Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ssdec Structured version   Visualization version   GIF version

Theorem ssdec 42527
Description: Inclusion relation for a monotonic sequence of sets. (Contributed by Glauco Siliprandi, 8-Apr-2021.)
Hypotheses
Ref Expression
ssdec.1 (𝜑𝑁 ∈ (ℤ𝑀))
ssdec.2 ((𝜑𝑚 ∈ (𝑀..^𝑁)) → (𝐹‘(𝑚 + 1)) ⊆ (𝐹𝑚))
Assertion
Ref Expression
ssdec (𝜑 → (𝐹𝑁) ⊆ (𝐹𝑀))
Distinct variable groups:   𝑚,𝐹   𝑚,𝑀   𝑚,𝑁   𝜑,𝑚

Proof of Theorem ssdec
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 ssdec.1 . . . . 5 (𝜑𝑁 ∈ (ℤ𝑀))
2 eluzel2 12516 . . . . 5 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
31, 2syl 17 . . . 4 (𝜑𝑀 ∈ ℤ)
4 eluzelz 12521 . . . . 5 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ ℤ)
51, 4syl 17 . . . 4 (𝜑𝑁 ∈ ℤ)
63, 5jca 511 . . 3 (𝜑 → (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))
7 eluzle 12524 . . . . 5 (𝑁 ∈ (ℤ𝑀) → 𝑀𝑁)
81, 7syl 17 . . . 4 (𝜑𝑀𝑁)
95zred 12355 . . . . 5 (𝜑𝑁 ∈ ℝ)
109leidd 11471 . . . 4 (𝜑𝑁𝑁)
115, 8, 103jca 1126 . . 3 (𝜑 → (𝑁 ∈ ℤ ∧ 𝑀𝑁𝑁𝑁))
126, 11jca 511 . 2 (𝜑 → ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑁 ∈ ℤ ∧ 𝑀𝑁𝑁𝑁)))
13 fveq2 6756 . . . . 5 (𝑛 = 𝑀 → (𝐹𝑛) = (𝐹𝑀))
1413sseq1d 3948 . . . 4 (𝑛 = 𝑀 → ((𝐹𝑛) ⊆ (𝐹𝑀) ↔ (𝐹𝑀) ⊆ (𝐹𝑀)))
1514imbi2d 340 . . 3 (𝑛 = 𝑀 → ((𝜑 → (𝐹𝑛) ⊆ (𝐹𝑀)) ↔ (𝜑 → (𝐹𝑀) ⊆ (𝐹𝑀))))
16 fveq2 6756 . . . . 5 (𝑛 = 𝑚 → (𝐹𝑛) = (𝐹𝑚))
1716sseq1d 3948 . . . 4 (𝑛 = 𝑚 → ((𝐹𝑛) ⊆ (𝐹𝑀) ↔ (𝐹𝑚) ⊆ (𝐹𝑀)))
1817imbi2d 340 . . 3 (𝑛 = 𝑚 → ((𝜑 → (𝐹𝑛) ⊆ (𝐹𝑀)) ↔ (𝜑 → (𝐹𝑚) ⊆ (𝐹𝑀))))
19 fveq2 6756 . . . . 5 (𝑛 = (𝑚 + 1) → (𝐹𝑛) = (𝐹‘(𝑚 + 1)))
2019sseq1d 3948 . . . 4 (𝑛 = (𝑚 + 1) → ((𝐹𝑛) ⊆ (𝐹𝑀) ↔ (𝐹‘(𝑚 + 1)) ⊆ (𝐹𝑀)))
2120imbi2d 340 . . 3 (𝑛 = (𝑚 + 1) → ((𝜑 → (𝐹𝑛) ⊆ (𝐹𝑀)) ↔ (𝜑 → (𝐹‘(𝑚 + 1)) ⊆ (𝐹𝑀))))
22 fveq2 6756 . . . . 5 (𝑛 = 𝑁 → (𝐹𝑛) = (𝐹𝑁))
2322sseq1d 3948 . . . 4 (𝑛 = 𝑁 → ((𝐹𝑛) ⊆ (𝐹𝑀) ↔ (𝐹𝑁) ⊆ (𝐹𝑀)))
2423imbi2d 340 . . 3 (𝑛 = 𝑁 → ((𝜑 → (𝐹𝑛) ⊆ (𝐹𝑀)) ↔ (𝜑 → (𝐹𝑁) ⊆ (𝐹𝑀))))
25 ssidd 3940 . . . 4 (𝜑 → (𝐹𝑀) ⊆ (𝐹𝑀))
2625a1i 11 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀𝑁) → (𝜑 → (𝐹𝑀) ⊆ (𝐹𝑀)))
27 simpr 484 . . . . . . 7 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑚 ∈ ℤ ∧ 𝑀𝑚𝑚 < 𝑁)) ∧ 𝜑) → 𝜑)
28 simplll 771 . . . . . . . . . . 11 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑚 ∈ ℤ ∧ 𝑀𝑚𝑚 < 𝑁)) ∧ 𝜑) → 𝑀 ∈ ℤ)
29 simplr1 1213 . . . . . . . . . . 11 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑚 ∈ ℤ ∧ 𝑀𝑚𝑚 < 𝑁)) ∧ 𝜑) → 𝑚 ∈ ℤ)
30 simplr2 1214 . . . . . . . . . . 11 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑚 ∈ ℤ ∧ 𝑀𝑚𝑚 < 𝑁)) ∧ 𝜑) → 𝑀𝑚)
