Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xrge0iifcv Structured version   Visualization version   GIF version

Theorem xrge0iifcv 31884
Description: The defined function's value in the real. (Contributed by Thierry Arnoux, 1-Apr-2017.)
Hypothesis
Ref Expression
xrge0iifhmeo.1 𝐹 = (𝑥 ∈ (0[,]1) ↦ if(𝑥 = 0, +∞, -(log‘𝑥)))
Assertion
Ref Expression
xrge0iifcv (𝑋 ∈ (0(,]1) → (𝐹𝑋) = -(log‘𝑋))
Distinct variable group:   𝑥,𝑋
Allowed substitution hint:   𝐹(𝑥)

Proof of Theorem xrge0iifcv
StepHypRef Expression
1 iocssicc 13169 . . . 4 (0(,]1) ⊆ (0[,]1)
21sseli 3917 . . 3 (𝑋 ∈ (0(,]1) → 𝑋 ∈ (0[,]1))
3 eqeq1 2742 . . . . 5 (𝑥 = 𝑋 → (𝑥 = 0 ↔ 𝑋 = 0))
4 fveq2 6774 . . . . . 6 (𝑥 = 𝑋 → (log‘𝑥) = (log‘𝑋))
54negeqd 11215 . . . . 5 (𝑥 = 𝑋 → -(log‘𝑥) = -(log‘𝑋))
63, 5ifbieq2d 4485 . . . 4 (𝑥 = 𝑋 → if(𝑥 = 0, +∞, -(log‘𝑥)) = if(𝑋 = 0, +∞, -(log‘𝑋)))
7 xrge0iifhmeo.1 . . . 4 𝐹 = (𝑥 ∈ (0[,]1) ↦ if(𝑥 = 0, +∞, -(log‘𝑥)))
8 pnfex 11028 . . . . 5 +∞ ∈ V
9 negex 11219 . . . . 5 -(log‘𝑋) ∈ V
108, 9ifex 4509 . . . 4 if(𝑋 = 0, +∞, -(log‘𝑋)) ∈ V
116, 7, 10fvmpt 6875 . . 3 (𝑋 ∈ (0[,]1) → (𝐹𝑋) = if(𝑋 = 0, +∞, -(log‘𝑋)))
122, 11syl 17 . 2 (𝑋 ∈ (0(,]1) → (𝐹𝑋) = if(𝑋 = 0, +∞, -(log‘𝑋)))
13 0xr 11022 . . . . . . 7 0 ∈ ℝ*
14 1re 10975 . . . . . . 7 1 ∈ ℝ
15 elioc2 13142 . . . . . . 7 ((0 ∈ ℝ* ∧ 1 ∈ ℝ) → (𝑋 ∈ (0(,]1) ↔ (𝑋 ∈ ℝ ∧ 0 < 𝑋𝑋 ≤ 1)))
1613, 14, 15mp2an 689 . . . . . 6 (𝑋 ∈ (0(,]1) ↔ (𝑋 ∈ ℝ ∧ 0 < 𝑋𝑋 ≤ 1))
1716simp2bi 1145 . . . . 5 (𝑋 ∈ (0(,]1) → 0 < 𝑋)
1817gt0ne0d 11539 . . . 4 (𝑋 ∈ (0(,]1) → 𝑋 ≠ 0)
1918neneqd 2948 . . 3 (𝑋 ∈ (0(,]1) → ¬ 𝑋 = 0)
2019iffalsed 4470 . 2 (𝑋 ∈ (0(,]1) → if(𝑋 = 0, +∞, -(log‘𝑋)) = -(log‘𝑋))
2112, 20eqtrd 2778 1 (𝑋 ∈ (0(,]1) → (𝐹𝑋) = -(log‘𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  w3a 1086   = wceq 1539  wcel 2106  ifcif 4459   class class class wbr 5074  cmpt 5157  cfv 6433  (class class class)co 7275  cr 10870  0cc0 10871  1c1 10872  +∞cpnf 11006  *cxr 11008   < clt 11009  cle 11010  -cneg 11206  (,]cioc 13080  [,]cicc 13082  logclog 25710
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-i2m1 10939  ax-1ne0 10940  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-po 5503  df-so 5504  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-neg 11208  df-ioc 13084  df-icc 13086
This theorem is referenced by:  xrge0iifiso  31885  xrge0iifhom  31887
  Copyright terms: Public domain W3C validator