Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xrge0iifcv Structured version   Visualization version   GIF version

Theorem xrge0iifcv 31419
Description: The defined function's value in the real. (Contributed by Thierry Arnoux, 1-Apr-2017.)
Hypothesis
Ref Expression
xrge0iifhmeo.1 𝐹 = (𝑥 ∈ (0[,]1) ↦ if(𝑥 = 0, +∞, -(log‘𝑥)))
Assertion
Ref Expression
xrge0iifcv (𝑋 ∈ (0(,]1) → (𝐹𝑋) = -(log‘𝑋))
Distinct variable group:   𝑥,𝑋
Allowed substitution hint:   𝐹(𝑥)

Proof of Theorem xrge0iifcv
StepHypRef Expression
1 iocssicc 12883 . . . 4 (0(,]1) ⊆ (0[,]1)
21sseli 3891 . . 3 (𝑋 ∈ (0(,]1) → 𝑋 ∈ (0[,]1))
3 eqeq1 2763 . . . . 5 (𝑥 = 𝑋 → (𝑥 = 0 ↔ 𝑋 = 0))
4 fveq2 6664 . . . . . 6 (𝑥 = 𝑋 → (log‘𝑥) = (log‘𝑋))
54negeqd 10932 . . . . 5 (𝑥 = 𝑋 → -(log‘𝑥) = -(log‘𝑋))
63, 5ifbieq2d 4450 . . . 4 (𝑥 = 𝑋 → if(𝑥 = 0, +∞, -(log‘𝑥)) = if(𝑋 = 0, +∞, -(log‘𝑋)))
7 xrge0iifhmeo.1 . . . 4 𝐹 = (𝑥 ∈ (0[,]1) ↦ if(𝑥 = 0, +∞, -(log‘𝑥)))
8 pnfex 10746 . . . . 5 +∞ ∈ V
9 negex 10936 . . . . 5 -(log‘𝑋) ∈ V
108, 9ifex 4474 . . . 4 if(𝑋 = 0, +∞, -(log‘𝑋)) ∈ V
116, 7, 10fvmpt 6765 . . 3 (𝑋 ∈ (0[,]1) → (𝐹𝑋) = if(𝑋 = 0, +∞, -(log‘𝑋)))
122, 11syl 17 . 2 (𝑋 ∈ (0(,]1) → (𝐹𝑋) = if(𝑋 = 0, +∞, -(log‘𝑋)))
13 0xr 10740 . . . . . . 7 0 ∈ ℝ*
14 1re 10693 . . . . . . 7 1 ∈ ℝ
15 elioc2 12856 . . . . . . 7 ((0 ∈ ℝ* ∧ 1 ∈ ℝ) → (𝑋 ∈ (0(,]1) ↔ (𝑋 ∈ ℝ ∧ 0 < 𝑋𝑋 ≤ 1)))
1613, 14, 15mp2an 691 . . . . . 6 (𝑋 ∈ (0(,]1) ↔ (𝑋 ∈ ℝ ∧ 0 < 𝑋𝑋 ≤ 1))
1716simp2bi 1144 . . . . 5 (𝑋 ∈ (0(,]1) → 0 < 𝑋)
1817gt0ne0d 11256 . . . 4 (𝑋 ∈ (0(,]1) → 𝑋 ≠ 0)
1918neneqd 2957 . . 3 (𝑋 ∈ (0(,]1) → ¬ 𝑋 = 0)
2019iffalsed 4435 . 2 (𝑋 ∈ (0(,]1) → if(𝑋 = 0, +∞, -(log‘𝑋)) = -(log‘𝑋))
2112, 20eqtrd 2794 1 (𝑋 ∈ (0(,]1) → (𝐹𝑋) = -(log‘𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  w3a 1085   = wceq 1539  wcel 2112  ifcif 4424   class class class wbr 5037  cmpt 5117  cfv 6341  (class class class)co 7157  cr 10588  0cc0 10589  1c1 10590  +∞cpnf 10724  *cxr 10726   < clt 10727  cle 10728  -cneg 10923  (,]cioc 12794  [,]cicc 12796  logclog 25260
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2730  ax-sep 5174  ax-nul 5181  ax-pow 5239  ax-pr 5303  ax-un 7466  ax-cnex 10645  ax-resscn 10646  ax-1cn 10647  ax-icn 10648  ax-addcl 10649  ax-addrcl 10650  ax-mulcl 10651  ax-mulrcl 10652  ax-i2m1 10657  ax-1ne0 10658  ax-rnegex 10660  ax-rrecex 10661  ax-cnre 10662  ax-pre-lttri 10663  ax-pre-lttrn 10664
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2071  df-mo 2558  df-eu 2589  df-clab 2737  df-cleq 2751  df-clel 2831  df-nfc 2902  df-ne 2953  df-nel 3057  df-ral 3076  df-rex 3077  df-rab 3080  df-v 3412  df-sbc 3700  df-csb 3809  df-dif 3864  df-un 3866  df-in 3868  df-ss 3878  df-nul 4229  df-if 4425  df-pw 4500  df-sn 4527  df-pr 4529  df-op 4533  df-uni 4803  df-br 5038  df-opab 5100  df-mpt 5118  df-id 5435  df-po 5448  df-so 5449  df-xp 5535  df-rel 5536  df-cnv 5537  df-co 5538  df-dm 5539  df-rn 5540  df-res 5541  df-ima 5542  df-iota 6300  df-fun 6343  df-fn 6344  df-f 6345  df-f1 6346  df-fo 6347  df-f1o 6348  df-fv 6349  df-ov 7160  df-oprab 7161  df-mpo 7162  df-er 8306  df-en 8542  df-dom 8543  df-sdom 8544  df-pnf 10729  df-mnf 10730  df-xr 10731  df-ltxr 10732  df-le 10733  df-neg 10925  df-ioc 12798  df-icc 12800
This theorem is referenced by:  xrge0iifiso  31420  xrge0iifhom  31422
  Copyright terms: Public domain W3C validator