Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dvnmptconst Structured version   Visualization version   GIF version

Theorem dvnmptconst 46063
Description: The 𝑁-th derivative of a constant function. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
Hypotheses
Ref Expression
dvnmptconst.s (𝜑𝑆 ∈ {ℝ, ℂ})
dvnmptconst.x (𝜑𝑋 ∈ ((TopOpen‘ℂfld) ↾t 𝑆))
dvnmptconst.a (𝜑𝐴 ∈ ℂ)
dvnmptconst.n (𝜑𝑁 ∈ ℕ)
Assertion
Ref Expression
dvnmptconst (𝜑 → ((𝑆 D𝑛 (𝑥𝑋𝐴))‘𝑁) = (𝑥𝑋 ↦ 0))
Distinct variable groups:   𝑥,𝐴   𝑥,𝑆   𝑥,𝑋   𝜑,𝑥
Allowed substitution hint:   𝑁(𝑥)

Proof of Theorem dvnmptconst
Dummy variables 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dvnmptconst.n . 2 (𝜑𝑁 ∈ ℕ)
2 id 22 . 2 (𝜑𝜑)
3 fveq2 6828 . . . . 5 (𝑛 = 1 → ((𝑆 D𝑛 (𝑥𝑋𝐴))‘𝑛) = ((𝑆 D𝑛 (𝑥𝑋𝐴))‘1))
43eqeq1d 2735 . . . 4 (𝑛 = 1 → (((𝑆 D𝑛 (𝑥𝑋𝐴))‘𝑛) = (𝑥𝑋 ↦ 0) ↔ ((𝑆 D𝑛 (𝑥𝑋𝐴))‘1) = (𝑥𝑋 ↦ 0)))
54imbi2d 340 . . 3 (𝑛 = 1 → ((𝜑 → ((𝑆 D𝑛 (𝑥𝑋𝐴))‘𝑛) = (𝑥𝑋 ↦ 0)) ↔ (𝜑 → ((𝑆 D𝑛 (𝑥𝑋𝐴))‘1) = (𝑥𝑋 ↦ 0))))
6 fveq2 6828 . . . . 5 (𝑛 = 𝑚 → ((𝑆 D𝑛 (𝑥𝑋𝐴))‘𝑛) = ((𝑆 D𝑛 (𝑥𝑋𝐴))‘𝑚))
76eqeq1d 2735 . . . 4 (𝑛 = 𝑚 → (((𝑆 D𝑛 (𝑥𝑋𝐴))‘𝑛) = (𝑥𝑋 ↦ 0) ↔ ((𝑆 D𝑛 (𝑥𝑋𝐴))‘𝑚) = (𝑥𝑋 ↦ 0)))
87imbi2d 340 . . 3 (𝑛 = 𝑚 → ((𝜑 → ((𝑆 D𝑛 (𝑥𝑋𝐴))‘𝑛) = (𝑥𝑋 ↦ 0)) ↔ (𝜑 → ((𝑆 D𝑛 (𝑥𝑋𝐴))‘𝑚) = (𝑥𝑋 ↦ 0))))
9 fveq2 6828 . . . . 5 (𝑛 = (𝑚 + 1) → ((𝑆 D𝑛 (𝑥𝑋𝐴))‘𝑛) = ((𝑆 D𝑛 (𝑥𝑋𝐴))‘(𝑚 + 1)))
109eqeq1d 2735 . . . 4 (𝑛 = (𝑚 + 1) → (((𝑆 D𝑛 (𝑥𝑋𝐴))‘𝑛) = (𝑥𝑋 ↦ 0) ↔ ((𝑆 D𝑛 (𝑥𝑋𝐴))‘(𝑚 + 1)) = (𝑥𝑋 ↦ 0)))
1110imbi2d 340 . . 3 (𝑛 = (𝑚 + 1) → ((𝜑 → ((𝑆 D𝑛 (𝑥𝑋𝐴))‘𝑛) = (𝑥𝑋 ↦ 0)) ↔ (𝜑 → ((𝑆 D𝑛 (𝑥𝑋𝐴))‘(𝑚 + 1)) = (𝑥𝑋 ↦ 0))))
12 fveq2 6828 . . . . 5 (𝑛 = 𝑁 → ((𝑆 D𝑛 (𝑥𝑋𝐴))‘𝑛) = ((𝑆 D𝑛 (𝑥𝑋𝐴))‘𝑁))
1312eqeq1d 2735 . . . 4 (𝑛 = 𝑁 → (((𝑆 D𝑛 (𝑥𝑋𝐴))‘𝑛) = (𝑥𝑋 ↦ 0) ↔ ((𝑆 D𝑛 (𝑥𝑋𝐴))‘𝑁) = (𝑥𝑋 ↦ 0)))
