Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ssdec Structured version   Visualization version   GIF version

Theorem ssdec 43648
Description: Inclusion relation for a monotonic sequence of sets. (Contributed by Glauco Siliprandi, 8-Apr-2021.)
Hypotheses
Ref Expression
ssdec.1 (𝜑𝑁 ∈ (ℤ𝑀))
ssdec.2 ((𝜑𝑚 ∈ (𝑀..^𝑁)) → (𝐹‘(𝑚 + 1)) ⊆ (𝐹𝑚))
Assertion
Ref Expression
ssdec (𝜑 → (𝐹𝑁) ⊆ (𝐹𝑀))
Distinct variable groups:   𝑚,𝐹   𝑚,𝑀   𝑚,𝑁   𝜑,𝑚

Proof of Theorem ssdec
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 ssdec.1 . . . . 5 (𝜑𝑁 ∈ (ℤ𝑀))
2 eluzel2 12814 . . . . 5 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
31, 2syl 17 . . . 4 (𝜑𝑀 ∈ ℤ)
4 eluzelz 12819 . . . . 5 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ ℤ)
51, 4syl 17 . . . 4 (𝜑𝑁 ∈ ℤ)
63, 5jca 513 . . 3 (𝜑 → (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))
7 eluzle 12822 . . . . 5 (𝑁 ∈ (ℤ𝑀) → 𝑀𝑁)
81, 7syl 17 . . . 4 (𝜑𝑀𝑁)
95zred 12653 . . . . 5 (𝜑𝑁 ∈ ℝ)
109leidd 11767 . . . 4 (𝜑𝑁𝑁)
115, 8, 103jca 1129 . . 3 (𝜑 → (𝑁 ∈ ℤ ∧ 𝑀𝑁𝑁𝑁))
126, 11jca 513 . 2 (𝜑 → ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑁 ∈ ℤ ∧ 𝑀𝑁𝑁𝑁)))
13 fveq2 6881 . . . . 5 (𝑛 = 𝑀 → (𝐹𝑛) = (𝐹𝑀))
1413sseq1d 4011 . . . 4 (𝑛 = 𝑀 → ((𝐹𝑛) ⊆ (𝐹𝑀) ↔ (𝐹𝑀) ⊆ (𝐹𝑀)))
1514imbi2d 341 . . 3 (𝑛 = 𝑀 → ((𝜑 → (𝐹𝑛) ⊆ (𝐹𝑀)) ↔ (𝜑 → (𝐹𝑀) ⊆ (𝐹𝑀))))
16 fveq2 6881 . . . . 5 (𝑛 = 𝑚 → (𝐹𝑛) = (𝐹𝑚))
1716sseq1d 4011 . . . 4 (𝑛 = 𝑚 → ((𝐹𝑛) ⊆ (𝐹𝑀) ↔ (𝐹𝑚) ⊆ (𝐹𝑀)))
1817imbi2d 341 . . 3 (𝑛 = 𝑚 → ((𝜑 → (𝐹𝑛) ⊆ (𝐹𝑀)) ↔ (𝜑 → (𝐹𝑚) ⊆ (𝐹𝑀))))
19 fveq2 6881 . . . . 5 (𝑛 = (𝑚 + 1) → (𝐹𝑛) = (𝐹‘(𝑚 + 1)))
2019sseq1d 4011 . . . 4 (𝑛 = (𝑚 + 1) → ((𝐹𝑛) ⊆ (𝐹𝑀) ↔ (𝐹‘(𝑚 + 1)) ⊆ (𝐹𝑀)))
2120imbi2d 341 . . 3 (𝑛 = (𝑚 + 1) → ((𝜑 → (𝐹𝑛) ⊆ (𝐹𝑀)) ↔ (𝜑 → (𝐹‘(𝑚 + 1)) ⊆ (𝐹𝑀))))
22 fveq2 6881 . . . . 5 (𝑛 = 𝑁 → (𝐹𝑛) = (𝐹𝑁))
2322sseq1d 4011 . . . 4 (𝑛 = 𝑁 → ((𝐹𝑛) ⊆ (𝐹𝑀) ↔ (𝐹𝑁) ⊆ (𝐹𝑀)))
2423imbi2d 341 . . 3 (𝑛 = 𝑁 → ((𝜑 → (𝐹𝑛) ⊆ (𝐹𝑀)) ↔ (𝜑 → (𝐹𝑁) ⊆ (𝐹𝑀))))
25 ssidd 4003 . . . 4 (𝜑 → (𝐹𝑀) ⊆ (𝐹𝑀))
2625a1i 11 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀𝑁) → (𝜑 → (𝐹𝑀) ⊆ (𝐹𝑀)))
27 simpr 486 . . . . . . 7 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑚 ∈ ℤ ∧ 𝑀𝑚𝑚 < 𝑁)) ∧ 𝜑) → 𝜑)
