Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xrge0iifcv Structured version   Visualization version   GIF version

Theorem xrge0iifcv 33934
Description: The defined function's value in the real. (Contributed by Thierry Arnoux, 1-Apr-2017.)
Hypothesis
Ref Expression
xrge0iifhmeo.1 𝐹 = (𝑥 ∈ (0[,]1) ↦ if(𝑥 = 0, +∞, -(log‘𝑥)))
Assertion
Ref Expression
xrge0iifcv (𝑋 ∈ (0(,]1) → (𝐹𝑋) = -(log‘𝑋))
Distinct variable group:   𝑥,𝑋
Allowed substitution hint:   𝐹(𝑥)

Proof of Theorem xrge0iifcv
StepHypRef Expression
1 iocssicc 13478 . . . 4 (0(,]1) ⊆ (0[,]1)
21sseli 3978 . . 3 (𝑋 ∈ (0(,]1) → 𝑋 ∈ (0[,]1))
3 eqeq1 2740 . . . . 5 (𝑥 = 𝑋 → (𝑥 = 0 ↔ 𝑋 = 0))
4 fveq2 6905 . . . . . 6 (𝑥 = 𝑋 → (log‘𝑥) = (log‘𝑋))
54negeqd 11503 . . . . 5 (𝑥 = 𝑋 → -(log‘𝑥) = -(log‘𝑋))
63, 5ifbieq2d 4551 . . . 4 (𝑥 = 𝑋 → if(𝑥 = 0, +∞, -(log‘𝑥)) = if(𝑋 = 0, +∞, -(log‘𝑋)))
7 xrge0iifhmeo.1 . . . 4 𝐹 = (𝑥 ∈ (0[,]1) ↦ if(𝑥 = 0, +∞, -(log‘𝑥)))
8 pnfex 11315 . . . . 5 +∞ ∈ V
9 negex 11507 . . . . 5 -(log‘𝑋) ∈ V
108, 9ifex 4575 . . . 4 if(𝑋 = 0, +∞, -(log‘𝑋)) ∈ V
116, 7, 10fvmpt 7015 . . 3 (𝑋 ∈ (0[,]1) → (𝐹𝑋) = if(𝑋 = 0, +∞, -(log‘𝑋)))
122, 11syl 17 . 2 (𝑋 ∈ (0(,]1) → (𝐹𝑋) = if(𝑋 = 0, +∞, -(log‘𝑋)))
13 0xr 11309 . . . . . . 7 0 ∈ ℝ*
14 1re 11262 . . . . . . 7 1 ∈ ℝ
15 elioc2 13451 . . . . . . 7 ((0 ∈ ℝ* ∧ 1 ∈ ℝ) → (𝑋 ∈ (0(,]1) ↔ (𝑋 ∈ ℝ ∧ 0 < 𝑋𝑋 ≤ 1)))
1613, 14, 15mp2an 692 . . . . . 6 (𝑋 ∈ (0(,]1) ↔ (𝑋 ∈ ℝ ∧ 0 < 𝑋𝑋 ≤ 1))
1716simp2bi 1146 . . . . 5 (𝑋 ∈ (0(,]1) → 0 < 𝑋)
1817gt0ne0d 11828 . . . 4 (𝑋 ∈ (0(,]1) → 𝑋 ≠ 0)
1918neneqd 2944 . . 3 (𝑋 ∈ (0(,]1) → ¬ 𝑋 = 0)
2019iffalsed 4535 . 2 (𝑋 ∈ (0(,]1) → if(𝑋 = 0, +∞, -(log‘𝑋)) = -(log‘𝑋))
2112, 20eqtrd 2776 1 (𝑋 ∈ (0(,]1) → (𝐹𝑋) = -(log‘𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  w3a 1086   = wceq 1539  wcel 2107  ifcif 4524   class class class wbr 5142  cmpt 5224  cfv 6560  (class class class)co 7432  cr 11155  0cc0 11156  1c1 11157  +∞cpnf 11293  *cxr 11295   < clt 11296  cle 11297  -cneg 11494  (,]cioc 13389  [,]cicc 13391  logclog 26597
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756  ax-cnex 11212  ax-resscn 11213  ax-1cn 11214  ax-icn 11215  ax-addcl 11216  ax-addrcl 11217  ax-mulcl 11218  ax-mulrcl 11219  ax-i2m1 11224  ax-1ne0 11225  ax-rnegex 11227  ax-rrecex 11228  ax-cnre 11229  ax-pre-lttri 11230  ax-pre-lttrn 11231
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-br 5143  df-opab 5205  df-mpt 5225  df-id 5577  df-po 5591  df-so 5592  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-ov 7435  df-oprab 7436  df-mpo 7437  df-er 8746  df-en 8987  df-dom 8988  df-sdom 8989  df-pnf 11298  df-mnf 11299  df-xr 11300  df-ltxr 11301  df-le 11302  df-neg 11496  df-ioc 13393  df-icc 13395
This theorem is referenced by:  xrge0iifiso  33935  xrge0iifhom  33937
  Copyright terms: Public domain W3C validator