Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ssdec Structured version   Visualization version   GIF version

Theorem ssdec 40075
Description: Inclusion relation for a monotonic sequence of sets. (Contributed by Glauco Siliprandi, 8-Apr-2021.)
Hypotheses
Ref Expression
ssdec.1 (𝜑𝑁 ∈ (ℤ𝑀))
ssdec.2 ((𝜑𝑚 ∈ (𝑀..^𝑁)) → (𝐹‘(𝑚 + 1)) ⊆ (𝐹𝑚))
Assertion
Ref Expression
ssdec (𝜑 → (𝐹𝑁) ⊆ (𝐹𝑀))
Distinct variable groups:   𝑚,𝐹   𝑚,𝑀   𝑚,𝑁   𝜑,𝑚

Proof of Theorem ssdec
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 ssdec.1 . . . . 5 (𝜑𝑁 ∈ (ℤ𝑀))
2 eluzel2 11973 . . . . 5 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
31, 2syl 17 . . . 4 (𝜑𝑀 ∈ ℤ)
4 eluzelz 11978 . . . . 5 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ ℤ)
51, 4syl 17 . . . 4 (𝜑𝑁 ∈ ℤ)
63, 5jca 507 . . 3 (𝜑 → (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))
7 eluzle 11981 . . . . 5 (𝑁 ∈ (ℤ𝑀) → 𝑀𝑁)
81, 7syl 17 . . . 4 (𝜑𝑀𝑁)
95zred 11810 . . . . 5 (𝜑𝑁 ∈ ℝ)
109leidd 10918 . . . 4 (𝜑𝑁𝑁)
115, 8, 103jca 1162 . . 3 (𝜑 → (𝑁 ∈ ℤ ∧ 𝑀𝑁𝑁𝑁))
126, 11jca 507 . 2 (𝜑 → ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑁 ∈ ℤ ∧ 𝑀𝑁𝑁𝑁)))
13 fveq2 6433 . . . . 5 (𝑛 = 𝑀 → (𝐹𝑛) = (𝐹𝑀))
1413sseq1d 3857 . . . 4 (𝑛 = 𝑀 → ((𝐹𝑛) ⊆ (𝐹𝑀) ↔ (𝐹𝑀) ⊆ (𝐹𝑀)))
1514imbi2d 332 . . 3 (𝑛 = 𝑀 → ((𝜑 → (𝐹𝑛) ⊆ (𝐹𝑀)) ↔ (𝜑 → (𝐹𝑀) ⊆ (𝐹𝑀))))
16 fveq2 6433 . . . . 5 (𝑛 = 𝑚 → (𝐹𝑛) = (𝐹𝑚))
1716sseq1d 3857 . . . 4 (𝑛 = 𝑚 → ((𝐹𝑛) ⊆ (𝐹𝑀) ↔ (𝐹𝑚) ⊆ (𝐹𝑀)))
1817imbi2d 332 . . 3 (𝑛 = 𝑚 → ((𝜑 → (𝐹𝑛) ⊆ (𝐹𝑀)) ↔ (𝜑 → (𝐹𝑚) ⊆ (𝐹𝑀))))
19 fveq2 6433 . . . . 5 (𝑛 = (𝑚 + 1) → (𝐹𝑛) = (𝐹‘(𝑚 + 1)))
2019sseq1d 3857 . . . 4 (𝑛 = (𝑚 + 1) → ((𝐹𝑛) ⊆ (𝐹𝑀) ↔ (𝐹‘(𝑚 + 1)) ⊆ (𝐹𝑀)))
2120imbi2d 332 . . 3 (𝑛 = (𝑚 + 1) → ((𝜑 → (𝐹𝑛) ⊆ (𝐹𝑀)) ↔ (𝜑 → (𝐹‘(𝑚 + 1)) ⊆ (𝐹𝑀))))
22 fveq2 6433 . . . . 5 (𝑛 = 𝑁 → (𝐹𝑛) = (𝐹𝑁))
2322sseq1d 3857 . . . 4 (𝑛 = 𝑁 → ((𝐹𝑛) ⊆ (𝐹𝑀) ↔ (𝐹𝑁) ⊆ (𝐹𝑀)))
2423imbi2d 332 . . 3 (𝑛 = 𝑁 → ((𝜑 → (𝐹𝑛) ⊆ (𝐹𝑀)) ↔ (𝜑 → (𝐹𝑁) ⊆ (𝐹𝑀))))
25 ssidd 3849 . . . 4 (𝜑 → (𝐹𝑀) ⊆ (𝐹𝑀))
2625a1i 11 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀𝑁) → (𝜑 → (𝐹𝑀) ⊆ (𝐹𝑀)))
27 simpr 479 . . . . . . 7 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑚 ∈ ℤ ∧ 𝑀𝑚𝑚 < 𝑁)) ∧ 𝜑) → 𝜑)
28 simplll 791 . . . . . . . . . . 11 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑚 ∈ ℤ ∧ 𝑀𝑚𝑚 < 𝑁)) ∧ 𝜑) → 𝑀 ∈ ℤ)
