m 𝑉))
14 eqid 2729 . . . 4 (𝑠 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑣), 𝑣 ∈ 𝒫 (Base‘𝑀) ↦ (𝑀 Σg (𝑥𝑣 ↦ ((𝑠𝑥)( ·𝑠𝑀)𝑥)))) = (𝑠 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑣), 𝑣 ∈ 𝒫 (Base‘𝑀) ↦ (𝑀 Σg (𝑥𝑣 ↦ ((𝑠𝑥)( ·𝑠𝑀)𝑥))))
1512, 13, 14ovmpox2 48329 . . 3 ((𝑆 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ 𝑉 ∈ 𝒫 (Base‘𝑀) ∧ (𝑀 Σg (𝑥𝑉 ↦ ((𝑆𝑥)( ·𝑠𝑀)𝑥))) ∈ V) → (𝑆(𝑠 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑣), 𝑣 ∈ 𝒫 (Base‘𝑀) ↦ (𝑀 Σg (𝑥𝑣 ↦ ((𝑠𝑥)( ·𝑠𝑀)𝑥))))𝑉) = (𝑀 Σg (𝑥𝑉 ↦ ((𝑆𝑥)( ·𝑠𝑀)𝑥))))
164, 5, 6, 15syl3anc 1373 . 2 ((𝑀𝑋𝑆 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) → (𝑆(𝑠 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑣), 𝑣 ∈ 𝒫 (Base‘𝑀) ↦ (𝑀 Σg (𝑥𝑣 ↦ ((𝑠𝑥)( ·𝑠𝑀)𝑥))))𝑉) = (𝑀 Σg (𝑥𝑉 ↦ ((𝑆𝑥)( ·𝑠𝑀)𝑥))))
173, 16eqtrd 2764 1 ((𝑀𝑋𝑆 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) → (𝑆( linC ‘𝑀)𝑉) = (𝑀 Σg (𝑥𝑉 ↦ ((𝑆𝑥)( ·𝑠𝑀)𝑥))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  Vcvv 3447  𝒫 cpw 4563  cmpt 5188  cfv 6511  (class class class)co 7387  cmpo 7389  m cmap 8799  Basecbs 17179  Scalarcsca 17223   ·𝑠 cvsca 17224   Σg cgsu 17403   linC clinc 48393
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-1st 7968  df-2nd 7969  df-linc 48395
This theorem is referenced by:  lincfsuppcl  48402  linccl  48403  lincval0  48404  lincvalsng  48405  lincvalpr  48407  lincvalsc0  48410  linc0scn0  48412  lincdifsn  48413  linc1  48414  lincellss  48415  lincsum  48418  lincscm  48419  lindslinindimp2lem4  48450  lindslinindsimp2lem5  48451  snlindsntor  48460  lincresunit3lem2  48469  lincresunit3  48470  zlmodzxzldeplem3  48491
  Copyright terms: Public domain W3C validator