Step | Hyp | Ref
| Expression |
1 | | dvnmptconst.n |
. 2
β’ (π β π β β) |
2 | | id 22 |
. 2
β’ (π β π) |
3 | | fveq2 6888 |
. . . . 5
β’ (π = 1 β ((π Dπ (π₯ β π β¦ π΄))βπ) = ((π Dπ (π₯ β π β¦ π΄))β1)) |
4 | 3 | eqeq1d 2734 |
. . . 4
β’ (π = 1 β (((π Dπ (π₯ β π β¦ π΄))βπ) = (π₯ β π β¦ 0) β ((π Dπ (π₯ β π β¦ π΄))β1) = (π₯ β π β¦ 0))) |
5 | 4 | imbi2d 340 |
. . 3
β’ (π = 1 β ((π β ((π Dπ (π₯ β π β¦ π΄))βπ) = (π₯ β π β¦ 0)) β (π β ((π Dπ (π₯ β π β¦ π΄))β1) = (π₯ β π β¦ 0)))) |
6 | | fveq2 6888 |
. . . . 5
β’ (π = π β ((π Dπ (π₯ β π β¦ π΄))βπ) = ((π Dπ (π₯ β π β¦ π΄))βπ)) |
7 | 6 | eqeq1d 2734 |
. . . 4
β’ (π = π β (((π Dπ (π₯ β π β¦ π΄))βπ) = (π₯ β π β¦ 0) β ((π Dπ (π₯ β π β¦ π΄))βπ) = (π₯ β π β¦ 0))) |
8 | 7 | imbi2d 340 |
. . 3
β’ (π = π β ((π β ((π Dπ (π₯ β π β¦ π΄))βπ) = (π₯ β π β¦ 0)) β (π β ((π Dπ (π₯ β π β¦ π΄))βπ) = (π₯ β π β¦ 0)))) |
9 | | fveq2 6888 |
. . . . 5
β’ (π = (π + 1) β ((π Dπ (π₯ β π β¦ π΄))βπ) = ((π Dπ (π₯ β π β¦ π΄))β(π + 1))) |
10 | 9 | eqeq1d 2734 |
. . . 4
β’ (π = (π + 1) β (((π Dπ (π₯ β π β¦ π΄))βπ) = (π₯ β π β¦ 0) β ((π Dπ (π₯ β π β¦ π΄))β(π + 1)) = (π₯ β π β¦ 0))) |
11 | 10 | imbi2d 340 |
. . 3
β’ (π = (π + 1) β ((π β ((π Dπ (π₯ β π β¦ π΄))βπ) = (π₯ β π β¦ 0)) β (π β ((π Dπ (π₯ β π β¦ π΄))β(π + 1)) = (π₯ β π β¦ 0)))) |
12 | | fveq2 6888 |
. . . . 5
β’ (π = π β ((π Dπ (π₯ β π β¦ π΄))βπ) = ((π Dπ (π₯ β π β¦ π΄))βπ)) |
13 | 12 | eqeq1d 2734 |
. . . 4
β’ (π = π β (((π Dπ (π₯ β π β¦ π΄))βπ) = (π₯ β π β¦ 0) β ((π Dπ (π₯ β π β¦ π΄))βπ) = (π₯ β π β¦ 0))) |
14 | 13 | imbi2d 340 |
. . 3
β’ (π = π β ((π β ((π Dπ (π₯ β π β¦ π΄))βπ) = (π₯ β π β¦ 0)) β (π β ((π Dπ (π₯ β π β¦ π΄))βπ) = (π₯ β π β¦ 0)))) |
15 | | dvnmptconst.s |
. . . . . 6
β’ (π β π β {β, β}) |
16 | | recnprss 25412 |
. . . . . 6
β’ (π β {β, β}
β π β
β) |
17 | 15, 16 | syl 17 |
. . . . 5
β’ (π β π β β) |
18 | | dvnmptconst.a |
. . . . . . 7
β’ (π β π΄ β β) |
19 | 18 | adantr 481 |
. . . . . 6
