Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dvnmptconst Structured version   Visualization version   GIF version

Theorem dvnmptconst 45896
Description: The 𝑁-th derivative of a constant function. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
Hypotheses
Ref Expression
dvnmptconst.s (𝜑𝑆 ∈ {ℝ, ℂ})
dvnmptconst.x (𝜑𝑋 ∈ ((TopOpen‘ℂfld) ↾t 𝑆))
dvnmptconst.a (𝜑𝐴 ∈ ℂ)
dvnmptconst.n (𝜑𝑁 ∈ ℕ)
Assertion
Ref Expression
dvnmptconst (𝜑 → ((𝑆 D𝑛 (𝑥𝑋𝐴))‘𝑁) = (𝑥𝑋 ↦ 0))
Distinct variable groups:   𝑥,𝐴   𝑥,𝑆   𝑥,𝑋   𝜑,𝑥
Allowed substitution hint:   𝑁(𝑥)

Proof of Theorem dvnmptconst
Dummy variables 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dvnmptconst.n . 2 (𝜑𝑁 ∈ ℕ)
2 id 22 . 2 (𝜑𝜑)
3 fveq2 6906 . . . . 5 (𝑛 = 1 → ((𝑆 D𝑛 (𝑥𝑋𝐴))‘𝑛) = ((𝑆 D𝑛 (𝑥𝑋𝐴))‘1))
43eqeq1d 2736 . . . 4 (𝑛 = 1 → (((𝑆 D𝑛 (𝑥𝑋𝐴))‘𝑛) = (𝑥𝑋 ↦ 0) ↔ ((𝑆 D𝑛 (𝑥𝑋𝐴))‘1) = (𝑥𝑋 ↦ 0)))
54imbi2d 340 . . 3 (𝑛 = 1 → ((𝜑 → ((𝑆 D𝑛 (𝑥𝑋𝐴))‘𝑛) = (𝑥𝑋 ↦ 0)) ↔ (𝜑 → ((𝑆 D𝑛 (𝑥𝑋𝐴))‘1) = (𝑥𝑋 ↦ 0))))
6 fveq2 6906 . . . . 5 (𝑛 = 𝑚 → ((𝑆 D𝑛 (𝑥𝑋𝐴))‘𝑛) = ((𝑆 D𝑛 (𝑥𝑋𝐴))‘𝑚))
76eqeq1d 2736 . . . 4 (𝑛 = 𝑚 → (((𝑆 D𝑛 (𝑥𝑋𝐴))‘𝑛) = (𝑥𝑋 ↦ 0) ↔ ((𝑆 D𝑛 (𝑥𝑋𝐴))‘𝑚) = (𝑥𝑋 ↦ 0)))
87imbi2d 340 . . 3 (𝑛 = 𝑚 → ((𝜑 → ((𝑆 D𝑛 (𝑥𝑋𝐴))‘𝑛) = (𝑥𝑋 ↦ 0)) ↔ (𝜑 → ((𝑆 D𝑛 (𝑥𝑋𝐴))‘𝑚) = (𝑥𝑋 ↦ 0))))
9 fveq2 6906 . . . . 5 (𝑛 = (𝑚 + 1) → ((𝑆 D𝑛 (𝑥𝑋𝐴))‘𝑛) = ((𝑆 D𝑛 (𝑥𝑋𝐴))‘(𝑚 + 1)))
109eqeq1d 2736 . . . 4 (𝑛 = (𝑚 + 1) → (((𝑆 D𝑛 (𝑥𝑋𝐴))‘𝑛) = (𝑥𝑋 ↦ 0) ↔ ((𝑆 D𝑛 (𝑥𝑋𝐴))‘(𝑚 + 1)) = (𝑥𝑋 ↦ 0)))
1110imbi2d 340 . . 3 (𝑛 = (𝑚 + 1) → ((𝜑 → ((𝑆 D𝑛 (𝑥𝑋𝐴))‘𝑛) = (𝑥𝑋 ↦ 0)) ↔ (𝜑 → ((𝑆 D𝑛 (𝑥𝑋𝐴))‘(𝑚 + 1)) = (𝑥𝑋 ↦ 0))))
12 fveq2 6906 . . . . 5 (𝑛 = 𝑁 → ((𝑆 D𝑛 (𝑥𝑋𝐴))‘𝑛) = ((𝑆 D𝑛 (𝑥𝑋𝐴))‘𝑁))
1312eqeq1d 2736 . . . 4 (𝑛 = 𝑁 → (((𝑆 D𝑛 (𝑥𝑋𝐴))‘𝑛) = (𝑥𝑋 ↦ 0) ↔ ((𝑆 D𝑛 (𝑥𝑋𝐴))‘𝑁) = (𝑥𝑋 ↦ 0)))
1413imbi2d 340 . . 3 (𝑛 = 𝑁 → ((𝜑 → ((𝑆 D𝑛 (𝑥𝑋𝐴))‘𝑛) = (𝑥𝑋 ↦ 0)) ↔ (𝜑 → ((𝑆 D𝑛 (𝑥𝑋𝐴))‘𝑁) = (𝑥𝑋 ↦ 0))))