1413imbi2d 340 . . 3 (𝑛 = 𝑁 → ((𝜑 → ((𝑆 D𝑛 (𝑥𝑋𝐴))‘𝑛) = (𝑥𝑋 ↦ 0)) ↔ (𝜑 → ((𝑆 D𝑛 (𝑥𝑋𝐴))‘𝑁) = (𝑥𝑋 ↦ 0))))
15 dvnmptconst.s . . . . . 6 (𝜑𝑆 ∈ {ℝ, ℂ})
16 recnprss 25833 . . . . . 6 (𝑆 ∈ {ℝ, ℂ} → 𝑆 ⊆ ℂ)
1715, 16syl 17 . . . . 5 (𝜑𝑆 ⊆ ℂ)
18 dvnmptconst.a . . . . . . 7 (𝜑𝐴 ∈ ℂ)
1918adantr 480 . . . . . 6 ((𝜑𝑥𝑋) → 𝐴 ∈ ℂ)
20 restsspw 17337 . . . . . . . 8 ((TopOpen‘ℂfld) ↾t 𝑆) ⊆ 𝒫 𝑆
21 dvnmptconst.x . . . . . . . 8 (𝜑𝑋 ∈ ((TopOpen‘ℂfld) ↾t 𝑆))
2220, 21sselid 3928 . . . . . . 7 (𝜑𝑋 ∈ 𝒫 𝑆)
23 elpwi 4556 . . . . . . 7 (𝑋 ∈ 𝒫 𝑆𝑋𝑆)
2422, 23syl 17 . . . . . 6 (𝜑𝑋𝑆)
25 cnex 11094 . . . . . . 7 ℂ ∈ V
2625a1i 11 . . . . . 6 (𝜑 → ℂ ∈ V)
2719, 24, 26, 15mptelpm 45297 . . . . 5 (𝜑 → (𝑥𝑋𝐴) ∈ (ℂ ↑pm 𝑆))
28 dvn1 25856 . . . . 5 ((𝑆 ⊆ ℂ ∧ (𝑥𝑋𝐴) ∈ (ℂ ↑pm 𝑆)) → ((𝑆 D𝑛 (𝑥𝑋𝐴))‘1) = (𝑆 D (𝑥𝑋𝐴)))
2917, 27, 28syl2anc 584 . . . 4 (𝜑 → ((𝑆 D𝑛 (𝑥𝑋𝐴))‘1) = (𝑆 D (𝑥𝑋𝐴)))
3015, 21, 18dvmptconst 46037 . . . 4 (𝜑 → (𝑆 D (𝑥𝑋𝐴)) = (𝑥𝑋 ↦ 0))
3129, 30eqtrd 2768 . . 3 (𝜑 → ((𝑆 D𝑛 (𝑥𝑋𝐴))‘1) = (𝑥𝑋 ↦ 0))
32 simp3 1138 . . . . 5 ((𝑚 ∈ ℕ ∧ (𝜑 → ((𝑆 D𝑛 (𝑥𝑋𝐴))‘𝑚) = (𝑥𝑋 ↦ 0)) ∧ 𝜑) → 𝜑)
33 simp1 1136 . . . . 5 ((𝑚 ∈ ℕ ∧ (𝜑 → ((𝑆 D𝑛 (𝑥𝑋𝐴))‘𝑚) = (𝑥𝑋 ↦ 0)) ∧ 𝜑) → 𝑚 ∈ ℕ)
34 simpr 484 . . . . . . 7 (((𝜑 → ((𝑆 D𝑛 (𝑥𝑋𝐴))‘𝑚) = (𝑥𝑋 ↦ 0)) ∧ 𝜑) → 𝜑)
35 simpl 482 . . . . . . 7 (((𝜑 → ((𝑆 D𝑛 (𝑥𝑋𝐴))‘𝑚) = (𝑥𝑋 ↦ 0)) ∧ 𝜑) → (𝜑 → ((𝑆 D𝑛 (𝑥𝑋𝐴))‘𝑚) = (𝑥𝑋 ↦ 0)))
36 pm3.35 802 . . . . . . 7 ((𝜑 ∧ (𝜑 → ((𝑆 D𝑛 (𝑥𝑋𝐴))‘𝑚) = (𝑥𝑋 ↦ 0))) → ((𝑆 D𝑛 (𝑥𝑋𝐴))‘𝑚) = (𝑥𝑋 ↦ 0))
3734, 35, 36syl2anc 584 . . . . . 6 (((𝜑 → ((𝑆 D𝑛 (𝑥𝑋𝐴))‘𝑚) = (𝑥𝑋 ↦ 0)) ∧ 𝜑) → ((𝑆 D𝑛 (𝑥𝑋𝐴))‘𝑚) = (𝑥𝑋 ↦ 0))
38373adant1 1130 . . . . 5 ((𝑚 ∈ ℕ ∧ (𝜑 → ((𝑆 D𝑛 (𝑥𝑋𝐴))‘𝑚) = (𝑥𝑋 ↦ 0)) ∧ 𝜑) → ((𝑆 D𝑛 (𝑥𝑋𝐴))‘𝑚) = (𝑥𝑋 ↦ 0))
39173ad2ant1 1133 . . . . . . 7 ((𝜑𝑚 ∈ ℕ ∧ ((𝑆 D𝑛 (𝑥𝑋𝐴))‘𝑚) = (𝑥𝑋 ↦ 0)) → 𝑆 ⊆ ℂ)
