Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lincval Structured version   Visualization version   GIF version

Theorem lincval 47178
Description: The value of a linear combination. (Contributed by AV, 30-Mar-2019.)
Assertion
Ref Expression
lincval ((𝑀 ∈ 𝑋 ∧ 𝑆 ∈ ((Baseβ€˜(Scalarβ€˜π‘€)) ↑m 𝑉) ∧ 𝑉 ∈ 𝒫 (Baseβ€˜π‘€)) β†’ (𝑆( linC β€˜π‘€)𝑉) = (𝑀 Ξ£g (π‘₯ ∈ 𝑉 ↦ ((π‘†β€˜π‘₯)( ·𝑠 β€˜π‘€)π‘₯))))
Distinct variable groups:   π‘₯,𝑀   π‘₯,𝑆   π‘₯,𝑉
Allowed substitution hint:   𝑋(π‘₯)

Proof of Theorem lincval
Dummy variables 𝑠 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lincop 47177 . . . 4 (𝑀 ∈ 𝑋 β†’ ( linC β€˜π‘€) = (𝑠 ∈ ((Baseβ€˜(Scalarβ€˜π‘€)) ↑m 𝑣), 𝑣 ∈ 𝒫 (Baseβ€˜π‘€) ↦ (𝑀 Ξ£g (π‘₯ ∈ 𝑣 ↦ ((π‘ β€˜π‘₯)( ·𝑠 β€˜π‘€)π‘₯)))))
213ad2ant1 1133 . . 3 ((𝑀 ∈ 𝑋 ∧ 𝑆 ∈ ((Baseβ€˜(Scalarβ€˜π‘€)) ↑m 𝑉) ∧ 𝑉 ∈ 𝒫 (Baseβ€˜π‘€)) β†’ ( linC β€˜π‘€) = (𝑠 ∈ ((Baseβ€˜(Scalarβ€˜π‘€)) ↑m 𝑣), 𝑣 ∈ 𝒫 (Baseβ€˜π‘€) ↦ (𝑀 Ξ£g (π‘₯ ∈ 𝑣 ↦ ((π‘ β€˜π‘₯)( ·𝑠 β€˜π‘€)π‘₯)))))
32oveqd 7428 . 2 ((𝑀 ∈ 𝑋 ∧ 𝑆 ∈ ((Baseβ€˜(Scalarβ€˜π‘€)) ↑m 𝑉) ∧ 𝑉 ∈ 𝒫 (Baseβ€˜π‘€)) β†’ (𝑆( linC β€˜π‘€)𝑉) = (𝑆(𝑠 ∈ ((Baseβ€˜(Scalarβ€˜π‘€)) ↑m 𝑣), 𝑣 ∈ 𝒫 (Baseβ€˜π‘€) ↦ (𝑀 Ξ£g (π‘₯ ∈ 𝑣 ↦ ((π‘ β€˜π‘₯)( ·𝑠 β€˜π‘€)π‘₯))))𝑉))
4 simp2 1137 . . 3 ((𝑀 ∈ 𝑋 ∧ 𝑆 ∈ ((Baseβ€˜(Scalarβ€˜π‘€)) ↑m 𝑉) ∧ 𝑉 ∈ 𝒫 (Baseβ€˜π‘€)) β†’ 𝑆 ∈ ((Baseβ€˜(Scalarβ€˜π‘€)) ↑m 𝑉))
5 simp3 1138 . . 3 ((𝑀 ∈ 𝑋 ∧ 𝑆 ∈ ((Baseβ€˜(Scalarβ€˜π‘€)) ↑m 𝑉) ∧ 𝑉 ∈ 𝒫 (Baseβ€˜π‘€)) β†’ 𝑉 ∈ 𝒫 (Baseβ€˜π‘€))
6 ovexd 7446 . . 3 ((𝑀 ∈ 𝑋 ∧ 𝑆 ∈ ((Baseβ€˜(Scalarβ€˜π‘€)) ↑m 𝑉) ∧ 𝑉 ∈ 𝒫 (Baseβ€˜π‘€)) β†’ (𝑀 Ξ£g (π‘₯ ∈ 𝑉 ↦ ((π‘†β€˜π‘₯)( ·𝑠 β€˜π‘€)π‘₯))) ∈ V)
7 simpr 485 . . . . . 6 ((𝑠 = 𝑆 ∧ 𝑣 = 𝑉) β†’ 𝑣 = 𝑉)
8 fveq1 6890 . . . . . . . 8 (𝑠 = 𝑆 β†’ (π‘ β€˜π‘₯) = (π‘†β€˜π‘₯))
98oveq1d 7426 . . . . . . 7 (𝑠 = 𝑆 β†’ ((π‘ β€˜π‘₯)( ·𝑠 β€˜π‘€)π‘₯) = ((π‘†β€˜π‘₯)( ·𝑠 β€˜π‘€)π‘₯))
109adantr 481 . . . . . 6 ((𝑠 = 𝑆 ∧ 𝑣 = 𝑉) β†’ ((π‘ β€˜π‘₯)( ·𝑠 β€˜π‘€)π‘₯) = ((π‘†β€˜π‘₯)( ·𝑠 β€˜π‘€)π‘₯))
117, 10mpteq12dv 5239 . . . . 5 ((𝑠 = 𝑆 ∧ 𝑣 = 𝑉) β†’ (π‘₯ ∈ 𝑣 ↦ ((π‘ β€˜π‘₯)( ·𝑠 β€˜π‘€)π‘₯)) = (π‘₯ ∈ 𝑉 ↦ ((π‘†β€˜π‘₯)( ·𝑠 β€˜π‘€)π‘₯)))
