Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dvnmptconst Structured version   Visualization version   GIF version

Theorem dvnmptconst 41635
Description: The 𝑁-th derivative of a constant function. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
Hypotheses
Ref Expression
dvnmptconst.s (𝜑𝑆 ∈ {ℝ, ℂ})
dvnmptconst.x (𝜑𝑋 ∈ ((TopOpen‘ℂfld) ↾t 𝑆))
dvnmptconst.a (𝜑𝐴 ∈ ℂ)
dvnmptconst.n (𝜑𝑁 ∈ ℕ)
Assertion
Ref Expression
dvnmptconst (𝜑 → ((𝑆 D𝑛 (𝑥𝑋𝐴))‘𝑁) = (𝑥𝑋 ↦ 0))
Distinct variable groups:   𝑥,𝐴   𝑥,𝑆   𝑥,𝑋   𝜑,𝑥
Allowed substitution hint:   𝑁(𝑥)

Proof of Theorem dvnmptconst
Dummy variables 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dvnmptconst.n . 2 (𝜑𝑁 ∈ ℕ)
2 id 22 . 2 (𝜑𝜑)
3 fveq2 6497 . . . . 5 (𝑛 = 1 → ((𝑆 D𝑛 (𝑥𝑋𝐴))‘𝑛) = ((𝑆 D𝑛 (𝑥𝑋𝐴))‘1))
43eqeq1d 2777 . . . 4 (𝑛 = 1 → (((𝑆 D𝑛 (𝑥𝑋𝐴))‘𝑛) = (𝑥𝑋 ↦ 0) ↔ ((𝑆 D𝑛 (𝑥𝑋𝐴))‘1) = (𝑥𝑋 ↦ 0)))
54imbi2d 333 . . 3 (𝑛 = 1 → ((𝜑 → ((𝑆 D𝑛 (𝑥𝑋𝐴))‘𝑛) = (𝑥𝑋 ↦ 0)) ↔ (𝜑 → ((𝑆 D𝑛 (𝑥𝑋𝐴))‘1) = (𝑥𝑋 ↦ 0))))
6 fveq2 6497 . . . . 5 (𝑛 = 𝑚 → ((𝑆 D𝑛 (𝑥𝑋𝐴))‘𝑛) = ((𝑆 D𝑛 (𝑥𝑋𝐴))‘𝑚))
76eqeq1d 2777 . . . 4 (𝑛 = 𝑚 → (((𝑆 D𝑛 (𝑥𝑋𝐴))‘𝑛) = (𝑥𝑋 ↦ 0) ↔ ((𝑆 D𝑛 (𝑥𝑋𝐴))‘𝑚) = (𝑥𝑋 ↦ 0)))
87imbi2d 333 . . 3 (𝑛 = 𝑚 → ((𝜑 → ((𝑆 D𝑛 (𝑥𝑋𝐴))‘𝑛) = (𝑥𝑋 ↦ 0)) ↔ (𝜑 → ((𝑆 D𝑛 (𝑥𝑋𝐴))‘𝑚) = (𝑥𝑋 ↦ 0))))
9 fveq2 6497 . . . . 5 (𝑛 = (𝑚 + 1) → ((𝑆 D𝑛 (𝑥𝑋𝐴))‘𝑛) = ((𝑆 D𝑛 (𝑥𝑋𝐴))‘(𝑚 + 1)))
109eqeq1d 2777 . . . 4 (𝑛 = (𝑚 + 1) → (((𝑆 D𝑛 (𝑥𝑋𝐴))‘𝑛) = (𝑥𝑋 ↦ 0) ↔ ((𝑆 D𝑛 (𝑥𝑋𝐴))‘(𝑚 + 1)) = (𝑥𝑋 ↦ 0)))
1110imbi2d 333 . . 3 (𝑛 = (𝑚 + 1) → ((𝜑 → ((𝑆 D𝑛 (𝑥𝑋𝐴))‘𝑛) = (𝑥𝑋 ↦ 0)) ↔ (𝜑 → ((𝑆 D𝑛 (𝑥𝑋𝐴))‘(𝑚 + 1)) = (𝑥𝑋 ↦ 0))))
12 fveq2 6497 . . . . 5 (𝑛 = 𝑁 → ((𝑆 D𝑛 (𝑥𝑋𝐴))‘𝑛) = ((𝑆 D𝑛 (𝑥𝑋𝐴))‘𝑁))
