| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > sge0pnfmpt | Structured version Visualization version GIF version | ||
| Description: If a term in the sum of nonnegative extended reals is +∞, then the value of the sum is +∞. (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
| Ref | Expression |
|---|---|
| sge0pnfmpt.k | ⊢ Ⅎ𝑘𝜑 |
| sge0pnfmpt.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| sge0pnfmpt.b | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ (0[,]+∞)) |
| sge0pnfmpt.p | ⊢ (𝜑 → ∃𝑘 ∈ 𝐴 𝐵 = +∞) |
| Ref | Expression |
|---|---|
| sge0pnfmpt | ⊢ (𝜑 → (Σ^‘(𝑘 ∈ 𝐴 ↦ 𝐵)) = +∞) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sge0pnfmpt.a | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 2 | sge0pnfmpt.k | . . 3 ⊢ Ⅎ𝑘𝜑 | |
| 3 | sge0pnfmpt.b | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ (0[,]+∞)) | |
| 4 | eqid 2729 | . . 3 ⊢ (𝑘 ∈ 𝐴 ↦ 𝐵) = (𝑘 ∈ 𝐴 ↦ 𝐵) | |
| 5 | 2, 3, 4 | fmptdf 7071 | . 2 ⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ 𝐵):𝐴⟶(0[,]+∞)) |
| 6 | sge0pnfmpt.p | . . . 4 ⊢ (𝜑 → ∃𝑘 ∈ 𝐴 𝐵 = +∞) | |
| 7 | eqcom 2736 | . . . . 5 ⊢ (𝐵 = +∞ ↔ +∞ = 𝐵) | |
| 8 | 7 | rexbii 3076 | . . . 4 ⊢ (∃𝑘 ∈ 𝐴 𝐵 = +∞ ↔ ∃𝑘 ∈ 𝐴 +∞ = 𝐵) |
| 9 | 6, 8 | sylib 218 | . . 3 ⊢ (𝜑 → ∃𝑘 ∈ 𝐴 +∞ = 𝐵) |
| 10 | pnfex 11203 | . . . 4 ⊢ +∞ ∈ V | |
| 11 | 10 | a1i 11 | . . 3 ⊢ (𝜑 → +∞ ∈ V) |
| 12 | 4, 9, 11 | elrnmptd 5916 | . 2 ⊢ (𝜑 → +∞ ∈ ran (𝑘 ∈ 𝐴 ↦ 𝐵)) |
| 13 | 1, 5, 12 | sge0pnfval 46364 | 1 ⊢ (𝜑 → (Σ^‘(𝑘 ∈ 𝐴 ↦ 𝐵)) = +∞) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 Ⅎwnf 1783 ∈ wcel 2109 ∃wrex 3053 Vcvv 3444 ↦ cmpt 5183 ‘cfv 6499 (class class class)co 7369 0cc0 11044 +∞cpnf 11181 [,]cicc 13285 Σ^csumge0 46353 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-pre-lttri 11118 ax-pre-lttrn 11119 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-po 5539 df-so 5540 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-ov 7372 df-oprab 7373 df-mpo 7374 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-sup 9369 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-seq 13943 df-sum 15629 df-sumge0 46354 |
| This theorem is referenced by: voliunsge0lem 46463 |
| Copyright terms: Public domain | W3C validator |