1211oveq2d 7427 . . . 4 ((𝑠 = 𝑆 ∧ 𝑣 = 𝑉) β†’ (𝑀 Ξ£g (π‘₯ ∈ 𝑣 ↦ ((π‘ β€˜π‘₯)( ·𝑠 β€˜π‘€)π‘₯))) = (𝑀 Ξ£g (π‘₯ ∈ 𝑉 ↦ ((π‘†β€˜π‘₯)( ·𝑠 β€˜π‘€)π‘₯))))
13 oveq2 7419 . . . 4 (𝑣 = 𝑉 β†’ ((Baseβ€˜(Scalarβ€˜π‘€)) ↑m 𝑣) = ((Baseβ€˜(Scalarβ€˜π‘€)) ↑m 𝑉))
14 eqid 2732 . . . 4 (𝑠 ∈ ((Baseβ€˜(Scalarβ€˜π‘€)) ↑m 𝑣), 𝑣 ∈ 𝒫 (Baseβ€˜π‘€) ↦ (𝑀 Ξ£g (π‘₯ ∈ 𝑣 ↦ ((π‘ β€˜π‘₯)( ·𝑠 β€˜π‘€)π‘₯)))) = (𝑠 ∈ ((Baseβ€˜(Scalarβ€˜π‘€)) ↑m 𝑣), 𝑣 ∈ 𝒫 (Baseβ€˜π‘€) ↦ (𝑀 Ξ£g (π‘₯ ∈ 𝑣 ↦ ((π‘ β€˜π‘₯)( ·𝑠 β€˜π‘€)π‘₯))))
1512, 13, 14ovmpox2 47105 . . 3 ((𝑆 ∈ ((Baseβ€˜(Scalarβ€˜π‘€)) ↑m 𝑉) ∧ 𝑉 ∈ 𝒫 (Baseβ€˜π‘€) ∧ (𝑀 Ξ£g (π‘₯ ∈ 𝑉 ↦ ((π‘†β€˜π‘₯)( ·𝑠 β€˜π‘€)π‘₯))) ∈ V) β†’ (𝑆(𝑠 ∈ ((Baseβ€˜(Scalarβ€˜π‘€)) ↑m 𝑣), 𝑣 ∈ 𝒫 (Baseβ€˜π‘€) ↦ (𝑀 Ξ£g (π‘₯ ∈ 𝑣 ↦ ((π‘ β€˜π‘₯)( ·𝑠 β€˜π‘€)π‘₯))))𝑉) = (𝑀 Ξ£g (π‘₯ ∈ 𝑉 ↦ ((π‘†β€˜π‘₯)( ·𝑠 β€˜π‘€)π‘₯))))
164, 5, 6, 15syl3anc 1371 . 2 ((𝑀 ∈ 𝑋 ∧ 𝑆 ∈ ((Baseβ€˜(Scalarβ€˜π‘€)) ↑m 𝑉) ∧ 𝑉 ∈ 𝒫 (Baseβ€˜π‘€)) β†’ (𝑆(𝑠 ∈ ((Baseβ€˜(Scalarβ€˜π‘€)) ↑m 𝑣), 𝑣 ∈ 𝒫 (Baseβ€˜π‘€) ↦ (𝑀 Ξ£g (π‘₯ ∈ 𝑣 ↦ ((π‘ β€˜π‘₯)( ·𝑠 β€˜π‘€)π‘₯))))𝑉) = (𝑀 Ξ£g (π‘₯ ∈ 𝑉 ↦ ((π‘†β€˜π‘₯)( ·𝑠 β€˜π‘€)π‘₯))))
173, 16eqtrd 2772 1 ((𝑀 ∈ 𝑋 ∧ 𝑆 ∈ ((Baseβ€˜(Scalarβ€˜π‘€)) ↑m 𝑉) ∧ 𝑉 ∈ 𝒫 (Baseβ€˜π‘€)) β†’ (𝑆( linC β€˜π‘€)𝑉) = (𝑀 Ξ£g (π‘₯ ∈ 𝑉 ↦ ((π‘†β€˜π‘₯)( ·𝑠 β€˜π‘€)π‘₯))))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 396   ∧ w3a 1087   = wceq 1541   ∈ wcel 2106  Vcvv 3474  π’« cpw 4602   ↦ cmpt 5231  β€˜cfv 6543  (class class class)co 7411   ∈ cmpo 7413   ↑m cmap 8822  Basecbs 17148  Scalarcsca 17204   ·𝑠 cvsca 17205   Ξ£g cgsu 17390   linC clinc 47173
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7727
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-ov 7414  df-oprab 7415  df-mpo 7416  df-1st 7977  df-2nd 7978  df-linc 47175
This theorem is referenced by:  lincfsuppcl  47182  linccl  47183  lincval0  47184  lincvalsng  47185  lincvalpr  47187  lincvalsc0  47190  linc0scn0  47192  lincdifsn  47193  linc1  47194  lincellss  47195  lincsum  47198  lincscm  47199  lindslinindimp2lem4  47230  lindslinindsimp2lem5  47231  snlindsntor  47240  lincresunit3lem2  47249  lincresunit3  47250  zlmodzxzldeplem3  47271
  Copyright terms: Public domain W3C validator