| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > sge0pnfmpt | Structured version Visualization version GIF version | ||
| Description: If a term in the sum of nonnegative extended reals is +∞, then the value of the sum is +∞. (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
| Ref | Expression |
|---|---|
| sge0pnfmpt.k | ⊢ Ⅎ𝑘𝜑 |
| sge0pnfmpt.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| sge0pnfmpt.b | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ (0[,]+∞)) |
| sge0pnfmpt.p | ⊢ (𝜑 → ∃𝑘 ∈ 𝐴 𝐵 = +∞) |
| Ref | Expression |
|---|---|
| sge0pnfmpt | ⊢ (𝜑 → (Σ^‘(𝑘 ∈ 𝐴 ↦ 𝐵)) = +∞) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sge0pnfmpt.a | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 2 | sge0pnfmpt.k | . . 3 ⊢ Ⅎ𝑘𝜑 | |
| 3 | sge0pnfmpt.b | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ (0[,]+∞)) | |
| 4 | eqid 2729 | . . 3 ⊢ (𝑘 ∈ 𝐴 ↦ 𝐵) = (𝑘 ∈ 𝐴 ↦ 𝐵) | |
| 5 | 2, 3, 4 | fmptdf 7089 | . 2 ⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ 𝐵):𝐴⟶(0[,]+∞)) |
| 6 | sge0pnfmpt.p | . . . 4 ⊢ (𝜑 → ∃𝑘 ∈ 𝐴 𝐵 = +∞) | |
| 7 | eqcom 2736 | . . . . 5 ⊢ (𝐵 = +∞ ↔ +∞ = 𝐵) | |
| 8 | 7 | rexbii 3076 | . . . 4 ⊢ (∃𝑘 ∈ 𝐴 𝐵 = +∞ ↔ ∃𝑘 ∈ 𝐴 +∞ = 𝐵) |
| 9 | 6, 8 | sylib 218 | . . 3 ⊢ (𝜑 → ∃𝑘 ∈ 𝐴 +∞ = 𝐵) |
| 10 | pnfex 11227 | . . . 4 ⊢ +∞ ∈ V | |
| 11 | 10 | a1i 11 | . . 3 ⊢ (𝜑 → +∞ ∈ V) |
| 12 | 4, 9, 11 | elrnmptd 5927 | . 2 ⊢ (𝜑 → +∞ ∈ ran (𝑘 ∈ 𝐴 ↦ 𝐵)) |
| 13 | 1, 5, 12 | sge0pnfval 46371 | 1 ⊢ (𝜑 → (Σ^‘(𝑘 ∈ 𝐴 ↦ 𝐵)) = +∞) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 Ⅎwnf 1783 ∈ wcel 2109 ∃wrex 3053 Vcvv 3447 ↦ cmpt 5188 ‘cfv 6511 (class class class)co 7387 0cc0 11068 +∞cpnf 11205 [,]cicc 13309 Σ^csumge0 46360 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-pre-lttri 11142 ax-pre-lttrn 11143 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-po 5546 df-so 5547 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-sup 9393 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-seq 13967 df-sum 15653 df-sumge0 46361 |
| This theorem is referenced by: voliunsge0lem 46470 |
| Copyright terms: Public domain | W3C validator |