Step | Hyp | Ref
| Expression |
1 | | ssdec.1 |
. . . . 5
⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) |
2 | | eluzel2 12516 |
. . . . 5
⊢ (𝑁 ∈
(ℤ≥‘𝑀) → 𝑀 ∈ ℤ) |
3 | 1, 2 | syl 17 |
. . . 4
⊢ (𝜑 → 𝑀 ∈ ℤ) |
4 | | eluzelz 12521 |
. . . . 5
⊢ (𝑁 ∈
(ℤ≥‘𝑀) → 𝑁 ∈ ℤ) |
5 | 1, 4 | syl 17 |
. . . 4
⊢ (𝜑 → 𝑁 ∈ ℤ) |
6 | 3, 5 | jca 511 |
. . 3
⊢ (𝜑 → (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) |
7 | | eluzle 12524 |
. . . . 5
⊢ (𝑁 ∈
(ℤ≥‘𝑀) → 𝑀 ≤ 𝑁) |
8 | 1, 7 | syl 17 |
. . . 4
⊢ (𝜑 → 𝑀 ≤ 𝑁) |
9 | 5 | zred 12355 |
. . . . 5
⊢ (𝜑 → 𝑁 ∈ ℝ) |
10 | 9 | leidd 11471 |
. . . 4
⊢ (𝜑 → 𝑁 ≤ 𝑁) |
11 | 5, 8, 10 | 3jca 1126 |
. . 3
⊢ (𝜑 → (𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁 ∧ 𝑁 ≤ 𝑁)) |
12 | 6, 11 | jca 511 |
. 2
⊢ (𝜑 → ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁 ∧ 𝑁 ≤ 𝑁))) |
13 | | fveq2 6756 |
. . . . 5
⊢ (𝑛 = 𝑀 → (𝐹‘𝑛) = (𝐹‘𝑀)) |
14 | 13 | sseq1d 3948 |
. . . 4
⊢ (𝑛 = 𝑀 → ((𝐹‘𝑛) ⊆ (𝐹‘𝑀) ↔ (𝐹‘𝑀) ⊆ (𝐹‘𝑀))) |
15 | 14 | imbi2d 340 |
. . 3
⊢ (𝑛 = 𝑀 → ((𝜑 → (𝐹‘𝑛) ⊆ (𝐹‘𝑀)) ↔ (𝜑 → (𝐹‘𝑀) ⊆ (𝐹‘𝑀)))) |
16 | | fveq2 6756 |
. . . . 5
⊢ (𝑛 = 𝑚 → (𝐹‘𝑛) = (𝐹‘𝑚)) |
17 | 16 | sseq1d 3948 |
. . . 4
⊢ (𝑛 = 𝑚 → ((𝐹‘𝑛) ⊆ (𝐹‘𝑀) ↔ (𝐹‘𝑚) ⊆ (𝐹‘𝑀))) |
18 | 17 | imbi2d 340 |
. . 3
⊢ (𝑛 = 𝑚 → ((𝜑 → (𝐹‘𝑛) ⊆ (𝐹‘𝑀)) ↔ (𝜑 → (𝐹‘𝑚) ⊆ (𝐹‘𝑀)))) |
19 | | fveq2 6756 |
. . . . 5
⊢ (𝑛 = (𝑚 + 1) → (𝐹‘𝑛) = (𝐹‘(𝑚 + 1))) |
20 | 19 | sseq1d 3948 |
. . . 4
⊢ (𝑛 = (𝑚 + 1) → ((𝐹‘𝑛) ⊆ (𝐹‘𝑀) ↔ (𝐹‘(𝑚 + 1)) ⊆ (𝐹‘𝑀))) |
21 | 20 | imbi2d 340 |
. . 3
⊢ (𝑛 = (𝑚 + 1) → ((𝜑 → (𝐹‘𝑛) ⊆ (𝐹‘𝑀)) ↔ (𝜑 → (𝐹‘(𝑚 + 1)) ⊆ (𝐹‘𝑀)))) |
22 | | fveq2 6756 |
. . . . 5
⊢ (𝑛 = 𝑁 → (𝐹‘𝑛) = (𝐹‘𝑁)) |
23 | 22 | sseq1d 3948 |
. . . 4
⊢ (𝑛 = 𝑁 → ((𝐹‘𝑛) ⊆ (𝐹‘𝑀) ↔ (𝐹‘𝑁) ⊆ (𝐹‘𝑀))) |
