Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > sge0pnfmpt | Structured version Visualization version GIF version |
Description: If a term in the sum of nonnegative extended reals is +∞, then the value of the sum is +∞. (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
Ref | Expression |
---|---|
sge0pnfmpt.k | ⊢ Ⅎ𝑘𝜑 |
sge0pnfmpt.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
sge0pnfmpt.b | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ (0[,]+∞)) |
sge0pnfmpt.p | ⊢ (𝜑 → ∃𝑘 ∈ 𝐴 𝐵 = +∞) |
Ref | Expression |
---|---|
sge0pnfmpt | ⊢ (𝜑 → (Σ^‘(𝑘 ∈ 𝐴 ↦ 𝐵)) = +∞) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sge0pnfmpt.a | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
2 | sge0pnfmpt.k | . . 3 ⊢ Ⅎ𝑘𝜑 | |
3 | sge0pnfmpt.b | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ (0[,]+∞)) | |
4 | eqid 2759 | . . 3 ⊢ (𝑘 ∈ 𝐴 ↦ 𝐵) = (𝑘 ∈ 𝐴 ↦ 𝐵) | |
5 | 2, 3, 4 | fmptdf 6873 | . 2 ⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ 𝐵):𝐴⟶(0[,]+∞)) |
6 | sge0pnfmpt.p | . . . 4 ⊢ (𝜑 → ∃𝑘 ∈ 𝐴 𝐵 = +∞) | |
7 | eqcom 2766 | . . . . 5 ⊢ (𝐵 = +∞ ↔ +∞ = 𝐵) | |
8 | 7 | rexbii 3176 | . . . 4 ⊢ (∃𝑘 ∈ 𝐴 𝐵 = +∞ ↔ ∃𝑘 ∈ 𝐴 +∞ = 𝐵) |
9 | 6, 8 | sylib 221 | . . 3 ⊢ (𝜑 → ∃𝑘 ∈ 𝐴 +∞ = 𝐵) |
10 | pnfex 10725 | . . . 4 ⊢ +∞ ∈ V | |
11 | 10 | a1i 11 | . . 3 ⊢ (𝜑 → +∞ ∈ V) |
12 | 4, 9, 11 | elrnmptd 5803 | . 2 ⊢ (𝜑 → +∞ ∈ ran (𝑘 ∈ 𝐴 ↦ 𝐵)) |
13 | 1, 5, 12 | sge0pnfval 43371 | 1 ⊢ (𝜑 → (Σ^‘(𝑘 ∈ 𝐴 ↦ 𝐵)) = +∞) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 400 = wceq 1539 Ⅎwnf 1786 ∈ wcel 2112 ∃wrex 3072 Vcvv 3410 ↦ cmpt 5113 ‘cfv 6336 (class class class)co 7151 0cc0 10568 +∞cpnf 10703 [,]cicc 12775 Σ^csumge0 43360 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2159 ax-12 2176 ax-ext 2730 ax-rep 5157 ax-sep 5170 ax-nul 5177 ax-pow 5235 ax-pr 5299 ax-un 7460 ax-cnex 10624 ax-resscn 10625 ax-1cn 10626 ax-icn 10627 ax-addcl 10628 ax-addrcl 10629 ax-mulcl 10630 ax-mulrcl 10631 ax-mulcom 10632 ax-addass 10633 ax-mulass 10634 ax-distr 10635 ax-i2m1 10636 ax-1ne0 10637 ax-1rid 10638 ax-rnegex 10639 ax-rrecex 10640 ax-cnre 10641 ax-pre-lttri 10642 ax-pre-lttrn 10643 ax-pre-ltadd 10644 ax-pre-mulgt0 10645 |
This theorem depends on definitions: df-bi 210 df-an 401 df-or 846 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2071 df-mo 2558 df-eu 2589 df-clab 2737 df-cleq 2751 df-clel 2831 df-nfc 2902 df-ne 2953 df-nel 3057 df-ral 3076 df-rex 3077 df-reu 3078 df-rmo 3079 df-rab 3080 df-v 3412 df-sbc 3698 df-csb 3807 df-dif 3862 df-un 3864 df-in 3866 df-ss 3876 df-pss 3878 df-nul 4227 df-if 4422 df-pw 4497 df-sn 4524 df-pr 4526 df-tp 4528 df-op 4530 df-uni 4800 df-iun 4886 df-br 5034 df-opab 5096 df-mpt 5114 df-tr 5140 df-id 5431 df-eprel 5436 df-po 5444 df-so 5445 df-fr 5484 df-we 5486 df-xp 5531 df-rel 5532 df-cnv 5533 df-co 5534 df-dm 5535 df-rn 5536 df-res 5537 df-ima 5538 df-pred 6127 df-ord 6173 df-on 6174 df-lim 6175 df-suc 6176 df-iota 6295 df-fun 6338 df-fn 6339 df-f 6340 df-f1 6341 df-fo 6342 df-f1o 6343 df-fv 6344 df-riota 7109 df-ov 7154 df-oprab 7155 df-mpo 7156 df-om 7581 df-1st 7694 df-2nd 7695 df-wrecs 7958 df-recs 8019 df-rdg 8057 df-er 8300 df-en 8529 df-dom 8530 df-sdom 8531 df-sup 8932 df-pnf 10708 df-mnf 10709 df-xr 10710 df-ltxr 10711 df-le 10712 df-sub 10903 df-neg 10904 df-nn 11668 df-n0 11928 df-z 12014 df-uz 12276 df-fz 12933 df-seq 13412 df-sum 15084 df-sumge0 43361 |
This theorem is referenced by: voliunsge0lem 43470 |
Copyright terms: Public domain | W3C validator |