1312eqeq1d 2777 . . . 4 (𝑛 = 𝑁 → (((𝑆 D𝑛 (𝑥𝑋𝐴))‘𝑛) = (𝑥𝑋 ↦ 0) ↔ ((𝑆 D𝑛 (𝑥𝑋𝐴))‘𝑁) = (𝑥𝑋 ↦ 0)))
1413imbi2d 333 . . 3 (𝑛 = 𝑁 → ((𝜑 → ((𝑆 D𝑛 (𝑥𝑋𝐴))‘𝑛) = (𝑥𝑋 ↦ 0)) ↔ (𝜑 → ((𝑆 D𝑛 (𝑥𝑋𝐴))‘𝑁) = (𝑥𝑋 ↦ 0))))
15 dvnmptconst.s . . . . . 6 (𝜑𝑆 ∈ {ℝ, ℂ})
16 recnprss 24199 . . . . . 6 (𝑆 ∈ {ℝ, ℂ} → 𝑆 ⊆ ℂ)
1715, 16syl 17 . . . . 5 (𝜑𝑆 ⊆ ℂ)
18 dvnmptconst.a . . . . . . 7 (𝜑𝐴 ∈ ℂ)
1918adantr 473 . . . . . 6 ((𝜑𝑥𝑋) → 𝐴 ∈ ℂ)
20 restsspw 16555 . . . . . . . 8 ((TopOpen‘ℂfld) ↾t 𝑆) ⊆ 𝒫 𝑆
21 dvnmptconst.x . . . . . . . 8 (𝜑𝑋 ∈ ((TopOpen‘ℂfld) ↾t 𝑆))
2220, 21sseldi 3855 . . . . . . 7 (𝜑𝑋 ∈ 𝒫 𝑆)
23 elpwi 4430 . . . . . . 7 (𝑋 ∈ 𝒫 𝑆𝑋𝑆)
2422, 23syl 17 . . . . . 6 (𝜑𝑋𝑆)
25 cnex 10412 . . . . . . 7 ℂ ∈ V
2625a1i 11 . . . . . 6 (𝜑 → ℂ ∈ V)
2719, 24, 26, 15mptelpm 40835 . . . . 5 (𝜑 → (𝑥𝑋𝐴) ∈ (ℂ ↑pm 𝑆))
28 dvn1 24220 . . . . 5 ((𝑆 ⊆ ℂ ∧ (𝑥𝑋𝐴) ∈ (ℂ ↑pm 𝑆)) → ((𝑆 D𝑛 (𝑥𝑋𝐴))‘1) = (𝑆 D (𝑥𝑋𝐴)))
2917, 27, 28syl2anc 576 . . . 4 (𝜑 → ((𝑆 D𝑛 (𝑥𝑋𝐴))‘1) = (𝑆 D (𝑥𝑋𝐴)))
3015, 21, 18dvmptconst 41608 . . . 4 (𝜑 → (𝑆 D (𝑥𝑋𝐴)) = (𝑥𝑋 ↦ 0))
3129, 30eqtrd 2811 . . 3 (𝜑 → ((𝑆 D𝑛 (𝑥𝑋𝐴))‘1) = (𝑥𝑋 ↦ 0))
32 simp3 1118 . . . . 5 ((𝑚 ∈ ℕ ∧ (𝜑 → ((𝑆 D𝑛 (𝑥𝑋𝐴))‘𝑚) = (𝑥𝑋 ↦ 0)) ∧ 𝜑) → 𝜑)
33 simp1 1116 . . . . 5 ((𝑚 ∈ ℕ ∧ (𝜑 → ((𝑆 D𝑛 (𝑥𝑋𝐴))‘𝑚) = (𝑥𝑋 ↦ 0)) ∧ 𝜑) → 𝑚 ∈ ℕ)
34 simpr 477 . . . . . . 7 (((𝜑 → ((𝑆 D𝑛 (𝑥𝑋𝐴))‘𝑚) = (𝑥𝑋 ↦ 0)) ∧ 𝜑) → 𝜑)
35 simpl 475 . . . . . . 7 (((𝜑 → ((𝑆 D𝑛 (𝑥𝑋𝐴))‘𝑚) = (𝑥𝑋 ↦ 0)) ∧ 𝜑) → (𝜑 → ((𝑆 D𝑛 (𝑥𝑋𝐴))‘𝑚) = (𝑥𝑋 ↦ 0)))
36 pm3.35 790 . . . . . . 7 ((𝜑 ∧ (𝜑 → ((𝑆 D𝑛 (𝑥𝑋𝐴))‘𝑚) = (𝑥𝑋 ↦ 0))) → ((𝑆 D𝑛 (𝑥𝑋𝐴))‘𝑚) = (𝑥𝑋 ↦ 0))
3734, 35, 36syl2anc 576 . . . . . 6 (((𝜑 → ((𝑆 D𝑛 (𝑥𝑋𝐴))‘𝑚) = (𝑥𝑋 ↦ 0)) ∧ 𝜑) → ((𝑆 D𝑛 (𝑥𝑋𝐴))‘𝑚) = (𝑥𝑋 ↦ 0))
38373adant1 1110 . . . . 5 ((𝑚 ∈ ℕ ∧ (𝜑 → ((𝑆 D𝑛 (𝑥𝑋𝐴))‘𝑚) = (𝑥𝑋 ↦ 0)) ∧ 𝜑) → ((𝑆 D𝑛 (𝑥𝑋𝐴))‘𝑚) = (𝑥𝑋 ↦ 0))