29 simplr1 1279 . . . . . . . . . . 11 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑚 ∈ ℤ ∧ 𝑀𝑚𝑚 < 𝑁)) ∧ 𝜑) → 𝑚 ∈ ℤ)
30 simplr2 1281 . . . . . . . . . . 11 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑚 ∈ ℤ ∧ 𝑀𝑚𝑚 < 𝑁)) ∧ 𝜑) → 𝑀𝑚)
3128, 29, 303jca 1162 . . . . . . . . . 10 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑚 ∈ ℤ ∧ 𝑀𝑚𝑚 < 𝑁)) ∧ 𝜑) → (𝑀 ∈ ℤ ∧ 𝑚 ∈ ℤ ∧ 𝑀𝑚))
32 eluz2 11974 . . . . . . . . . 10 (𝑚 ∈ (ℤ𝑀) ↔ (𝑀 ∈ ℤ ∧ 𝑚 ∈ ℤ ∧ 𝑀𝑚))
3331, 32sylibr 226 . . . . . . . . 9 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑚 ∈ ℤ ∧ 𝑀𝑚𝑚 < 𝑁)) ∧ 𝜑) → 𝑚 ∈ (ℤ𝑀))
34 simpllr 793 . . . . . . . . 9 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑚 ∈ ℤ ∧ 𝑀𝑚𝑚 < 𝑁)) ∧ 𝜑) → 𝑁 ∈ ℤ)
35 simplr3 1283 . . . . . . . . 9 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑚 ∈ ℤ ∧ 𝑀𝑚𝑚 < 𝑁)) ∧ 𝜑) → 𝑚 < 𝑁)
3633, 34, 353jca 1162 . . . . . . . 8 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑚 ∈ ℤ ∧ 𝑀𝑚𝑚 < 𝑁)) ∧ 𝜑) → (𝑚 ∈ (ℤ𝑀) ∧ 𝑁 ∈ ℤ ∧ 𝑚 < 𝑁))
37 elfzo2 12768 . . . . . . . 8 (𝑚 ∈ (𝑀..^𝑁) ↔ (𝑚 ∈ (ℤ𝑀) ∧ 𝑁 ∈ ℤ ∧ 𝑚 < 𝑁))
3836, 37sylibr 226 . . . . . . 7 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑚 ∈ ℤ ∧ 𝑀𝑚𝑚 < 𝑁)) ∧ 𝜑) → 𝑚 ∈ (𝑀..^𝑁))
39 ssdec.2 . . . . . . 7 ((𝜑𝑚 ∈ (𝑀..^𝑁)) → (𝐹‘(𝑚 + 1)) ⊆ (𝐹𝑚))
4027, 38, 39syl2anc 579 . . . . . 6 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑚 ∈ ℤ ∧ 𝑀𝑚𝑚 < 𝑁)) ∧ 𝜑) → (𝐹‘(𝑚 + 1)) ⊆ (𝐹𝑚))
41403adant2 1165 . . . . 5 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑚 ∈ ℤ ∧ 𝑀𝑚𝑚 < 𝑁)) ∧ (𝜑 → (𝐹𝑚) ⊆ (𝐹𝑀)) ∧ 𝜑) → (𝐹‘(𝑚 + 1)) ⊆ (𝐹𝑚))
42 simpr 479 . . . . . . 7 (((𝜑 → (𝐹𝑚) ⊆ (𝐹𝑀)) ∧ 𝜑) → 𝜑)
43 simpl 476 . . . . . . 7 (((𝜑 → (𝐹𝑚) ⊆ (𝐹𝑀)) ∧ 𝜑) → (𝜑 → (𝐹𝑚) ⊆ (𝐹𝑀)))
44 pm3.35 837 . . . . . . 7 ((𝜑 ∧ (𝜑 → (𝐹𝑚) ⊆ (𝐹𝑀))) → (𝐹𝑚) ⊆ (𝐹𝑀))
4542, 43, 44syl2anc 579 . . . . . 6 (((𝜑 → (𝐹𝑚) ⊆ (𝐹𝑀)) ∧ 𝜑) → (𝐹𝑚) ⊆ (𝐹𝑀))
46453adant1 1164 . . . . 5 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑚 ∈ ℤ ∧ 𝑀𝑚𝑚 < 𝑁)) ∧ (𝜑 → (𝐹𝑚) ⊆ (𝐹𝑀)) ∧ 𝜑) → (𝐹𝑚) ⊆ (𝐹𝑀))
4741, 46sstrd 3837 . . . 4 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑚 ∈ ℤ ∧ 𝑀𝑚𝑚 < 𝑁)) ∧ (𝜑 → (𝐹𝑚) ⊆ (𝐹𝑀)) ∧ 𝜑) → (𝐹‘(𝑚 + 1)) ⊆ (𝐹𝑀))
48473exp 1152 . . 3 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑚 ∈ ℤ ∧ 𝑀𝑚𝑚 < 𝑁)) → ((𝜑 → (𝐹𝑚) ⊆ (𝐹𝑀)) → (𝜑 → (𝐹‘(𝑚 + 1)) ⊆ (𝐹𝑀))))