28 simplll 774 . . . . . . . . . . 11 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑚 ∈ ℤ ∧ 𝑀𝑚𝑚 < 𝑁)) ∧ 𝜑) → 𝑀 ∈ ℤ)
29 simplr1 1216 . . . . . . . . . . 11 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑚 ∈ ℤ ∧ 𝑀𝑚𝑚 < 𝑁)) ∧ 𝜑) → 𝑚 ∈ ℤ)
30 simplr2 1217 . . . . . . . . . . 11 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑚 ∈ ℤ ∧ 𝑀𝑚𝑚 < 𝑁)) ∧ 𝜑) → 𝑀𝑚)
3128, 29, 303jca 1129 . . . . . . . . . 10 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑚 ∈ ℤ ∧ 𝑀𝑚𝑚 < 𝑁)) ∧ 𝜑) → (𝑀 ∈ ℤ ∧ 𝑚 ∈ ℤ ∧ 𝑀𝑚))
32 eluz2 12815 . . . . . . . . . 10 (𝑚 ∈ (ℤ𝑀) ↔ (𝑀 ∈ ℤ ∧ 𝑚 ∈ ℤ ∧ 𝑀𝑚))
3331, 32sylibr 233 . . . . . . . . 9 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑚 ∈ ℤ ∧ 𝑀𝑚𝑚 < 𝑁)) ∧ 𝜑) → 𝑚 ∈ (ℤ𝑀))
34 simpllr 775 . . . . . . . . 9 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑚 ∈ ℤ ∧ 𝑀𝑚𝑚 < 𝑁)) ∧ 𝜑) → 𝑁 ∈ ℤ)
35 simplr3 1218 . . . . . . . . 9 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑚 ∈ ℤ ∧ 𝑀𝑚𝑚 < 𝑁)) ∧ 𝜑) → 𝑚 < 𝑁)
3633, 34, 353jca 1129 . . . . . . . 8 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑚 ∈ ℤ ∧ 𝑀𝑚𝑚 < 𝑁)) ∧ 𝜑) → (𝑚 ∈ (ℤ𝑀) ∧ 𝑁 ∈ ℤ ∧ 𝑚 < 𝑁))
37 elfzo2 13622 . . . . . . . 8 (𝑚 ∈ (𝑀..^𝑁) ↔ (𝑚 ∈ (ℤ𝑀) ∧ 𝑁 ∈ ℤ ∧ 𝑚 < 𝑁))
3836, 37sylibr 233 . . . . . . 7 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑚 ∈ ℤ ∧ 𝑀𝑚𝑚 < 𝑁)) ∧ 𝜑) → 𝑚 ∈ (𝑀..^𝑁))
39 ssdec.2 . . . . . . 7 ((𝜑𝑚 ∈ (𝑀..^𝑁)) → (𝐹‘(𝑚 + 1)) ⊆ (𝐹𝑚))
4027, 38, 39syl2anc 585 . . . . . 6 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑚 ∈ ℤ ∧ 𝑀𝑚𝑚 < 𝑁)) ∧ 𝜑) → (𝐹‘(𝑚 + 1)) ⊆ (𝐹𝑚))
41403adant2 1132 . . . . 5 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑚 ∈ ℤ ∧ 𝑀𝑚𝑚 < 𝑁)) ∧ (𝜑 → (𝐹𝑚) ⊆ (𝐹𝑀)) ∧ 𝜑) → (𝐹‘(𝑚 + 1)) ⊆ (𝐹𝑚))
42 simpr 486 . . . . . . 7 (((𝜑 → (𝐹𝑚) ⊆ (𝐹𝑀)) ∧ 𝜑) → 𝜑)
43 simpl 484 . . . . . . 7 (((𝜑 → (𝐹𝑚) ⊆ (𝐹𝑀)) ∧ 𝜑) → (𝜑 → (𝐹𝑚) ⊆ (𝐹𝑀)))
44 pm3.35 802 . . . . . . 7 ((𝜑 ∧ (𝜑 → (𝐹𝑚) ⊆ (𝐹𝑀))) → (𝐹𝑚) ⊆ (𝐹𝑀))
4542, 43, 44syl2anc 585 . . . . . 6 (((𝜑 → (𝐹𝑚) ⊆ (𝐹𝑀)) ∧ 𝜑) → (𝐹𝑚) ⊆ (𝐹𝑀))
46453adant1 1131 . . . . 5 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑚 ∈ ℤ ∧ 𝑀𝑚𝑚 < 𝑁)) ∧ (𝜑 → (𝐹𝑚) ⊆ (𝐹𝑀)) ∧ 𝜑) → (𝐹𝑚) ⊆ (𝐹𝑀))
