Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sge0pnfmpt Structured version   Visualization version   GIF version

Theorem sge0pnfmpt 46441
Description: If a term in the sum of nonnegative extended reals is +∞, then the value of the sum is +∞. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
Hypotheses
Ref Expression
sge0pnfmpt.k 𝑘𝜑
sge0pnfmpt.a (𝜑𝐴𝑉)
sge0pnfmpt.b ((𝜑𝑘𝐴) → 𝐵 ∈ (0[,]+∞))
sge0pnfmpt.p (𝜑 → ∃𝑘𝐴 𝐵 = +∞)
Assertion
Ref Expression
sge0pnfmpt (𝜑 → (Σ^‘(𝑘𝐴𝐵)) = +∞)
Distinct variable group:   𝐴,𝑘
Allowed substitution hints:   𝜑(𝑘)   𝐵(𝑘)   𝑉(𝑘)

Proof of Theorem sge0pnfmpt
StepHypRef Expression
1 sge0pnfmpt.a . 2 (𝜑𝐴𝑉)
2 sge0pnfmpt.k . . 3 𝑘𝜑
3 sge0pnfmpt.b . . 3 ((𝜑𝑘𝐴) → 𝐵 ∈ (0[,]+∞))
4 eqid 2736 . . 3 (𝑘𝐴𝐵) = (𝑘𝐴𝐵)
52, 3, 4fmptdf 7112 . 2 (𝜑 → (𝑘𝐴𝐵):𝐴⟶(0[,]+∞))
6 sge0pnfmpt.p . . . 4 (𝜑 → ∃𝑘𝐴 𝐵 = +∞)
7 eqcom 2743 . . . . 5 (𝐵 = +∞ ↔ +∞ = 𝐵)
87rexbii 3084 . . . 4 (∃𝑘𝐴 𝐵 = +∞ ↔ ∃𝑘𝐴 +∞ = 𝐵)
96, 8sylib 218 . . 3 (𝜑 → ∃𝑘𝐴 +∞ = 𝐵)
10 pnfex 11293 . . . 4 +∞ ∈ V
1110a1i 11 . . 3 (𝜑 → +∞ ∈ V)
124, 9, 11elrnmptd 5948 . 2 (𝜑 → +∞ ∈ ran (𝑘𝐴𝐵))
131, 5, 12sge0pnfval 46369 1 (𝜑 → (Σ^‘(𝑘𝐴𝐵)) = +∞)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wnf 1783  wcel 2109  wrex 3061  Vcvv 3464  cmpt 5206  cfv 6536  (class class class)co 7410  0cc0 11134  +∞cpnf 11271  [,]cicc 13370  Σ^csumge0 46358
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-pre-lttri 11208  ax-pre-lttrn 11209
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-po 5566  df-so 5567  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-ov 7413  df-oprab 7414  df-mpo 7415  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-er 8724  df-en 8965  df-dom 8966  df-sdom 8967  df-sup 9459  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-seq 14025  df-sum 15708  df-sumge0 46359
This theorem is referenced by:  voliunsge0lem  46468
  Copyright terms: Public domain W3C validator