Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sge0pnfmpt Structured version   Visualization version   GIF version

Theorem sge0pnfmpt 41138
Description: If a term in the sum of nonnegative extended reals is +∞, then the value of the sum is +∞ (Contributed by Glauco Siliprandi, 3-Mar-2021.)
Hypotheses
Ref Expression
sge0pnfmpt.k 𝑘𝜑
sge0pnfmpt.a (𝜑𝐴𝑉)
sge0pnfmpt.b ((𝜑𝑘𝐴) → 𝐵 ∈ (0[,]+∞))
sge0pnfmpt.p (𝜑 → ∃𝑘𝐴 𝐵 = +∞)
Assertion
Ref Expression
sge0pnfmpt (𝜑 → (Σ^‘(𝑘𝐴𝐵)) = +∞)
Distinct variable group:   𝐴,𝑘
Allowed substitution hints:   𝜑(𝑘)   𝐵(𝑘)   𝑉(𝑘)

Proof of Theorem sge0pnfmpt
StepHypRef Expression
1 sge0pnfmpt.a . 2 (𝜑𝐴𝑉)
2 sge0pnfmpt.k . . 3 𝑘𝜑
3 sge0pnfmpt.b . . 3 ((𝜑𝑘𝐴) → 𝐵 ∈ (0[,]+∞))
4 eqid 2805 . . 3 (𝑘𝐴𝐵) = (𝑘𝐴𝐵)
52, 3, 4fmptdf 6606 . 2 (𝜑 → (𝑘𝐴𝐵):𝐴⟶(0[,]+∞))
6 sge0pnfmpt.p . . . 4 (𝜑 → ∃𝑘𝐴 𝐵 = +∞)
7 eqcom 2812 . . . . 5 (𝐵 = +∞ ↔ +∞ = 𝐵)
87rexbii 3228 . . . 4 (∃𝑘𝐴 𝐵 = +∞ ↔ ∃𝑘𝐴 +∞ = 𝐵)
96, 8sylib 209 . . 3 (𝜑 → ∃𝑘𝐴 +∞ = 𝐵)
10 pnfex 10375 . . . 4 +∞ ∈ V
1110a1i 11 . . 3 (𝜑 → +∞ ∈ V)
124, 9, 11elrnmptd 39852 . 2 (𝜑 → +∞ ∈ ran (𝑘𝐴𝐵))
131, 5, 12sge0pnfval 41066 1 (𝜑 → (Σ^‘(𝑘𝐴𝐵)) = +∞)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1637  wnf 1863  wcel 2158  wrex 3096  Vcvv 3390  cmpt 4919  cfv 6098  (class class class)co 6871  0cc0 10218  +∞cpnf 10353  [,]cicc 12392  Σ^csumge0 41055
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1880  ax-4 1897  ax-5 2004  ax-6 2070  ax-7 2106  ax-8 2160  ax-9 2167  ax-10 2187  ax-11 2203  ax-12 2216  ax-13 2422  ax-ext 2784  ax-rep 4960  ax-sep 4971  ax-nul 4980  ax-pow 5032  ax-pr 5093  ax-un 7176  ax-cnex 10274  ax-resscn 10275  ax-1cn 10276  ax-icn 10277  ax-addcl 10278  ax-addrcl 10279  ax-mulcl 10280  ax-mulrcl 10281  ax-mulcom 10282  ax-addass 10283  ax-mulass 10284  ax-distr 10285  ax-i2m1 10286  ax-1ne0 10287  ax-1rid 10288  ax-rnegex 10289  ax-rrecex 10290  ax-cnre 10291  ax-pre-lttri 10292  ax-pre-lttrn 10293  ax-pre-ltadd 10294  ax-pre-mulgt0 10295
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 866  df-3or 1101  df-3an 1102  df-tru 1641  df-fal 1651  df-ex 1860  df-nf 1865  df-sb 2063  df-eu 2636  df-mo 2637  df-clab 2792  df-cleq 2798  df-clel 2801  df-nfc 2936  df-ne 2978  df-nel 3081  df-ral 3100  df-rex 3101  df-reu 3102  df-rmo 3103  df-rab 3104  df-v 3392  df-sbc 3631  df-csb 3726  df-dif 3769  df-un 3771  df-in 3773  df-ss 3780  df-pss 3782  df-nul 4114  df-if 4277  df-pw 4350  df-sn 4368  df-pr 4370  df-tp 4372  df-op 4374  df-uni 4627  df-iun 4710  df-br 4841  df-opab 4903  df-mpt 4920  df-tr 4943  df-id 5216  df-eprel 5221  df-po 5229  df-so 5230  df-fr 5267  df-we 5269  df-xp 5314  df-rel 5315  df-cnv 5316  df-co 5317  df-dm 5318  df-rn 5319  df-res 5320  df-ima 5321  df-pred 5890  df-ord 5936  df-on 5937  df-lim 5938  df-suc 5939  df-iota 6061  df-fun 6100  df-fn 6101  df-f 6102  df-f1 6103  df-fo 6104  df-f1o 6105  df-fv 6106  df-riota 6832  df-ov 6874  df-oprab 6875  df-mpt2 6876  df-om 7293  df-1st 7395  df-2nd 7396  df-wrecs 7639  df-recs 7701  df-rdg 7739  df-er 7976  df-en 8190  df-dom 8191  df-sdom 8192  df-sup 8584  df-pnf 10358  df-mnf 10359  df-xr 10360  df-ltxr 10361  df-le 10362  df-sub 10550  df-neg 10551  df-nn 11303  df-n0 11556  df-z 11640  df-uz 11901  df-fz 12546  df-seq 13021  df-sum 14636  df-sumge0 41056
This theorem is referenced by:  voliunsge0lem  41165
  Copyright terms: Public domain W3C validator