Step | Hyp | Ref
| Expression |
1 | | dvnmptconst.n |
. 2
⊢ (𝜑 → 𝑁 ∈ ℕ) |
2 | | id 22 |
. 2
⊢ (𝜑 → 𝜑) |
3 | | fveq2 6774 |
. . . . 5
⊢ (𝑛 = 1 → ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ 𝐴))‘𝑛) = ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ 𝐴))‘1)) |
4 | 3 | eqeq1d 2740 |
. . . 4
⊢ (𝑛 = 1 → (((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ 𝐴))‘𝑛) = (𝑥 ∈ 𝑋 ↦ 0) ↔ ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ 𝐴))‘1) = (𝑥 ∈ 𝑋 ↦ 0))) |
5 | 4 | imbi2d 341 |
. . 3
⊢ (𝑛 = 1 → ((𝜑 → ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ 𝐴))‘𝑛) = (𝑥 ∈ 𝑋 ↦ 0)) ↔ (𝜑 → ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ 𝐴))‘1) = (𝑥 ∈ 𝑋 ↦ 0)))) |
6 | | fveq2 6774 |
. . . . 5
⊢ (𝑛 = 𝑚 → ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ 𝐴))‘𝑛) = ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ 𝐴))‘𝑚)) |
7 | 6 | eqeq1d 2740 |
. . . 4
⊢ (𝑛 = 𝑚 → (((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ 𝐴))‘𝑛) = (𝑥 ∈ 𝑋 ↦ 0) ↔ ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ 𝐴))‘𝑚) = (𝑥 ∈ 𝑋 ↦ 0))) |
8 | 7 | imbi2d 341 |
. . 3
⊢ (𝑛 = 𝑚 → ((𝜑 → ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ 𝐴))‘𝑛) = (𝑥 ∈ 𝑋 ↦ 0)) ↔ (𝜑 → ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ 𝐴))‘𝑚) = (𝑥 ∈ 𝑋 ↦ 0)))) |
9 | | fveq2 6774 |
. . . . 5
⊢ (𝑛 = (𝑚 + 1) → ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ 𝐴))‘𝑛) = ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ 𝐴))‘(𝑚 + 1))) |
10 | 9 | eqeq1d 2740 |
. . . 4
⊢ (𝑛 = (𝑚 + 1) → (((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ 𝐴))‘𝑛) = (𝑥 ∈ 𝑋 ↦ 0) ↔ ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ 𝐴))‘(𝑚 + 1)) = (𝑥 ∈ 𝑋 ↦ 0))) |
11 | 10 | imbi2d 341 |
. . 3
⊢ (𝑛 = (𝑚 + 1) → ((𝜑 → ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ 𝐴))‘𝑛) = (𝑥 ∈ 𝑋 ↦ 0)) ↔ (𝜑 → ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ 𝐴))‘(𝑚 + 1)) = (𝑥 ∈ 𝑋 ↦ 0)))) |
12 | | fveq2 6774 |
. . . . 5
⊢ (𝑛 = 𝑁 → ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ 𝐴))‘𝑛) = ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ 𝐴))‘𝑁)) |
13 | 12 | eqeq1d 2740 |
. . . 4
⊢ (𝑛 = 𝑁 → (((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ 𝐴))‘𝑛) = (𝑥 ∈ 𝑋 ↦ 0) ↔ ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ 𝐴))‘𝑁) = (𝑥 ∈ 𝑋 ↦ 0))) |
14 | 13 | imbi2d 341 |
. . 3
⊢ (𝑛 = 𝑁 → ((𝜑 → ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ 𝐴))‘𝑛) = (𝑥 ∈ 𝑋 ↦ 0)) ↔ (𝜑 → ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ 𝐴))‘𝑁) = (𝑥 ∈ 𝑋 ↦ 0)))) |
15 | | dvnmptconst.s |
. . . . . 6
⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) |
16 | | recnprss 25068 |
. . . . . 6
⊢ (𝑆 ∈ {ℝ, ℂ}
→ 𝑆 ⊆
ℂ) |
17 | 15, 16 | syl 17 |
. . . . 5