4915, 18, 21, 24, 26, 48fzind 11803 . 2 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑁 ∈ ℤ ∧ 𝑀𝑁𝑁𝑁)) → (𝜑 → (𝐹𝑁) ⊆ (𝐹𝑀)))
5012, 49mpcom 38 1 (𝜑 → (𝐹𝑁) ⊆ (𝐹𝑀))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 386  w3a 1111   = wceq 1656  wcel 2164  wss 3798   class class class wbr 4873  cfv 6123  (class class class)co 6905  1c1 10253   + caddc 10255   < clt 10391  cle 10392  cz 11704  cuz 11968  ..^cfzo 12760
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1894  ax-4 1908  ax-5 2009  ax-6 2075  ax-7 2112  ax-8 2166  ax-9 2173  ax-10 2192  ax-11 2207  ax-12 2220  ax-13 2389  ax-ext 2803  ax-sep 5005  ax-nul 5013  ax-pow 5065  ax-pr 5127  ax-un 7209  ax-cnex 10308  ax-resscn 10309  ax-1cn 10310  ax-icn 10311  ax-addcl 10312  ax-addrcl 10313  ax-mulcl 10314  ax-mulrcl 10315  ax-mulcom 10316  ax-addass 10317  ax-mulass 10318  ax-distr 10319  ax-i2m1 10320  ax-1ne0 10321  ax-1rid 10322  ax-rnegex 10323  ax-rrecex 10324  ax-cnre 10325  ax-pre-lttri 10326  ax-pre-lttrn 10327  ax-pre-ltadd 10328  ax-pre-mulgt0 10329
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 879  df-3or 1112  df-3an 1113  df-tru 1660  df-ex 1879  df-nf 1883  df-sb 2068  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-nel 3103  df-ral 3122  df-rex 3123  df-reu 3124  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-pss 3814  df-nul 4145  df-if 4307  df-pw 4380  df-sn 4398  df-pr 4400  df-tp 4402  df-op 4404  df-uni 4659  df-iun 4742  df-br 4874  df-opab 4936  df-mpt 4953  df-tr 4976  df-id 5250  df-eprel 5255  df-po 5263  df-so 5264  df-fr 5301  df-we 5303  df-xp 5348  df-rel 5349  df-cnv 5350  df-co 5351  df-dm 5352  df-rn 5353  df-res 5354  df-ima 5355  df-pred 5920  df-ord 5966  df-on 5967  df-lim 5968  df-suc 5969  df-iota 6086  df-fun 6125  df-fn 6126  df-f 6127  df-f1 6128  df-fo 6129  df-f1o 6130  df-fv 6131  df-riota 6866  df-ov 6908  df-oprab 6909  df-mpt2 6910  df-om 7327  df-1st 7428  df-2nd 7429  df-wrecs 7672  df-recs 7734  df-rdg 7772  df-er 8009  df-en 8223  df-dom 8224  df-sdom 8225  df-pnf 10393  df-mnf 10394  df-xr 10395  df-ltxr 10396  df-le 10397  df-sub 10587  df-neg 10588  df-nn 11351  df-n0 11619  df-z 11705  df-uz 11969  df-fz 12620  df-fzo 12761
This theorem is referenced by:  meaiininclem  41487
  Copyright terms: Public domain W3C validator