3128, 29, 303jca 1126 . . . . . . . . . 10 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑚 ∈ ℤ ∧ 𝑀𝑚𝑚 < 𝑁)) ∧ 𝜑) → (𝑀 ∈ ℤ ∧ 𝑚 ∈ ℤ ∧ 𝑀𝑚))
32 eluz2 12517 . . . . . . . . . 10 (𝑚 ∈ (ℤ𝑀) ↔ (𝑀 ∈ ℤ ∧ 𝑚 ∈ ℤ ∧ 𝑀𝑚))
3331, 32sylibr 233 . . . . . . . . 9 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑚 ∈ ℤ ∧ 𝑀𝑚𝑚 < 𝑁)) ∧ 𝜑) → 𝑚 ∈ (ℤ𝑀))
34 simpllr 772 . . . . . . . . 9 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑚 ∈ ℤ ∧ 𝑀𝑚𝑚 < 𝑁)) ∧ 𝜑) → 𝑁 ∈ ℤ)
35 simplr3 1215 . . . . . . . . 9 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑚 ∈ ℤ ∧ 𝑀𝑚𝑚 < 𝑁)) ∧ 𝜑) → 𝑚 < 𝑁)
3633, 34, 353jca 1126 . . . . . . . 8 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑚 ∈ ℤ ∧ 𝑀𝑚𝑚 < 𝑁)) ∧ 𝜑) → (𝑚 ∈ (ℤ𝑀) ∧ 𝑁 ∈ ℤ ∧ 𝑚 < 𝑁))
37 elfzo2 13319 . . . . . . . 8 (𝑚 ∈ (𝑀..^𝑁) ↔ (𝑚 ∈ (ℤ𝑀) ∧ 𝑁 ∈ ℤ ∧ 𝑚 < 𝑁))
3836, 37sylibr 233 . . . . . . 7 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑚 ∈ ℤ ∧ 𝑀𝑚𝑚 < 𝑁)) ∧ 𝜑) → 𝑚 ∈ (𝑀..^𝑁))
39 ssdec.2 . . . . . . 7 ((𝜑𝑚 ∈ (𝑀..^𝑁)) → (𝐹‘(𝑚 + 1)) ⊆ (𝐹𝑚))
4027, 38, 39syl2anc 583 . . . . . 6 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑚 ∈ ℤ ∧ 𝑀𝑚𝑚 < 𝑁)) ∧ 𝜑) → (𝐹‘(𝑚 + 1)) ⊆ (𝐹𝑚))
41403adant2 1129 . . . . 5 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑚 ∈ ℤ ∧ 𝑀𝑚𝑚 < 𝑁)) ∧ (𝜑 → (𝐹𝑚) ⊆ (𝐹𝑀)) ∧ 𝜑) → (𝐹‘(𝑚 + 1)) ⊆ (𝐹𝑚))
42 simpr 484 . . . . . . 7 (((𝜑 → (𝐹𝑚) ⊆ (𝐹𝑀)) ∧ 𝜑) → 𝜑)
43 simpl 482 . . . . . . 7 (((𝜑 → (𝐹𝑚) ⊆ (𝐹𝑀)) ∧ 𝜑) → (𝜑 → (𝐹𝑚) ⊆ (𝐹𝑀)))
44 pm3.35 799 . . . . . . 7 ((𝜑 ∧ (𝜑 → (𝐹𝑚) ⊆ (𝐹𝑀))) → (𝐹𝑚) ⊆ (𝐹𝑀))
4542, 43, 44syl2anc 583 . . . . . 6 (((𝜑 → (𝐹𝑚) ⊆ (𝐹𝑀)) ∧ 𝜑) → (𝐹𝑚) ⊆ (𝐹𝑀))
46453adant1 1128 . . . . 5 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑚 ∈ ℤ ∧ 𝑀𝑚𝑚 < 𝑁)) ∧ (𝜑 → (𝐹𝑚) ⊆ (𝐹𝑀)) ∧ 𝜑) → (𝐹𝑚) ⊆ (𝐹𝑀))
4741, 46sstrd 3927 . . . 4 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑚 ∈ ℤ ∧ 𝑀𝑚𝑚 < 𝑁)) ∧ (𝜑 → (𝐹𝑚) ⊆ (𝐹𝑀)) ∧ 𝜑) → (𝐹‘(𝑚 + 1)) ⊆ (𝐹𝑀))
48473exp 1117 . . 3 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑚 ∈ ℤ ∧ 𝑀𝑚𝑚 < 𝑁)) → ((𝜑 → (𝐹𝑚) ⊆ (𝐹𝑀)) → (𝜑 → (𝐹‘(𝑚 + 1)) ⊆ (𝐹𝑀))))
4915, 18, 21, 24, 26, 48fzind 12348 . 2 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑁 ∈ ℤ ∧ 𝑀𝑁𝑁𝑁)) → (𝜑 → (𝐹𝑁) ⊆ (𝐹𝑀)))
5012, 49mpcom 38 1 (𝜑 → (𝐹𝑁) ⊆ (𝐹𝑀))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085   = wceq 1539  wcel 2108  wss 3883   class class class wbr 5070  cfv 6418  (class class class)co 7255  1c1 10803   + caddc 10805   < clt 10940  cle 10941  cz 12249  cuz 12511  ..^cfzo 13311
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-n0 12164  df-z 12250  df-uz 12512  df-fz 13169  df-fzo 13312
This theorem is referenced by:  meaiininclem  43914
  Copyright terms: Public domain W3C validator