15 dvnmptconst.s . . . . . 6 (𝜑𝑆 ∈ {ℝ, ℂ})
16 recnprss 25953 . . . . . 6 (𝑆 ∈ {ℝ, ℂ} → 𝑆 ⊆ ℂ)
1715, 16syl 17 . . . . 5 (𝜑𝑆 ⊆ ℂ)
18 dvnmptconst.a . . . . . . 7 (𝜑𝐴 ∈ ℂ)
1918adantr 480 . . . . . 6 ((𝜑𝑥𝑋) → 𝐴 ∈ ℂ)
20 restsspw 17477 . . . . . . . 8 ((TopOpen‘ℂfld) ↾t 𝑆) ⊆ 𝒫 𝑆
21 dvnmptconst.x . . . . . . . 8 (𝜑𝑋 ∈ ((TopOpen‘ℂfld) ↾t 𝑆))
2220, 21sselid 3992 . . . . . . 7 (𝜑𝑋 ∈ 𝒫 𝑆)
23 elpwi 4611 . . . . . . 7 (𝑋 ∈ 𝒫 𝑆𝑋𝑆)
2422, 23syl 17 . . . . . 6 (𝜑𝑋𝑆)
25 cnex 11233 . . . . . . 7 ℂ ∈ V
2625a1i 11 . . . . . 6 (𝜑 → ℂ ∈ V)
2719, 24, 26, 15mptelpm 45118 . . . . 5 (𝜑 → (𝑥𝑋𝐴) ∈ (ℂ ↑pm 𝑆))
28 dvn1 25976 . . . . 5 ((𝑆 ⊆ ℂ ∧ (𝑥𝑋𝐴) ∈ (ℂ ↑pm 𝑆)) → ((𝑆 D𝑛 (𝑥𝑋𝐴))‘1) = (𝑆 D (𝑥𝑋𝐴)))
2917, 27, 28syl2anc 584 . . . 4 (𝜑 → ((𝑆 D𝑛 (𝑥𝑋𝐴))‘1) = (𝑆 D (𝑥𝑋𝐴)))
3015, 21, 18dvmptconst 45870 . . . 4 (𝜑 → (𝑆 D (𝑥𝑋𝐴)) = (𝑥𝑋 ↦ 0))
3129, 30eqtrd 2774 . . 3 (𝜑 → ((𝑆 D𝑛 (𝑥𝑋𝐴))‘1) = (𝑥𝑋 ↦ 0))
32 simp3 1137 . . . . 5 ((𝑚 ∈ ℕ ∧ (𝜑 → ((𝑆 D𝑛 (𝑥𝑋𝐴))‘𝑚) = (𝑥𝑋 ↦ 0)) ∧ 𝜑) → 𝜑)
33 simp1 1135 . . . . 5 ((𝑚 ∈ ℕ ∧ (𝜑 → ((𝑆 D𝑛 (𝑥𝑋𝐴))‘𝑚) = (𝑥𝑋 ↦ 0)) ∧ 𝜑) → 𝑚 ∈ ℕ)
34 simpr 484 . . . . . . 7 (((𝜑 → ((𝑆 D𝑛 (𝑥𝑋𝐴))‘𝑚) = (𝑥𝑋 ↦ 0)) ∧ 𝜑) → 𝜑)
35 simpl 482 . . . . . . 7 (((𝜑 → ((𝑆 D𝑛 (𝑥𝑋𝐴))‘𝑚) = (𝑥𝑋 ↦ 0)) ∧ 𝜑) → (𝜑 → ((𝑆 D𝑛 (𝑥𝑋𝐴))‘𝑚) = (𝑥𝑋 ↦ 0)))
36 pm3.35 803 . . . . . . 7 ((𝜑 ∧ (𝜑 → ((𝑆 D𝑛 (𝑥𝑋𝐴))‘𝑚) = (𝑥𝑋 ↦ 0))) → ((𝑆 D𝑛 (𝑥𝑋𝐴))‘𝑚) = (𝑥𝑋 ↦ 0))
3734, 35, 36syl2anc 584 . . . . . 6 (((𝜑 → ((𝑆 D𝑛 (𝑥𝑋𝐴))‘𝑚) = (𝑥𝑋 ↦ 0)) ∧ 𝜑) → ((𝑆 D𝑛 (𝑥𝑋𝐴))‘𝑚) = (𝑥𝑋 ↦ 0))
38373adant1 1129 . . . . 5 ((𝑚 ∈ ℕ ∧ (𝜑 → ((𝑆 D𝑛 (𝑥𝑋𝐴))‘𝑚) = (𝑥𝑋 ↦ 0)) ∧ 𝜑) → ((𝑆 D𝑛 (𝑥𝑋𝐴))‘𝑚) = (𝑥𝑋 ↦ 0))
39173ad2ant1 1132 . . . . . . 7 ((𝜑𝑚 ∈ ℕ ∧ ((𝑆 D𝑛 (𝑥𝑋𝐴))‘𝑚) = (𝑥𝑋 ↦ 0)) → 𝑆 ⊆ ℂ)
40273ad2ant1 1132 . . . . . . 7 ((𝜑𝑚 ∈ ℕ ∧ ((𝑆 D𝑛 (𝑥𝑋𝐴))‘𝑚) = (𝑥𝑋 ↦ 0)) → (𝑥𝑋𝐴) ∈ (ℂ ↑pm 𝑆))