24 | 23 | imbi2d 340 |
. . 3
⊢ (𝑛 = 𝑁 → ((𝜑 → (𝐹‘𝑛) ⊆ (𝐹‘𝑀)) ↔ (𝜑 → (𝐹‘𝑁) ⊆ (𝐹‘𝑀)))) |
25 | | ssidd 3940 |
. . . 4
⊢ (𝜑 → (𝐹‘𝑀) ⊆ (𝐹‘𝑀)) |
26 | 25 | a1i 11 |
. . 3
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁) → (𝜑 → (𝐹‘𝑀) ⊆ (𝐹‘𝑀))) |
27 | | simpr 484 |
. . . . . . 7
⊢ ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑚 ∈ ℤ ∧ 𝑀 ≤ 𝑚 ∧ 𝑚 < 𝑁)) ∧ 𝜑) → 𝜑) |
28 | | simplll 771 |
. . . . . . . . . . 11
⊢ ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑚 ∈ ℤ ∧ 𝑀 ≤ 𝑚 ∧ 𝑚 < 𝑁)) ∧ 𝜑) → 𝑀 ∈ ℤ) |
29 | | simplr1 1213 |
. . . . . . . . . . 11
⊢ ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑚 ∈ ℤ ∧ 𝑀 ≤ 𝑚 ∧ 𝑚 < 𝑁)) ∧ 𝜑) → 𝑚 ∈ ℤ) |
30 | | simplr2 1214 |
. . . . . . . . . . 11
⊢ ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑚 ∈ ℤ ∧ 𝑀 ≤ 𝑚 ∧ 𝑚 < 𝑁)) ∧ 𝜑) → 𝑀 ≤ 𝑚) |
31 | 28, 29, 30 | 3jca 1126 |
. . . . . . . . . 10
⊢ ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑚 ∈ ℤ ∧ 𝑀 ≤ 𝑚 ∧ 𝑚 < 𝑁)) ∧ 𝜑) → (𝑀 ∈ ℤ ∧ 𝑚 ∈ ℤ ∧ 𝑀 ≤ 𝑚)) |
32 | | eluz2 12517 |
. . . . . . . . . 10
⊢ (𝑚 ∈
(ℤ≥‘𝑀) ↔ (𝑀 ∈ ℤ ∧ 𝑚 ∈ ℤ ∧ 𝑀 ≤ 𝑚)) |
33 | 31, 32 | sylibr 233 |
. . . . . . . . 9
⊢ ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑚 ∈ ℤ ∧ 𝑀 ≤ 𝑚 ∧ 𝑚 < 𝑁)) ∧ 𝜑) → 𝑚 ∈ (ℤ≥‘𝑀)) |
34 | | simpllr 772 |
. . . . . . . . 9
⊢ ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑚 ∈ ℤ ∧ 𝑀 ≤ 𝑚 ∧ 𝑚 < 𝑁)) ∧ 𝜑) → 𝑁 ∈ ℤ) |
35 | | simplr3 1215 |
. . . . . . . . 9
⊢ ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑚 ∈ ℤ ∧ 𝑀 ≤ 𝑚 ∧ 𝑚 < 𝑁)) ∧ 𝜑) → 𝑚 < 𝑁) |
36 | 33, 34, 35 | 3jca 1126 |
. . . . . . . 8
⊢ ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑚 ∈ ℤ ∧ 𝑀 ≤ 𝑚 ∧ 𝑚 < 𝑁)) ∧ 𝜑) → (𝑚 ∈ (ℤ≥‘𝑀) ∧ 𝑁 ∈ ℤ ∧ 𝑚 < 𝑁)) |
37 | | elfzo2 13319 |
. . . . . . . 8