40273ad2ant1 1133 . . . . . . 7 ((𝜑𝑚 ∈ ℕ ∧ ((𝑆 D𝑛 (𝑥𝑋𝐴))‘𝑚) = (𝑥𝑋 ↦ 0)) → (𝑥𝑋𝐴) ∈ (ℂ ↑pm 𝑆))
41 nnnn0 12395 . . . . . . . 8 (𝑚 ∈ ℕ → 𝑚 ∈ ℕ0)
42413ad2ant2 1134 . . . . . . 7 ((𝜑𝑚 ∈ ℕ ∧ ((𝑆 D𝑛 (𝑥𝑋𝐴))‘𝑚) = (𝑥𝑋 ↦ 0)) → 𝑚 ∈ ℕ0)
43 dvnp1 25855 . . . . . . 7 ((𝑆 ⊆ ℂ ∧ (𝑥𝑋𝐴) ∈ (ℂ ↑pm 𝑆) ∧ 𝑚 ∈ ℕ0) → ((𝑆 D𝑛 (𝑥𝑋𝐴))‘(𝑚 + 1)) = (𝑆 D ((𝑆 D𝑛 (𝑥𝑋𝐴))‘𝑚)))
4439, 40, 42, 43syl3anc 1373 . . . . . 6 ((𝜑𝑚 ∈ ℕ ∧ ((𝑆 D𝑛 (𝑥𝑋𝐴))‘𝑚) = (𝑥𝑋 ↦ 0)) → ((𝑆 D𝑛 (𝑥𝑋𝐴))‘(𝑚 + 1)) = (𝑆 D ((𝑆 D𝑛 (𝑥𝑋𝐴))‘𝑚)))
45 oveq2 7360 . . . . . . 7 (((𝑆 D𝑛 (𝑥𝑋𝐴))‘𝑚) = (𝑥𝑋 ↦ 0) → (𝑆 D ((𝑆 D𝑛 (𝑥𝑋𝐴))‘𝑚)) = (𝑆 D (𝑥𝑋 ↦ 0)))
46453ad2ant3 1135 . . . . . 6 ((𝜑𝑚 ∈ ℕ ∧ ((𝑆 D𝑛 (𝑥𝑋𝐴))‘𝑚) = (𝑥𝑋 ↦ 0)) → (𝑆 D ((𝑆 D𝑛 (𝑥𝑋𝐴))‘𝑚)) = (𝑆 D (𝑥𝑋 ↦ 0)))
47 0cnd 11112 . . . . . . . 8 (𝜑 → 0 ∈ ℂ)
4815, 21, 47dvmptconst 46037 . . . . . . 7 (𝜑 → (𝑆 D (𝑥𝑋 ↦ 0)) = (𝑥𝑋 ↦ 0))
49483ad2ant1 1133 . . . . . 6 ((𝜑𝑚 ∈ ℕ ∧ ((𝑆 D𝑛 (𝑥𝑋𝐴))‘𝑚) = (𝑥𝑋 ↦ 0)) → (𝑆 D (𝑥𝑋 ↦ 0)) = (𝑥𝑋 ↦ 0))
5044, 46, 493eqtrd 2772 . . . . 5 ((𝜑𝑚 ∈ ℕ ∧ ((𝑆 D𝑛 (𝑥𝑋𝐴))‘𝑚) = (𝑥𝑋 ↦ 0)) → ((𝑆 D𝑛 (𝑥𝑋𝐴))‘(𝑚 + 1)) = (𝑥𝑋 ↦ 0))
5132, 33, 38, 50syl3anc 1373 . . . 4 ((𝑚 ∈ ℕ ∧ (𝜑 → ((𝑆 D𝑛 (𝑥𝑋𝐴))‘𝑚) = (𝑥𝑋 ↦ 0)) ∧ 𝜑) → ((𝑆 D𝑛 (𝑥𝑋𝐴))‘(𝑚 + 1)) = (𝑥𝑋 ↦ 0))
52513exp 1119 . . 3 (𝑚 ∈ ℕ → ((𝜑 → ((𝑆 D𝑛 (𝑥𝑋𝐴))‘𝑚) = (𝑥𝑋 ↦ 0)) → (𝜑 → ((𝑆 D𝑛 (𝑥𝑋𝐴))‘(𝑚 + 1)) = (𝑥𝑋 ↦ 0))))
535, 8, 11, 14, 31, 52nnind 12150 . 2 (𝑁 ∈ ℕ → (𝜑 → ((𝑆 D𝑛 (𝑥𝑋𝐴))‘𝑁) = (𝑥𝑋 ↦ 0)))
541, 2, 53sylc 65 1 (𝜑 → ((𝑆 D𝑛 (𝑥𝑋𝐴))‘𝑁) = (𝑥𝑋 ↦ 0))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2113  Vcvv 3437  wss 3898  𝒫 cpw 4549  {cpr 4577  cmpt 5174  cfv 6486  (class class class)co 7352  pm cpm 8757  cc 11011  cr 11012  0cc0 11013  1c1 11014   + caddc 11016  cn 12132  0cn0 12388  t crest 17326  TopOpenctopn 17327  fldccnfld 21293   D cdv 25792   D𝑛 cdvn 25793