41 nnnn0 12530 . . . . . . . 8 (𝑚 ∈ ℕ → 𝑚 ∈ ℕ0)
42413ad2ant2 1133 . . . . . . 7 ((𝜑𝑚 ∈ ℕ ∧ ((𝑆 D𝑛 (𝑥𝑋𝐴))‘𝑚) = (𝑥𝑋 ↦ 0)) → 𝑚 ∈ ℕ0)
43 dvnp1 25975 . . . . . . 7 ((𝑆 ⊆ ℂ ∧ (𝑥𝑋𝐴) ∈ (ℂ ↑pm 𝑆) ∧ 𝑚 ∈ ℕ0) → ((𝑆 D𝑛 (𝑥𝑋𝐴))‘(𝑚 + 1)) = (𝑆 D ((𝑆 D𝑛 (𝑥𝑋𝐴))‘𝑚)))
4439, 40, 42, 43syl3anc 1370 . . . . . 6 ((𝜑𝑚 ∈ ℕ ∧ ((𝑆 D𝑛 (𝑥𝑋𝐴))‘𝑚) = (𝑥𝑋 ↦ 0)) → ((𝑆 D𝑛 (𝑥𝑋𝐴))‘(𝑚 + 1)) = (𝑆 D ((𝑆 D𝑛 (𝑥𝑋𝐴))‘𝑚)))
45 oveq2 7438 . . . . . . 7 (((𝑆 D𝑛 (𝑥𝑋𝐴))‘𝑚) = (𝑥𝑋 ↦ 0) → (𝑆 D ((𝑆 D𝑛 (𝑥𝑋𝐴))‘𝑚)) = (𝑆 D (𝑥𝑋 ↦ 0)))
46453ad2ant3 1134 . . . . . 6 ((𝜑𝑚 ∈ ℕ ∧ ((𝑆 D𝑛 (𝑥𝑋𝐴))‘𝑚) = (𝑥𝑋 ↦ 0)) → (𝑆 D ((𝑆 D𝑛 (𝑥𝑋𝐴))‘𝑚)) = (𝑆 D (𝑥𝑋 ↦ 0)))
47 0cnd 11251 . . . . . . . 8 (𝜑 → 0 ∈ ℂ)
4815, 21, 47dvmptconst 45870 . . . . . . 7 (𝜑 → (𝑆 D (𝑥𝑋 ↦ 0)) = (𝑥𝑋 ↦ 0))
49483ad2ant1 1132 . . . . . 6 ((𝜑𝑚 ∈ ℕ ∧ ((𝑆 D𝑛 (𝑥𝑋𝐴))‘𝑚) = (𝑥𝑋 ↦ 0)) → (𝑆 D (𝑥𝑋 ↦ 0)) = (𝑥𝑋 ↦ 0))
5044, 46, 493eqtrd 2778 . . . . 5 ((𝜑𝑚 ∈ ℕ ∧ ((𝑆 D𝑛 (𝑥𝑋𝐴))‘𝑚) = (𝑥𝑋 ↦ 0)) → ((𝑆 D𝑛 (𝑥𝑋𝐴))‘(𝑚 + 1)) = (𝑥𝑋 ↦ 0))
5132, 33, 38, 50syl3anc 1370 . . . 4 ((𝑚 ∈ ℕ ∧ (𝜑 → ((𝑆 D𝑛 (𝑥𝑋𝐴))‘𝑚) = (𝑥𝑋 ↦ 0)) ∧ 𝜑) → ((𝑆 D𝑛 (𝑥𝑋𝐴))‘(𝑚 + 1)) = (𝑥𝑋 ↦ 0))
52513exp 1118 . . 3 (𝑚 ∈ ℕ → ((𝜑 → ((𝑆 D𝑛 (𝑥𝑋𝐴))‘𝑚) = (𝑥𝑋 ↦ 0)) → (𝜑 → ((𝑆 D𝑛 (𝑥𝑋𝐴))‘(𝑚 + 1)) = (𝑥𝑋 ↦ 0))))
535, 8, 11, 14, 31, 52nnind 12281 . 2 (𝑁 ∈ ℕ → (𝜑 → ((𝑆 D𝑛 (𝑥𝑋𝐴))‘𝑁) = (𝑥𝑋 ↦ 0)))
541, 2, 53sylc 65 1 (𝜑 → ((𝑆 D𝑛 (𝑥𝑋𝐴))‘𝑁) = (𝑥𝑋 ↦ 0))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1536  wcel 2105  Vcvv 3477  wss 3962  𝒫 cpw 4604  {cpr 4632  cmpt 5230  cfv 6562  (class class class)co 7430  pm cpm 8865  cc 11150  cr 11151  0cc0 11152  1c1 11153   + caddc 11155  cn 12263  0cn0 12523  t crest 17466  TopOpenctopn 17467  fldccnfld 21381   D cdv 25912   D𝑛 cdvn 25913