⊢ (𝜑 → 𝑆 ⊆ ℂ) |
18 | | dvnmptconst.a |
. . . . . . 7
⊢ (𝜑 → 𝐴 ∈ ℂ) |
19 | 18 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ ℂ) |
20 | | restsspw 17142 |
. . . . . . . 8
⊢
((TopOpen‘ℂfld) ↾t 𝑆) ⊆ 𝒫 𝑆 |
21 | | dvnmptconst.x |
. . . . . . . 8
⊢ (𝜑 → 𝑋 ∈
((TopOpen‘ℂfld) ↾t 𝑆)) |
22 | 20, 21 | sselid 3919 |
. . . . . . 7
⊢ (𝜑 → 𝑋 ∈ 𝒫 𝑆) |
23 | | elpwi 4542 |
. . . . . . 7
⊢ (𝑋 ∈ 𝒫 𝑆 → 𝑋 ⊆ 𝑆) |
24 | 22, 23 | syl 17 |
. . . . . 6
⊢ (𝜑 → 𝑋 ⊆ 𝑆) |
25 | | cnex 10952 |
. . . . . . 7
⊢ ℂ
∈ V |
26 | 25 | a1i 11 |
. . . . . 6
⊢ (𝜑 → ℂ ∈
V) |
27 | 19, 24, 26, 15 | mptelpm 42712 |
. . . . 5
⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐴) ∈ (ℂ ↑pm 𝑆)) |
28 | | dvn1 25090 |
. . . . 5
⊢ ((𝑆 ⊆ ℂ ∧ (𝑥 ∈ 𝑋 ↦ 𝐴) ∈ (ℂ ↑pm 𝑆)) → ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ 𝐴))‘1) = (𝑆 D (𝑥 ∈ 𝑋 ↦ 𝐴))) |
29 | 17, 27, 28 | syl2anc 584 |
. . . 4
⊢ (𝜑 → ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ 𝐴))‘1) = (𝑆 D (𝑥 ∈ 𝑋 ↦ 𝐴))) |
30 | 15, 21, 18 | dvmptconst 43456 |
. . . 4
⊢ (𝜑 → (𝑆 D (𝑥 ∈ 𝑋 ↦ 𝐴)) = (𝑥 ∈ 𝑋 ↦ 0)) |
31 | 29, 30 | eqtrd 2778 |
. . 3
⊢ (𝜑 → ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ 𝐴))‘1) = (𝑥 ∈ 𝑋 ↦ 0)) |
32 | | simp3 1137 |
. . . . 5
⊢ ((𝑚 ∈ ℕ ∧ (𝜑 → ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ 𝐴))‘𝑚) = (𝑥 ∈ 𝑋 ↦ 0)) ∧ 𝜑) → 𝜑) |
33 | | simp1 1135 |
. . . . 5
⊢ ((𝑚 ∈ ℕ ∧ (𝜑 → ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ 𝐴))‘𝑚) = (𝑥 ∈ 𝑋 ↦ 0)) ∧ 𝜑) → 𝑚 ∈ ℕ) |
34 | | simpr 485 |
. . . . . . 7
⊢ (((𝜑 → ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ 𝐴))‘𝑚) = (𝑥 ∈ 𝑋 ↦ 0)) ∧ 𝜑) → 𝜑) |
35 | | simpl 483 |
. . . . . . 7
⊢ (((𝜑 → ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ 𝐴))‘𝑚) = (𝑥 ∈ 𝑋 ↦ 0)) ∧ 𝜑) → (𝜑 → ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ 𝐴))‘𝑚) = (𝑥 ∈ 𝑋 ↦ 0))) |
36 | | pm3.35 800 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝜑 → ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ 𝐴))‘𝑚) = (𝑥 ∈ 𝑋 ↦ 0))) → ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ 𝐴))‘𝑚) = (𝑥 ∈ 𝑋 ↦ 0)) |
37 | 34, 35, 36 | syl2anc 584 |
. . . . . 6
⊢ (((𝜑 → ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ 𝐴))‘𝑚) = (𝑥 ∈ 𝑋 ↦ 0)) ∧ 𝜑) → ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ 𝐴))‘𝑚) = (𝑥 ∈ 𝑋 ↦ 0)) |
38 | 37 | 3adant1 1129 |
. . . . 5
⊢ ((𝑚 ∈ ℕ ∧ (𝜑 → ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ 𝐴))‘𝑚) = (𝑥 ∈ 𝑋 ↦ 0)) ∧ 𝜑) → ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ 𝐴))‘𝑚) = (𝑥 ∈ 𝑋 ↦ 0)) |
39 | 17 | 3ad2ant1 1132 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ ∧ ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ 𝐴))‘𝑚) = (𝑥 ∈ 𝑋 ↦ 0)) → 𝑆 ⊆ ℂ) |