β’ ((π β§ π₯ β π) β π΄ β β) |
20 | | restsspw 17373 |
. . . . . . . 8
β’
((TopOpenββfld) βΎt π) β π« π |
21 | | dvnmptconst.x |
. . . . . . . 8
β’ (π β π β
((TopOpenββfld) βΎt π)) |
22 | 20, 21 | sselid 3979 |
. . . . . . 7
β’ (π β π β π« π) |
23 | | elpwi 4608 |
. . . . . . 7
β’ (π β π« π β π β π) |
24 | 22, 23 | syl 17 |
. . . . . 6
β’ (π β π β π) |
25 | | cnex 11187 |
. . . . . . 7
β’ β
β V |
26 | 25 | a1i 11 |
. . . . . 6
β’ (π β β β
V) |
27 | 19, 24, 26, 15 | mptelpm 43857 |
. . . . 5
β’ (π β (π₯ β π β¦ π΄) β (β βpm π)) |
28 | | dvn1 25434 |
. . . . 5
β’ ((π β β β§ (π₯ β π β¦ π΄) β (β βpm π)) β ((π Dπ (π₯ β π β¦ π΄))β1) = (π D (π₯ β π β¦ π΄))) |
29 | 17, 27, 28 | syl2anc 584 |
. . . 4
β’ (π β ((π Dπ (π₯ β π β¦ π΄))β1) = (π D (π₯ β π β¦ π΄))) |
30 | 15, 21, 18 | dvmptconst 44617 |
. . . 4
β’ (π β (π D (π₯ β π β¦ π΄)) = (π₯ β π β¦ 0)) |
31 | 29, 30 | eqtrd 2772 |
. . 3
β’ (π β ((π Dπ (π₯ β π β¦ π΄))β1) = (π₯ β π β¦ 0)) |
32 | | simp3 1138 |
. . . . 5
β’ ((π β β β§ (π β ((π Dπ (π₯ β π β¦ π΄))βπ) = (π₯ β π β¦ 0)) β§ π) β π) |
33 | | simp1 1136 |
. . . . 5
β’ ((π β β β§ (π β ((π Dπ (π₯ β π β¦ π΄))βπ) = (π₯ β π β¦ 0)) β§ π) β π β β) |
34 | | simpr 485 |
. . . . . . 7
β’ (((π β ((π Dπ (π₯ β π β¦ π΄))βπ) = (π₯ β π β¦ 0)) β§ π) β π) |
35 | | simpl 483 |
. . . . . . 7
β’ (((π β ((π Dπ (π₯ β π β¦ π΄))βπ) = (π₯ β π β¦ 0)) β§ π) β (π β ((π Dπ (π₯ β π β¦ π΄))βπ) = (π₯ β π β¦ 0))) |
36 | | pm3.35 801 |
. . . . . . 7
β’ ((π β§ (π β ((π Dπ (π₯ β π β¦ π΄))βπ) = (π₯ β π β¦ 0))) β ((π Dπ (π₯ β π β¦ π΄))βπ) = (π₯ β π β¦ 0)) |
37 | 34, 35, 36 | syl2anc 584 |
. . . . . 6
β’ (((π β ((π Dπ (π₯ β π β¦ π΄))βπ) = (π₯ β π β¦ 0)) β§ π) β ((π Dπ (π₯ β π β¦ π΄))βπ) = (π₯ β π β¦ 0)) |
38 | 37 | 3adant1 1130 |
. . . . 5
β’ ((π β β β§ (π β ((π Dπ (π₯ β π β¦ π΄))βπ) = (π₯ β π β¦ 0)) β§ π) β ((π Dπ (π₯ β π β¦ π΄))βπ) = (π₯ β π β¦ 0)) |
39 | 17 | 3ad2ant1 1133 |
. . . . . . 7
β’ ((π β§ π β β β§ ((π Dπ (π₯ β π β¦ π΄))βπ) = (π₯ β π β¦ 0)) β π β β) |