39173ad2ant1 1113 . . . . . . 7 ((𝜑𝑚 ∈ ℕ ∧ ((𝑆 D𝑛 (𝑥𝑋𝐴))‘𝑚) = (𝑥𝑋 ↦ 0)) → 𝑆 ⊆ ℂ)
40273ad2ant1 1113 . . . . . . 7 ((𝜑𝑚 ∈ ℕ ∧ ((𝑆 D𝑛 (𝑥𝑋𝐴))‘𝑚) = (𝑥𝑋 ↦ 0)) → (𝑥𝑋𝐴) ∈ (ℂ ↑pm 𝑆))
41 nnnn0 11712 . . . . . . . 8 (𝑚 ∈ ℕ → 𝑚 ∈ ℕ0)
42413ad2ant2 1114 . . . . . . 7 ((𝜑𝑚 ∈ ℕ ∧ ((𝑆 D𝑛 (𝑥𝑋𝐴))‘𝑚) = (𝑥𝑋 ↦ 0)) → 𝑚 ∈ ℕ0)
43 dvnp1 24219 . . . . . . 7 ((𝑆 ⊆ ℂ ∧ (𝑥𝑋𝐴) ∈ (ℂ ↑pm 𝑆) ∧ 𝑚 ∈ ℕ0) → ((𝑆 D𝑛 (𝑥𝑋𝐴))‘(𝑚 + 1)) = (𝑆 D ((𝑆 D𝑛 (𝑥𝑋𝐴))‘𝑚)))
4439, 40, 42, 43syl3anc 1351 . . . . . 6 ((𝜑𝑚 ∈ ℕ ∧ ((𝑆 D𝑛 (𝑥𝑋𝐴))‘𝑚) = (𝑥𝑋 ↦ 0)) → ((𝑆 D𝑛 (𝑥𝑋𝐴))‘(𝑚 + 1)) = (𝑆 D ((𝑆 D𝑛 (𝑥𝑋𝐴))‘𝑚)))
45 oveq2 6982 . . . . . . 7 (((𝑆 D𝑛 (𝑥𝑋𝐴))‘𝑚) = (𝑥𝑋 ↦ 0) → (𝑆 D ((𝑆 D𝑛 (𝑥𝑋𝐴))‘𝑚)) = (𝑆 D (𝑥𝑋 ↦ 0)))
46453ad2ant3 1115 . . . . . 6 ((𝜑𝑚 ∈ ℕ ∧ ((𝑆 D𝑛 (𝑥𝑋𝐴))‘𝑚) = (𝑥𝑋 ↦ 0)) → (𝑆 D ((𝑆 D𝑛 (𝑥𝑋𝐴))‘𝑚)) = (𝑆 D (𝑥𝑋 ↦ 0)))
47 0cnd 10428 . . . . . . . 8 (𝜑 → 0 ∈ ℂ)
4815, 21, 47dvmptconst 41608 . . . . . . 7 (𝜑 → (𝑆 D (𝑥𝑋 ↦ 0)) = (𝑥𝑋 ↦ 0))
49483ad2ant1 1113 . . . . . 6 ((𝜑𝑚 ∈ ℕ ∧ ((𝑆 D𝑛 (𝑥𝑋𝐴))‘𝑚) = (𝑥𝑋 ↦ 0)) → (𝑆 D (𝑥𝑋 ↦ 0)) = (𝑥𝑋 ↦ 0))
5044, 46, 493eqtrd 2815 . . . . 5 ((𝜑𝑚 ∈ ℕ ∧ ((𝑆 D𝑛 (𝑥𝑋𝐴))‘𝑚) = (𝑥𝑋 ↦ 0)) → ((𝑆 D𝑛 (𝑥𝑋𝐴))‘(𝑚 + 1)) = (𝑥𝑋 ↦ 0))
5132, 33, 38, 50syl3anc 1351 . . . 4 ((𝑚 ∈ ℕ ∧ (𝜑 → ((𝑆 D𝑛 (𝑥𝑋𝐴))‘𝑚) = (𝑥𝑋 ↦ 0)) ∧ 𝜑) → ((𝑆 D𝑛 (𝑥𝑋𝐴))‘(𝑚 + 1)) = (𝑥𝑋 ↦ 0))
52513exp 1099 . . 3 (𝑚 ∈ ℕ → ((𝜑 → ((𝑆 D𝑛 (𝑥𝑋𝐴))‘𝑚) = (𝑥𝑋 ↦ 0)) → (𝜑 → ((𝑆 D𝑛 (𝑥𝑋𝐴))‘(𝑚 + 1)) = (𝑥𝑋 ↦ 0))))
535, 8, 11, 14, 31, 52nnind 11455 . 2 (𝑁 ∈ ℕ → (𝜑 → ((𝑆 D𝑛 (𝑥𝑋𝐴))‘𝑁) = (𝑥𝑋 ↦ 0)))
