Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sge0pnfmpt Structured version   Visualization version   GIF version

Theorem sge0pnfmpt 46366
Description: If a term in the sum of nonnegative extended reals is +∞, then the value of the sum is +∞. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
Hypotheses
Ref Expression
sge0pnfmpt.k 𝑘𝜑
sge0pnfmpt.a (𝜑𝐴𝑉)
sge0pnfmpt.b ((𝜑𝑘𝐴) → 𝐵 ∈ (0[,]+∞))
sge0pnfmpt.p (𝜑 → ∃𝑘𝐴 𝐵 = +∞)
Assertion
Ref Expression
sge0pnfmpt (𝜑 → (Σ^‘(𝑘𝐴𝐵)) = +∞)
Distinct variable group:   𝐴,𝑘
Allowed substitution hints:   𝜑(𝑘)   𝐵(𝑘)   𝑉(𝑘)

Proof of Theorem sge0pnfmpt
StepHypRef Expression
1 sge0pnfmpt.a . 2 (𝜑𝐴𝑉)
2 sge0pnfmpt.k . . 3 𝑘𝜑
3 sge0pnfmpt.b . . 3 ((𝜑𝑘𝐴) → 𝐵 ∈ (0[,]+∞))
4 eqid 2740 . . 3 (𝑘𝐴𝐵) = (𝑘𝐴𝐵)
52, 3, 4fmptdf 7151 . 2 (𝜑 → (𝑘𝐴𝐵):𝐴⟶(0[,]+∞))
6 sge0pnfmpt.p . . . 4 (𝜑 → ∃𝑘𝐴 𝐵 = +∞)
7 eqcom 2747 . . . . 5 (𝐵 = +∞ ↔ +∞ = 𝐵)
87rexbii 3100 . . . 4 (∃𝑘𝐴 𝐵 = +∞ ↔ ∃𝑘𝐴 +∞ = 𝐵)
96, 8sylib 218 . . 3 (𝜑 → ∃𝑘𝐴 +∞ = 𝐵)
10 pnfex 11343 . . . 4 +∞ ∈ V
1110a1i 11 . . 3 (𝜑 → +∞ ∈ V)
124, 9, 11elrnmptd 5986 . 2 (𝜑 → +∞ ∈ ran (𝑘𝐴𝐵))
131, 5, 12sge0pnfval 46294 1 (𝜑 → (Σ^‘(𝑘𝐴𝐵)) = +∞)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wnf 1781  wcel 2108  wrex 3076  Vcvv 3488  cmpt 5249  cfv 6573  (class class class)co 7448  0cc0 11184  +∞cpnf 11321  [,]cicc 13410  Σ^csumge0 46283
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-pre-lttri 11258  ax-pre-lttrn 11259
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-po 5607  df-so 5608  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-sup 9511  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-seq 14053  df-sum 15735  df-sumge0 46284
This theorem is referenced by:  voliunsge0lem  46393
  Copyright terms: Public domain W3C validator