40 | 27 | 3ad2ant1 1133 |
. . . . . . 7
β’ ((π β§ π β β β§ ((π Dπ (π₯ β π β¦ π΄))βπ) = (π₯ β π β¦ 0)) β (π₯ β π β¦ π΄) β (β βpm π)) |
41 | | nnnn0 12475 |
. . . . . . . 8
β’ (π β β β π β
β0) |
42 | 41 | 3ad2ant2 1134 |
. . . . . . 7
β’ ((π β§ π β β β§ ((π Dπ (π₯ β π β¦ π΄))βπ) = (π₯ β π β¦ 0)) β π β β0) |
43 | | dvnp1 25433 |
. . . . . . 7
β’ ((π β β β§ (π₯ β π β¦ π΄) β (β βpm π) β§ π β β0) β ((π Dπ (π₯ β π β¦ π΄))β(π + 1)) = (π D ((π Dπ (π₯ β π β¦ π΄))βπ))) |
44 | 39, 40, 42, 43 | syl3anc 1371 |
. . . . . 6
β’ ((π β§ π β β β§ ((π Dπ (π₯ β π β¦ π΄))βπ) = (π₯ β π β¦ 0)) β ((π Dπ (π₯ β π β¦ π΄))β(π + 1)) = (π D ((π Dπ (π₯ β π β¦ π΄))βπ))) |
45 | | oveq2 7413 |
. . . . . . 7
β’ (((π Dπ (π₯ β π β¦ π΄))βπ) = (π₯ β π β¦ 0) β (π D ((π Dπ (π₯ β π β¦ π΄))βπ)) = (π D (π₯ β π β¦ 0))) |
46 | 45 | 3ad2ant3 1135 |
. . . . . 6
β’ ((π β§ π β β β§ ((π Dπ (π₯ β π β¦ π΄))βπ) = (π₯ β π β¦ 0)) β (π D ((π Dπ (π₯ β π β¦ π΄))βπ)) = (π D (π₯ β π β¦ 0))) |
47 | | 0cnd 11203 |
. . . . . . . 8
β’ (π β 0 β
β) |
48 | 15, 21, 47 | dvmptconst 44617 |
. . . . . . 7
β’ (π β (π D (π₯ β π β¦ 0)) = (π₯ β π β¦ 0)) |
49 | 48 | 3ad2ant1 1133 |
. . . . . 6
β’ ((π β§ π β β β§ ((π Dπ (π₯ β π β¦ π΄))βπ) = (π₯ β π β¦ 0)) β (π D (π₯ β π β¦ 0)) = (π₯ β π β¦ 0)) |
50 | 44, 46, 49 | 3eqtrd 2776 |
. . . . 5
β’ ((π β§ π β β β§ ((π Dπ (π₯ β π β¦ π΄))βπ) = (π₯ β π β¦ 0)) β ((π Dπ (π₯ β π β¦ π΄))β(π + 1)) = (π₯ β π β¦ 0)) |
51 | 32, 33, 38, 50 | syl3anc 1371 |
. . . 4
β’ ((π β β β§ (π β ((π Dπ (π₯ β π β¦ π΄))βπ) = (π₯ β π β¦ 0)) β§ π) β ((π Dπ (π₯ β π β¦ π΄))β(π + 1)) = (π₯ β π β¦ 0)) |
52 | 51 | 3exp 1119 |
. . 3
β’ (π β β β ((π β ((π Dπ (π₯ β π β¦ π΄))βπ) = (π₯ β π β¦ 0)) β (π β ((π Dπ (π₯ β π β¦ π΄))β(π + 1)) = (π₯ β π β¦ 0)))) |
53 | 5, 8, 11, 14, 31, 52 | nnind 12226 |
. 2
β’ (π β β β (π β ((π Dπ (π₯ β π β¦ π΄))βπ) = (π₯ β π β¦ 0))) |
54 | 1, 2, 53 | sylc 65 |
1
β’ (π β ((π Dπ (π₯ β π β¦ π΄))βπ) = (π₯ β π β¦ 0)) |