541, 2, 53sylc 65 1 (𝜑 → ((𝑆 D𝑛 (𝑥𝑋𝐴))‘𝑁) = (𝑥𝑋 ↦ 0))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 387  w3a 1068   = wceq 1507  wcel 2048  Vcvv 3412  wss 3828  𝒫 cpw 4420  {cpr 4441  cmpt 5006  cfv 6186  (class class class)co 6974  pm cpm 8203  cc 10329  cr 10330  0cc0 10331  1c1 10332   + caddc 10334  cn 11435  0cn0 11704  t crest 16544  TopOpenctopn 16545  fldccnfld 20241   D cdv 24158   D𝑛 cdvn 24159
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1964  ax-8 2050  ax-9 2057  ax-10 2077  ax-11 2091  ax-12 2104  ax-13 2299  ax-ext 2747  ax-rep 5047  ax-sep 5058  ax-nul 5065  ax-pow 5117  ax-pr 5184  ax-un 7277  ax-inf2 8894  ax-cnex 10387  ax-resscn 10388  ax-1cn 10389  ax-icn 10390  ax-addcl 10391  ax-addrcl 10392  ax-mulcl 10393  ax-mulrcl 10394  ax-mulcom 10395  ax-addass 10396  ax-mulass 10397  ax-distr 10398  ax-i2m1 10399  ax-1ne0 10400  ax-1rid 10401  ax-rnegex 10402  ax-rrecex 10403  ax-cnre 10404  ax-pre-lttri 10405  ax-pre-lttrn 10406  ax-pre-ltadd 10407  ax-pre-mulgt0 10408  ax-pre-sup 10409
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3or 1069  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2014  df-mo 2544  df-eu 2580  df-clab 2756  df-cleq 2768  df-clel 2843  df-nfc 2915  df-ne 2965  df-nel 3071  df-ral 3090  df-rex 3091  df-reu 3092  df-rmo 3093  df-rab 3094  df-v 3414  df-sbc 3681  df-csb 3786  df-dif 3831  df-un 3833  df-in 3835  df-ss 3842  df-pss 3844  df-nul 4178  df-if 4349  df-pw 4422  df-sn 4440  df-pr 4442  df-tp 4444  df-op 4446  df-uni 4711  df-int 4748  df-iun 4792  df-iin 4793  df-br 4928  df-opab 4990  df-mpt 5007  df-tr 5029  df-id 5309  df-eprel 5314  df-po 5323  df-so 5324  df-fr 5363  df-we 5365  df-xp 5410  df-rel 5411  df-cnv 5412  df-co 5413  df-dm 5414  df-rn 5415  df-res 5416  df-ima 5417  df-pred 5984  df-ord 6030  df-on 