|   | Mathbox for Thierry Arnoux | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > xrge0iifcv | Structured version Visualization version GIF version | ||
| Description: The defined function's value in the real. (Contributed by Thierry Arnoux, 1-Apr-2017.) | 
| Ref | Expression | 
|---|---|
| xrge0iifhmeo.1 | ⊢ 𝐹 = (𝑥 ∈ (0[,]1) ↦ if(𝑥 = 0, +∞, -(log‘𝑥))) | 
| Ref | Expression | 
|---|---|
| xrge0iifcv | ⊢ (𝑋 ∈ (0(,]1) → (𝐹‘𝑋) = -(log‘𝑋)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | iocssicc 13478 | . . . 4 ⊢ (0(,]1) ⊆ (0[,]1) | |
| 2 | 1 | sseli 3978 | . . 3 ⊢ (𝑋 ∈ (0(,]1) → 𝑋 ∈ (0[,]1)) | 
| 3 | eqeq1 2740 | . . . . 5 ⊢ (𝑥 = 𝑋 → (𝑥 = 0 ↔ 𝑋 = 0)) | |
| 4 | fveq2 6905 | . . . . . 6 ⊢ (𝑥 = 𝑋 → (log‘𝑥) = (log‘𝑋)) | |
| 5 | 4 | negeqd 11503 | . . . . 5 ⊢ (𝑥 = 𝑋 → -(log‘𝑥) = -(log‘𝑋)) | 
| 6 | 3, 5 | ifbieq2d 4551 | . . . 4 ⊢ (𝑥 = 𝑋 → if(𝑥 = 0, +∞, -(log‘𝑥)) = if(𝑋 = 0, +∞, -(log‘𝑋))) | 
| 7 | xrge0iifhmeo.1 | . . . 4 ⊢ 𝐹 = (𝑥 ∈ (0[,]1) ↦ if(𝑥 = 0, +∞, -(log‘𝑥))) | |
| 8 | pnfex 11315 | . . . . 5 ⊢ +∞ ∈ V | |
| 9 | negex 11507 | . . . . 5 ⊢ -(log‘𝑋) ∈ V | |
| 10 | 8, 9 | ifex 4575 | . . . 4 ⊢ if(𝑋 = 0, +∞, -(log‘𝑋)) ∈ V | 
| 11 | 6, 7, 10 | fvmpt 7015 | . . 3 ⊢ (𝑋 ∈ (0[,]1) → (𝐹‘𝑋) = if(𝑋 = 0, +∞, -(log‘𝑋))) | 
| 12 | 2, 11 | syl 17 | . 2 ⊢ (𝑋 ∈ (0(,]1) → (𝐹‘𝑋) = if(𝑋 = 0, +∞, -(log‘𝑋))) | 
| 13 | 0xr 11309 | . . . . . . 7 ⊢ 0 ∈ ℝ* | |
| 14 | 1re 11262 | . . . . . . 7 ⊢ 1 ∈ ℝ | |
| 15 | elioc2 13451 | . . . . . . 7 ⊢ ((0 ∈ ℝ* ∧ 1 ∈ ℝ) → (𝑋 ∈ (0(,]1) ↔ (𝑋 ∈ ℝ ∧ 0 < 𝑋 ∧ 𝑋 ≤ 1))) | |
| 16 | 13, 14, 15 | mp2an 692 | . . . . . 6 ⊢ (𝑋 ∈ (0(,]1) ↔ (𝑋 ∈ ℝ ∧ 0 < 𝑋 ∧ 𝑋 ≤ 1)) | 
| 17 | 16 | simp2bi 1146 | . . . . 5 ⊢ (𝑋 ∈ (0(,]1) → 0 < 𝑋) | 
| 18 | 17 | gt0ne0d 11828 | . . . 4 ⊢ (𝑋 ∈ (0(,]1) → 𝑋 ≠ 0) | 
| 19 | 18 | neneqd 2944 | . . 3 ⊢ (𝑋 ∈ (0(,]1) → ¬ 𝑋 = 0) | 
| 20 | 19 | iffalsed 4535 | . 2 ⊢ (𝑋 ∈ (0(,]1) → if(𝑋 = 0, +∞, -(log‘𝑋)) = -(log‘𝑋)) | 
| 21 | 12, 20 | eqtrd 2776 | 1 ⊢ (𝑋 ∈ (0(,]1) → (𝐹‘𝑋) = -(log‘𝑋)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ↔ wb 206 ∧ w3a 1086 = wceq 1539 ∈ wcel 2107 ifcif 4524 class class class wbr 5142 ↦ cmpt 5224 ‘cfv 6560 (class class class)co 7432 ℝcr 11155 0cc0 11156 1c1 11157 +∞cpnf 11293 ℝ*cxr 11295 < clt 11296 ≤ cle 11297 -cneg 11494 (,]cioc 13389 [,]cicc 13391 logclog 26597 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-sep 5295 ax-nul 5305 ax-pow 5364 ax-pr 5431 ax-un 7756 ax-cnex 11212 ax-resscn 11213 ax-1cn 11214 ax-icn 11215 ax-addcl 11216 ax-addrcl 11217 ax-mulcl 11218 ax-mulrcl 11219 ax-i2m1 11224 ax-1ne0 11225 ax-rnegex 11227 ax-rrecex 11228 ax-cnre 11229 ax-pre-lttri 11230 ax-pre-lttrn 11231 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-br 5143 df-opab 5205 df-mpt 5225 df-id 5577 df-po 5591 df-so 5592 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-f1 6565 df-fo 6566 df-f1o 6567 df-fv 6568 df-ov 7435 df-oprab 7436 df-mpo 7437 df-er 8746 df-en 8987 df-dom 8988 df-sdom 8989 df-pnf 11298 df-mnf 11299 df-xr 11300 df-ltxr 11301 df-le 11302 df-neg 11496 df-ioc 13393 df-icc 13395 | 
| This theorem is referenced by: xrge0iifiso 33935 xrge0iifhom 33937 | 
| Copyright terms: Public domain | W3C validator |