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-rep 5284  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-inf2 9678  ax-cnex 11208  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228  ax-pre-mulgt0 11229  ax-pre-sup 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3377  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-tp 4635  df-op 4637  df-uni 4912  df-int 4951  df-iun 4997  df-iin 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-om 7887  df-1st 8012  df-2nd 8013  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-1o 8504  df-er 8743  df-map 8866  df-pm 8867  df-en 8984  df-dom 8985  df-sdom 8986  df-fin 8987  df-fi 9448  df-sup 9479  df-inf 9480  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492  df-div 11918  df-nn 12264  df-2 12326  df-3 12327  df-4 12328  df-5 12329  df-6 12330  df-7 12331  df-8 12332  df-9 12333  df-n0 12524  df-z 12611  df-dec 12731  df-uz 12876  df-q 12988  df-rp 13032  df-xneg 13151  df-xadd 13152  df-xmul 13153  df-icc 13390  df-fz 13544  df-seq 14039  df-exp 14099  df-cj 15134  df-re 15135  df-im 15136  df-sqrt 15270  df-abs 15271  df-struct 17180  df-slot 17215  df-ndx 17227  df-base 17245  df-plusg 17310  df-mulr 17311  df-starv 17312  df-tset 17316  df-ple 17317  df-ds 17319  df-unif 17320  df-rest 17468  df-topn 17469  df-topgen 17489  df-psmet 21373  df-xmet 21374  df-met 21375  df-bl 21376  df-mopn 21377  df-fbas 21378  df-fg 21379  df-cnfld 21382  df-top 22915  df-topon 22932  df-topsp 22954  df-bases 22968  df-cld 23042  df-ntr 23043  df-cls 23044  df-nei 23121  df-lp 23159  df-perf 23160  df-cn 23250  df-cnp 23251  df-haus 23338  df-fil 23869  df-fm 23961  df-flim 23962  df-flf 23963  df-xms 24345  df-ms 24346  df-cncf 24917  df-limc 25915  df-dv 25916  df-dvn 25917
This theorem is referenced by:  dvnprodlem3  45903
  Copyright terms: Public domain W3C validator