6031  df-lim 6032  df-suc 6033  df-iota 6150  df-fun 6188  df-fn 6189  df-f 6190  df-f1 6191  df-fo 6192  df-f1o 6193  df-fv 6194  df-riota 6935  df-ov 6977  df-oprab 6978  df-mpo 6979  df-om 7395  df-1st 7498  df-2nd 7499  df-wrecs 7747  df-recs 7809  df-rdg 7847  df-1o 7901  df-oadd 7905  df-er 8085  df-map 8204  df-pm 8205  df-en 8303  df-dom 8304  df-sdom 8305  df-fin 8306  df-fi 8666  df-sup 8697  df-inf 8698  df-pnf 10472  df-mnf 10473  df-xr 10474  df-ltxr 10475  df-le 10476  df-sub 10668  df-neg 10669  df-div 11095  df-nn 11436  df-2 11500  df-3 11501  df-4 11502  df-5 11503  df-6 11504  df-7 11505  df-8 11506  df-9 11507  df-n0 11705  df-z 11791  df-dec 11909  df-uz 12056  df-q 12160  df-rp 12202  df-xneg 12321  df-xadd 12322  df-xmul 12323  df-icc 12558  df-fz 12706  df-seq 13182  df-exp 13242  df-cj 14313  df-re 14314  df-im 14315  df-sqrt 14449  df-abs 14450  df-struct 16335  df-ndx 16336  df-slot 16337  df-base 16339  df-plusg 16428  df-mulr 16429  df-starv 16430  df-tset 16434  df-ple 16435  df-ds 16437  df-unif 16438  df-rest 16546  df-topn 16547  df-topgen 16567  df-psmet 20233  df-xmet 20234  df-met 20235  df-bl 20236  df-mopn 20237  df-fbas 20238  df-fg 20239  df-cnfld 20242  df-top 21200  df-topon 21217  df-topsp 21239  df-bases 21252  df-cld 21325  df-ntr 21326  df-cls 21327  df-nei 21404  df-lp 21442  df-perf 21443  df-cn 21533  df-cnp 21534  df-haus 21621  df-fil 22152  df-fm 22244  df-flim 22245  df-flf 22246  df-xms 22627  df-ms 22628  df-cncf 23183  df-limc 24161  df-dv 24162  df-dvn 24163
This theorem is referenced by:  dvnprodlem3  41642
  Copyright terms: Public domain W3C validator