| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > xrge0iifcv | Structured version Visualization version GIF version | ||
| Description: The defined function's value in the real. (Contributed by Thierry Arnoux, 1-Apr-2017.) |
| Ref | Expression |
|---|---|
| xrge0iifhmeo.1 | ⊢ 𝐹 = (𝑥 ∈ (0[,]1) ↦ if(𝑥 = 0, +∞, -(log‘𝑥))) |
| Ref | Expression |
|---|---|
| xrge0iifcv | ⊢ (𝑋 ∈ (0(,]1) → (𝐹‘𝑋) = -(log‘𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iocssicc 13374 | . . . 4 ⊢ (0(,]1) ⊆ (0[,]1) | |
| 2 | 1 | sseli 3939 | . . 3 ⊢ (𝑋 ∈ (0(,]1) → 𝑋 ∈ (0[,]1)) |
| 3 | eqeq1 2733 | . . . . 5 ⊢ (𝑥 = 𝑋 → (𝑥 = 0 ↔ 𝑋 = 0)) | |
| 4 | fveq2 6840 | . . . . . 6 ⊢ (𝑥 = 𝑋 → (log‘𝑥) = (log‘𝑋)) | |
| 5 | 4 | negeqd 11391 | . . . . 5 ⊢ (𝑥 = 𝑋 → -(log‘𝑥) = -(log‘𝑋)) |
| 6 | 3, 5 | ifbieq2d 4511 | . . . 4 ⊢ (𝑥 = 𝑋 → if(𝑥 = 0, +∞, -(log‘𝑥)) = if(𝑋 = 0, +∞, -(log‘𝑋))) |
| 7 | xrge0iifhmeo.1 | . . . 4 ⊢ 𝐹 = (𝑥 ∈ (0[,]1) ↦ if(𝑥 = 0, +∞, -(log‘𝑥))) | |
| 8 | pnfex 11203 | . . . . 5 ⊢ +∞ ∈ V | |
| 9 | negex 11395 | . . . . 5 ⊢ -(log‘𝑋) ∈ V | |
| 10 | 8, 9 | ifex 4535 | . . . 4 ⊢ if(𝑋 = 0, +∞, -(log‘𝑋)) ∈ V |
| 11 | 6, 7, 10 | fvmpt 6950 | . . 3 ⊢ (𝑋 ∈ (0[,]1) → (𝐹‘𝑋) = if(𝑋 = 0, +∞, -(log‘𝑋))) |
| 12 | 2, 11 | syl 17 | . 2 ⊢ (𝑋 ∈ (0(,]1) → (𝐹‘𝑋) = if(𝑋 = 0, +∞, -(log‘𝑋))) |
| 13 | 0xr 11197 | . . . . . . 7 ⊢ 0 ∈ ℝ* | |
| 14 | 1re 11150 | . . . . . . 7 ⊢ 1 ∈ ℝ | |
| 15 | elioc2 13346 | . . . . . . 7 ⊢ ((0 ∈ ℝ* ∧ 1 ∈ ℝ) → (𝑋 ∈ (0(,]1) ↔ (𝑋 ∈ ℝ ∧ 0 < 𝑋 ∧ 𝑋 ≤ 1))) | |
| 16 | 13, 14, 15 | mp2an 692 | . . . . . 6 ⊢ (𝑋 ∈ (0(,]1) ↔ (𝑋 ∈ ℝ ∧ 0 < 𝑋 ∧ 𝑋 ≤ 1)) |
| 17 | 16 | simp2bi 1146 | . . . . 5 ⊢ (𝑋 ∈ (0(,]1) → 0 < 𝑋) |
| 18 | 17 | gt0ne0d 11718 | . . . 4 ⊢ (𝑋 ∈ (0(,]1) → 𝑋 ≠ 0) |
| 19 | 18 | neneqd 2930 | . . 3 ⊢ (𝑋 ∈ (0(,]1) → ¬ 𝑋 = 0) |
| 20 | 19 | iffalsed 4495 | . 2 ⊢ (𝑋 ∈ (0(,]1) → if(𝑋 = 0, +∞, -(log‘𝑋)) = -(log‘𝑋)) |
| 21 | 12, 20 | eqtrd 2764 | 1 ⊢ (𝑋 ∈ (0(,]1) → (𝐹‘𝑋) = -(log‘𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ifcif 4484 class class class wbr 5102 ↦ cmpt 5183 ‘cfv 6499 (class class class)co 7369 ℝcr 11043 0cc0 11044 1c1 11045 +∞cpnf 11181 ℝ*cxr 11183 < clt 11184 ≤ cle 11185 -cneg 11382 (,]cioc 13283 [,]cicc 13285 logclog 26439 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-i2m1 11112 ax-1ne0 11113 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-po 5539 df-so 5540 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-ov 7372 df-oprab 7373 df-mpo 7374 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-neg 11384 df-ioc 13287 df-icc 13289 |
| This theorem is referenced by: xrge0iifiso 33898 xrge0iifhom 33900 |
| Copyright terms: Public domain | W3C validator |