⊢ (𝑚 ∈ (𝑀..^𝑁) ↔ (𝑚 ∈ (ℤ≥‘𝑀) ∧ 𝑁 ∈ ℤ ∧ 𝑚 < 𝑁)) |
38 | 36, 37 | sylibr 233 |
. . . . . . 7
⊢ ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑚 ∈ ℤ ∧ 𝑀 ≤ 𝑚 ∧ 𝑚 < 𝑁)) ∧ 𝜑) → 𝑚 ∈ (𝑀..^𝑁)) |
39 | | ssdec.2 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑚 ∈ (𝑀..^𝑁)) → (𝐹‘(𝑚 + 1)) ⊆ (𝐹‘𝑚)) |
40 | 27, 38, 39 | syl2anc 583 |
. . . . . 6
⊢ ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑚 ∈ ℤ ∧ 𝑀 ≤ 𝑚 ∧ 𝑚 < 𝑁)) ∧ 𝜑) → (𝐹‘(𝑚 + 1)) ⊆ (𝐹‘𝑚)) |
41 | 40 | 3adant2 1129 |
. . . . 5
⊢ ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑚 ∈ ℤ ∧ 𝑀 ≤ 𝑚 ∧ 𝑚 < 𝑁)) ∧ (𝜑 → (𝐹‘𝑚) ⊆ (𝐹‘𝑀)) ∧ 𝜑) → (𝐹‘(𝑚 + 1)) ⊆ (𝐹‘𝑚)) |
42 | | simpr 484 |
. . . . . . 7
⊢ (((𝜑 → (𝐹‘𝑚) ⊆ (𝐹‘𝑀)) ∧ 𝜑) → 𝜑) |
43 | | simpl 482 |
. . . . . . 7
⊢ (((𝜑 → (𝐹‘𝑚) ⊆ (𝐹‘𝑀)) ∧ 𝜑) → (𝜑 → (𝐹‘𝑚) ⊆ (𝐹‘𝑀))) |
44 | | pm3.35 799 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝜑 → (𝐹‘𝑚) ⊆ (𝐹‘𝑀))) → (𝐹‘𝑚) ⊆ (𝐹‘𝑀)) |
45 | 42, 43, 44 | syl2anc 583 |
. . . . . 6
⊢ (((𝜑 → (𝐹‘𝑚) ⊆ (𝐹‘𝑀)) ∧ 𝜑) → (𝐹‘𝑚) ⊆ (𝐹‘𝑀)) |
46 | 45 | 3adant1 1128 |
. . . . 5
⊢ ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑚 ∈ ℤ ∧ 𝑀 ≤ 𝑚 ∧ 𝑚 < 𝑁)) ∧ (𝜑 → (𝐹‘𝑚) ⊆ (𝐹‘𝑀)) ∧ 𝜑) → (𝐹‘𝑚) ⊆ (𝐹‘𝑀)) |
47 | 41, 46 | sstrd 3927 |
. . . 4
⊢ ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑚 ∈ ℤ ∧ 𝑀 ≤ 𝑚 ∧ 𝑚 < 𝑁)) ∧ (𝜑 → (𝐹‘𝑚) ⊆ (𝐹‘𝑀)) ∧ 𝜑) → (𝐹‘(𝑚 + 1)) ⊆ (𝐹‘𝑀)) |
48 | 47 | 3exp 1117 |
. . 3
⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑚 ∈ ℤ ∧ 𝑀 ≤ 𝑚 ∧ 𝑚 < 𝑁)) → ((𝜑 → (𝐹‘𝑚) ⊆ (𝐹‘𝑀)) → (𝜑 → (𝐹‘(𝑚 + 1)) ⊆ (𝐹‘𝑀)))) |
49 | 15, 18, 21, 24, 26, 48 | fzind 12348 |
. 2
⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁 ∧ 𝑁 ≤ 𝑁)) → (𝜑 → (𝐹‘𝑁) ⊆ (𝐹‘𝑀))) |
50 | 12, 49 | mpcom 38 |
1
⊢ (𝜑 → (𝐹‘𝑁) ⊆ (𝐹‘𝑀)) |