4741, 46sstrd 3990 . . . 4 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑚 ∈ ℤ ∧ 𝑀𝑚𝑚 < 𝑁)) ∧ (𝜑 → (𝐹𝑚) ⊆ (𝐹𝑀)) ∧ 𝜑) → (𝐹‘(𝑚 + 1)) ⊆ (𝐹𝑀))
48473exp 1120 . . 3 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑚 ∈ ℤ ∧ 𝑀𝑚𝑚 < 𝑁)) → ((𝜑 → (𝐹𝑚) ⊆ (𝐹𝑀)) → (𝜑 → (𝐹‘(𝑚 + 1)) ⊆ (𝐹𝑀))))
4915, 18, 21, 24, 26, 48fzind 12647 . 2 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑁 ∈ ℤ ∧ 𝑀𝑁𝑁𝑁)) → (𝜑 → (𝐹𝑁) ⊆ (𝐹𝑀)))
5012, 49mpcom 38 1 (𝜑 → (𝐹𝑁) ⊆ (𝐹𝑀))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397  w3a 1088   = wceq 1542  wcel 2107  wss 3946   class class class wbr 5144  cfv 6535  (class class class)co 7396  1c1 11098   + caddc 11100   < clt 11235  cle 11236  cz 12545  cuz 12809  ..^cfzo 13614
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5295  ax-nul 5302  ax-pow 5359  ax-pr 5423  ax-un 7712  ax-cnex 11153  ax-resscn 11154  ax-1cn 11155  ax-icn 11156  ax-addcl 11157  ax-addrcl 11158  ax-mulcl 11159  ax-mulrcl 11160  ax-mulcom 11161  ax-addass 11162  ax-mulass 11163  ax-distr 11164  ax-i2m1 11165  ax-1ne0 11166  ax-1rid 11167  ax-rnegex 11168  ax-rrecex 11169  ax-cnre 11170  ax-pre-lttri 11171  ax-pre-lttrn 11172  ax-pre-ltadd 11173  ax-pre-mulgt0 11174
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3776  df-csb 3892  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-pss 3965  df-nul 4321  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4905  df-iun 4995  df-br 5145  df-opab 5207  df-mpt 5228  df-tr 5262  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6292  df-ord 6359  df-on 6360  df-lim 6361  df-suc 6362  df-iota 6487  df-fun 6537  df-fn 6538  df-f 6539  df-f1 6540  df-fo 6541  df-f1o 6542  df-fv 6543  df-riota 7352  df-ov 7399  df-oprab 7400  df-mpo 7401  df-om 7843  df-1st 7962  df-2nd 7963  df-frecs 8253  df-wrecs 8284  df-recs 8358  df-rdg 8397  df-er 8691  df-en 8928  df-dom 8929  df-sdom 8930  df-pnf 11237  df-mnf 11238  df-xr 11239  df-ltxr 11240  df-le 11241  df-sub 11433  df-neg 11434  df-nn 12200  df-n0 12460  df-z 12546  df-uz 12810  df-fz 13472  df-fzo 13615
This theorem is referenced by:  meaiininclem  45075
  Copyright terms: Public domain W3C validator