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-inf2 9538  ax-cnex 11069  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090  ax-pre-sup 11091
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-tp 4580  df-op 4582  df-uni 4859  df-int 4898  df-iun 4943  df-iin 4944  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-1st 7927  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-1o 8391  df-er 8628  df-map 8758  df-pm 8759  df-en 8876  df-dom 8877  df-sdom 8878  df-fin 8879  df-fi 9302  df-sup 9333  df-inf 9334  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-div 11782  df-nn 12133  df-2 12195  df-3 12196  df-4 12197  df-5 12198  df-6 12199  df-7 12200  df-8 12201  df-9 12202  df-n0 12389  df-z 12476  df-dec 12595  df-uz 12739  df-q 12849  df-rp 12893  df-xneg 13013  df-xadd 13014  df-xmul 13015  df-icc 13254  df-fz 13410  df-seq 13911  df-exp 13971  df-cj 15008  df-re 15009  df-im 15010  df-sqrt 15144  df-abs 15145  df-struct 17060  df-slot 17095  df-ndx 17107  df-base 17123  df-plusg 17176  df-mulr 17177  df-starv 17178  df-tset 17182  df-ple 17183  df-ds 17185  df-unif 17186  df-rest 17328  df-topn 17329  df-topgen 17349  df-psmet 21285  df-xmet 21286  df-met 21287  df-bl 21288  df-mopn 21289  df-fbas 21290  df-fg 21291  df-cnfld 21294  df-top 22810  df-topon 22827  df-topsp 22849  df-bases 22862  df-cld 22935  df-ntr 22936  df-cls 22937  df-nei 23014  df-lp 23052  df-perf 23053  df-cn 23143  df-cnp 23144  df-haus 23231  df-fil 23762  df-fm 23854  df-flim 23855  df-flf 23856  df-xms 24236  df-ms 24237  df-cncf 24799  df-limc 25795  df-dv 25796  df-dvn 25797
This theorem is referenced by:  dvnprodlem3  46070
  Copyright terms: Public domain W3C validator