40 | 27 | 3ad2ant1 1132 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ ∧ ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ 𝐴))‘𝑚) = (𝑥 ∈ 𝑋 ↦ 0)) → (𝑥 ∈ 𝑋 ↦ 𝐴) ∈ (ℂ ↑pm 𝑆)) |
41 | | nnnn0 12240 |
. . . . . . . 8
⊢ (𝑚 ∈ ℕ → 𝑚 ∈
ℕ0) |
42 | 41 | 3ad2ant2 1133 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ ∧ ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ 𝐴))‘𝑚) = (𝑥 ∈ 𝑋 ↦ 0)) → 𝑚 ∈ ℕ0) |
43 | | dvnp1 25089 |
. . . . . . 7
⊢ ((𝑆 ⊆ ℂ ∧ (𝑥 ∈ 𝑋 ↦ 𝐴) ∈ (ℂ ↑pm 𝑆) ∧ 𝑚 ∈ ℕ0) → ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ 𝐴))‘(𝑚 + 1)) = (𝑆 D ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ 𝐴))‘𝑚))) |
44 | 39, 40, 42, 43 | syl3anc 1370 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ ∧ ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ 𝐴))‘𝑚) = (𝑥 ∈ 𝑋 ↦ 0)) → ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ 𝐴))‘(𝑚 + 1)) = (𝑆 D ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ 𝐴))‘𝑚))) |
45 | | oveq2 7283 |
. . . . . . 7
⊢ (((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ 𝐴))‘𝑚) = (𝑥 ∈ 𝑋 ↦ 0) → (𝑆 D ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ 𝐴))‘𝑚)) = (𝑆 D (𝑥 ∈ 𝑋 ↦ 0))) |
46 | 45 | 3ad2ant3 1134 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ ∧ ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ 𝐴))‘𝑚) = (𝑥 ∈ 𝑋 ↦ 0)) → (𝑆 D ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ 𝐴))‘𝑚)) = (𝑆 D (𝑥 ∈ 𝑋 ↦ 0))) |
47 | | 0cnd 10968 |
. . . . . . . 8
⊢ (𝜑 → 0 ∈
ℂ) |
48 | 15, 21, 47 | dvmptconst 43456 |
. . . . . . 7
⊢ (𝜑 → (𝑆 D (𝑥 ∈ 𝑋 ↦ 0)) = (𝑥 ∈ 𝑋 ↦ 0)) |
49 | 48 | 3ad2ant1 1132 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ ∧ ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ 𝐴))‘𝑚) = (𝑥 ∈ 𝑋 ↦ 0)) → (𝑆 D (𝑥 ∈ 𝑋 ↦ 0)) = (𝑥 ∈ 𝑋 ↦ 0)) |
50 | 44, 46, 49 | 3eqtrd 2782 |
. . . . 5
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ ∧ ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ 𝐴))‘𝑚) = (𝑥 ∈ 𝑋 ↦ 0)) → ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ 𝐴))‘(𝑚 + 1)) = (𝑥 ∈ 𝑋 ↦ 0)) |
51 | 32, 33, 38, 50 | syl3anc 1370 |
. . . 4
⊢ ((𝑚 ∈ ℕ ∧ (𝜑 → ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ 𝐴))‘𝑚) = (𝑥 ∈ 𝑋 ↦ 0)) ∧ 𝜑) → ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ 𝐴))‘(𝑚 + 1)) = (𝑥 ∈ 𝑋 ↦ 0)) |
52 | 51 | 3exp 1118 |
. . 3
⊢ (𝑚 ∈ ℕ → ((𝜑 → ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ 𝐴))‘𝑚) = (𝑥 ∈ 𝑋 ↦ 0)) → (𝜑 → ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ 𝐴))‘(𝑚 + 1)) = (𝑥 ∈ 𝑋 ↦ 0)))) |
53 | 5, 8, 11, 14, 31, 52 | nnind 11991 |
. 2
⊢ (𝑁 ∈ ℕ → (𝜑 → ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ 𝐴))‘𝑁) = (𝑥 ∈ 𝑋 ↦ 0))) |
54 | 1, 2, 53 | sylc 65 |
1
⊢ (𝜑 → ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ 𝐴))‘𝑁) = (𝑥 ∈ 𝑋 ↦ 0)) |