| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > sge0pnfmpt | Structured version Visualization version GIF version | ||
| Description: If a term in the sum of nonnegative extended reals is +∞, then the value of the sum is +∞. (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
| Ref | Expression |
|---|---|
| sge0pnfmpt.k | ⊢ Ⅎ𝑘𝜑 |
| sge0pnfmpt.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| sge0pnfmpt.b | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ (0[,]+∞)) |
| sge0pnfmpt.p | ⊢ (𝜑 → ∃𝑘 ∈ 𝐴 𝐵 = +∞) |
| Ref | Expression |
|---|---|
| sge0pnfmpt | ⊢ (𝜑 → (Σ^‘(𝑘 ∈ 𝐴 ↦ 𝐵)) = +∞) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sge0pnfmpt.a | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 2 | sge0pnfmpt.k | . . 3 ⊢ Ⅎ𝑘𝜑 | |
| 3 | sge0pnfmpt.b | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ (0[,]+∞)) | |
| 4 | eqid 2736 | . . 3 ⊢ (𝑘 ∈ 𝐴 ↦ 𝐵) = (𝑘 ∈ 𝐴 ↦ 𝐵) | |
| 5 | 2, 3, 4 | fmptdf 7112 | . 2 ⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ 𝐵):𝐴⟶(0[,]+∞)) |
| 6 | sge0pnfmpt.p | . . . 4 ⊢ (𝜑 → ∃𝑘 ∈ 𝐴 𝐵 = +∞) | |
| 7 | eqcom 2743 | . . . . 5 ⊢ (𝐵 = +∞ ↔ +∞ = 𝐵) | |
| 8 | 7 | rexbii 3084 | . . . 4 ⊢ (∃𝑘 ∈ 𝐴 𝐵 = +∞ ↔ ∃𝑘 ∈ 𝐴 +∞ = 𝐵) |
| 9 | 6, 8 | sylib 218 | . . 3 ⊢ (𝜑 → ∃𝑘 ∈ 𝐴 +∞ = 𝐵) |
| 10 | pnfex 11293 | . . . 4 ⊢ +∞ ∈ V | |
| 11 | 10 | a1i 11 | . . 3 ⊢ (𝜑 → +∞ ∈ V) |
| 12 | 4, 9, 11 | elrnmptd 5948 | . 2 ⊢ (𝜑 → +∞ ∈ ran (𝑘 ∈ 𝐴 ↦ 𝐵)) |
| 13 | 1, 5, 12 | sge0pnfval 46369 | 1 ⊢ (𝜑 → (Σ^‘(𝑘 ∈ 𝐴 ↦ 𝐵)) = +∞) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 Ⅎwnf 1783 ∈ wcel 2109 ∃wrex 3061 Vcvv 3464 ↦ cmpt 5206 ‘cfv 6536 (class class class)co 7410 0cc0 11134 +∞cpnf 11271 [,]cicc 13370 Σ^csumge0 46358 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-cnex 11190 ax-resscn 11191 ax-pre-lttri 11208 ax-pre-lttrn 11209 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-po 5566 df-so 5567 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-ov 7413 df-oprab 7414 df-mpo 7415 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-er 8724 df-en 8965 df-dom 8966 df-sdom 8967 df-sup 9459 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-seq 14025 df-sum 15708 df-sumge0 46359 |
| This theorem is referenced by: voliunsge0lem 46468 |
| Copyright terms: Public domain | W3C validator |