| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > xrge0iifcv | Structured version Visualization version GIF version | ||
| Description: The defined function's value in the real. (Contributed by Thierry Arnoux, 1-Apr-2017.) |
| Ref | Expression |
|---|---|
| xrge0iifhmeo.1 | ⊢ 𝐹 = (𝑥 ∈ (0[,]1) ↦ if(𝑥 = 0, +∞, -(log‘𝑥))) |
| Ref | Expression |
|---|---|
| xrge0iifcv | ⊢ (𝑋 ∈ (0(,]1) → (𝐹‘𝑋) = -(log‘𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iocssicc 13344 | . . . 4 ⊢ (0(,]1) ⊆ (0[,]1) | |
| 2 | 1 | sseli 3926 | . . 3 ⊢ (𝑋 ∈ (0(,]1) → 𝑋 ∈ (0[,]1)) |
| 3 | eqeq1 2737 | . . . . 5 ⊢ (𝑥 = 𝑋 → (𝑥 = 0 ↔ 𝑋 = 0)) | |
| 4 | fveq2 6831 | . . . . . 6 ⊢ (𝑥 = 𝑋 → (log‘𝑥) = (log‘𝑋)) | |
| 5 | 4 | negeqd 11365 | . . . . 5 ⊢ (𝑥 = 𝑋 → -(log‘𝑥) = -(log‘𝑋)) |
| 6 | 3, 5 | ifbieq2d 4503 | . . . 4 ⊢ (𝑥 = 𝑋 → if(𝑥 = 0, +∞, -(log‘𝑥)) = if(𝑋 = 0, +∞, -(log‘𝑋))) |
| 7 | xrge0iifhmeo.1 | . . . 4 ⊢ 𝐹 = (𝑥 ∈ (0[,]1) ↦ if(𝑥 = 0, +∞, -(log‘𝑥))) | |
| 8 | pnfex 11176 | . . . . 5 ⊢ +∞ ∈ V | |
| 9 | negex 11369 | . . . . 5 ⊢ -(log‘𝑋) ∈ V | |
| 10 | 8, 9 | ifex 4527 | . . . 4 ⊢ if(𝑋 = 0, +∞, -(log‘𝑋)) ∈ V |
| 11 | 6, 7, 10 | fvmpt 6938 | . . 3 ⊢ (𝑋 ∈ (0[,]1) → (𝐹‘𝑋) = if(𝑋 = 0, +∞, -(log‘𝑋))) |
| 12 | 2, 11 | syl 17 | . 2 ⊢ (𝑋 ∈ (0(,]1) → (𝐹‘𝑋) = if(𝑋 = 0, +∞, -(log‘𝑋))) |
| 13 | 0xr 11170 | . . . . . . 7 ⊢ 0 ∈ ℝ* | |
| 14 | 1re 11123 | . . . . . . 7 ⊢ 1 ∈ ℝ | |
| 15 | elioc2 13316 | . . . . . . 7 ⊢ ((0 ∈ ℝ* ∧ 1 ∈ ℝ) → (𝑋 ∈ (0(,]1) ↔ (𝑋 ∈ ℝ ∧ 0 < 𝑋 ∧ 𝑋 ≤ 1))) | |
| 16 | 13, 14, 15 | mp2an 692 | . . . . . 6 ⊢ (𝑋 ∈ (0(,]1) ↔ (𝑋 ∈ ℝ ∧ 0 < 𝑋 ∧ 𝑋 ≤ 1)) |
| 17 | 16 | simp2bi 1146 | . . . . 5 ⊢ (𝑋 ∈ (0(,]1) → 0 < 𝑋) |
| 18 | 17 | gt0ne0d 11692 | . . . 4 ⊢ (𝑋 ∈ (0(,]1) → 𝑋 ≠ 0) |
| 19 | 18 | neneqd 2934 | . . 3 ⊢ (𝑋 ∈ (0(,]1) → ¬ 𝑋 = 0) |
| 20 | 19 | iffalsed 4487 | . 2 ⊢ (𝑋 ∈ (0(,]1) → if(𝑋 = 0, +∞, -(log‘𝑋)) = -(log‘𝑋)) |
| 21 | 12, 20 | eqtrd 2768 | 1 ⊢ (𝑋 ∈ (0(,]1) → (𝐹‘𝑋) = -(log‘𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ w3a 1086 = wceq 1541 ∈ wcel 2113 ifcif 4476 class class class wbr 5095 ↦ cmpt 5176 ‘cfv 6489 (class class class)co 7355 ℝcr 11016 0cc0 11017 1c1 11018 +∞cpnf 11154 ℝ*cxr 11156 < clt 11157 ≤ cle 11158 -cneg 11356 (,]cioc 13253 [,]cicc 13255 logclog 26510 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-cnex 11073 ax-resscn 11074 ax-1cn 11075 ax-icn 11076 ax-addcl 11077 ax-addrcl 11078 ax-mulcl 11079 ax-mulrcl 11080 ax-i2m1 11085 ax-1ne0 11086 ax-rnegex 11088 ax-rrecex 11089 ax-cnre 11090 ax-pre-lttri 11091 ax-pre-lttrn 11092 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-po 5529 df-so 5530 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-ov 7358 df-oprab 7359 df-mpo 7360 df-er 8631 df-en 8880 df-dom 8881 df-sdom 8882 df-pnf 11159 df-mnf 11160 df-xr 11161 df-ltxr 11162 df-le 11163 df-neg 11358 df-ioc 13257 df-icc 13259 |
| This theorem is referenced by: xrge0iifiso 34020 xrge0iifhom 34022 |
| Copyright terms: Public domain | W3C validator |