| Step | Hyp | Ref
| Expression |
| 1 | | lincop 48351 |
. . . 4
⊢ (𝑀 ∈ 𝑋 → ( linC ‘𝑀) = (𝑠 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑣), 𝑣 ∈ 𝒫 (Base‘𝑀) ↦ (𝑀 Σg (𝑥 ∈ 𝑣 ↦ ((𝑠‘𝑥)( ·𝑠
‘𝑀)𝑥))))) |
| 2 | 1 | 3ad2ant1 1133 |
. . 3
⊢ ((𝑀 ∈ 𝑋 ∧ 𝑆 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) → ( linC ‘𝑀) = (𝑠 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑣), 𝑣 ∈ 𝒫 (Base‘𝑀) ↦ (𝑀 Σg (𝑥 ∈ 𝑣 ↦ ((𝑠‘𝑥)( ·𝑠
‘𝑀)𝑥))))) |
| 3 | 2 | oveqd 7427 |
. 2
⊢ ((𝑀 ∈ 𝑋 ∧ 𝑆 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) → (𝑆( linC ‘𝑀)𝑉) = (𝑆(𝑠 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑣), 𝑣 ∈ 𝒫 (Base‘𝑀) ↦ (𝑀 Σg (𝑥 ∈ 𝑣 ↦ ((𝑠‘𝑥)( ·𝑠
‘𝑀)𝑥))))𝑉)) |
| 4 | | simp2 1137 |
. . 3
⊢ ((𝑀 ∈ 𝑋 ∧ 𝑆 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) → 𝑆 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉)) |
| 5 | | simp3 1138 |
. . 3
⊢ ((𝑀 ∈ 𝑋 ∧ 𝑆 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) → 𝑉 ∈ 𝒫 (Base‘𝑀)) |
| 6 | | ovexd 7445 |
. . 3
⊢ ((𝑀 ∈ 𝑋 ∧ 𝑆 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) → (𝑀 Σg (𝑥 ∈ 𝑉 ↦ ((𝑆‘𝑥)( ·𝑠
‘𝑀)𝑥))) ∈ V) |
| 7 | | simpr 484 |
. . . . . 6
⊢ ((𝑠 = 𝑆 ∧ 𝑣 = 𝑉) → 𝑣 = 𝑉) |
| 8 | | fveq1 6880 |
. . . . . . . 8
⊢ (𝑠 = 𝑆 → (𝑠‘𝑥) = (𝑆‘𝑥)) |
| 9 | 8 | oveq1d 7425 |
. . . . . . 7
⊢ (𝑠 = 𝑆 → ((𝑠‘𝑥)( ·𝑠
‘𝑀)𝑥) = ((𝑆‘𝑥)( ·𝑠
‘𝑀)𝑥)) |
| 10 | 9 | adantr 480 |
. . . . . 6
⊢ ((𝑠 = 𝑆 ∧ 𝑣 = 𝑉) → ((𝑠‘𝑥)( ·𝑠
‘𝑀)𝑥) = ((𝑆‘𝑥)( ·𝑠
‘𝑀)𝑥)) |
| 11 | 7, 10 | mpteq12dv 5212 |
. . . . 5
⊢ ((𝑠 = 𝑆 ∧ 𝑣 = 𝑉) → (𝑥 ∈ 𝑣 ↦ ((𝑠‘𝑥)( ·𝑠
‘𝑀)𝑥)) = (𝑥 ∈ 𝑉 ↦ ((𝑆‘𝑥)( ·𝑠
‘𝑀)𝑥))) |
| 12 | 11 | oveq2d 7426 |
. . . 4
⊢ ((𝑠 = 𝑆 ∧ 𝑣 = 𝑉) → (𝑀 Σg (𝑥 ∈ 𝑣 ↦ ((𝑠‘𝑥)( ·𝑠
‘𝑀)𝑥))) = (𝑀 Σg (𝑥 ∈ 𝑉 ↦ ((𝑆‘𝑥)( ·𝑠
‘𝑀)𝑥)))) |
| 13 | | oveq2 7418 |
. . . 4
⊢ (𝑣 = 𝑉 → ((Base‘(Scalar‘𝑀)) ↑m 𝑣) =
((Base‘(Scalar‘𝑀)) ↑m 𝑉)) |
| 14 | | eqid 2736 |
. . . 4
⊢ (𝑠 ∈
((Base‘(Scalar‘𝑀)) ↑m 𝑣), 𝑣 ∈ 𝒫 (Base‘𝑀) ↦ (𝑀 Σg (𝑥 ∈ 𝑣 ↦ ((𝑠‘𝑥)( ·𝑠
‘𝑀)𝑥)))) = (𝑠 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑣), 𝑣 ∈ 𝒫 (Base‘𝑀) ↦ (𝑀 Σg (𝑥 ∈ 𝑣 ↦ ((𝑠‘𝑥)( ·𝑠
‘𝑀)𝑥)))) |
| 15 | 12, 13, 14 | ovmpox2 48283 |
. . 3
⊢ ((𝑆 ∈
((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ 𝑉 ∈ 𝒫 (Base‘𝑀) ∧ (𝑀 Σg (𝑥 ∈ 𝑉 ↦ ((𝑆‘𝑥)( ·𝑠
‘𝑀)𝑥))) ∈ V) → (𝑆(𝑠 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑣), 𝑣 ∈ 𝒫 (Base‘𝑀) ↦ (𝑀 Σg (𝑥 ∈ 𝑣 ↦ ((𝑠‘𝑥)( ·𝑠
‘𝑀)𝑥))))𝑉) = (𝑀 Σg (𝑥 ∈ 𝑉 ↦ ((𝑆‘𝑥)( ·𝑠
‘𝑀)𝑥)))) |
| 16 | 4, 5, 6, 15 | syl3anc 1373 |
. 2
⊢ ((𝑀 ∈ 𝑋 ∧ 𝑆 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) → (𝑆(𝑠 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑣), 𝑣 ∈ 𝒫 (Base‘𝑀) ↦ (𝑀 Σg (𝑥 ∈ 𝑣 ↦ ((𝑠‘𝑥)( ·𝑠
‘𝑀)𝑥))))𝑉) = (𝑀 Σg (𝑥 ∈ 𝑉 ↦ ((𝑆‘𝑥)( ·𝑠
‘𝑀)𝑥)))) |
| 17 | 3, 16 | eqtrd 2771 |
1
⊢ ((𝑀 ∈ 𝑋 ∧ 𝑆 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) → (𝑆( linC ‘𝑀)𝑉) = (𝑀 Σg (𝑥 ∈ 𝑉 ↦ ((𝑆‘𝑥)( ·𝑠
‘𝑀)𝑥)))) |