Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > xrge0iifcv | Structured version Visualization version GIF version |
Description: The defined function's value in the real. (Contributed by Thierry Arnoux, 1-Apr-2017.) |
Ref | Expression |
---|---|
xrge0iifhmeo.1 | ⊢ 𝐹 = (𝑥 ∈ (0[,]1) ↦ if(𝑥 = 0, +∞, -(log‘𝑥))) |
Ref | Expression |
---|---|
xrge0iifcv | ⊢ (𝑋 ∈ (0(,]1) → (𝐹‘𝑋) = -(log‘𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iocssicc 13169 | . . . 4 ⊢ (0(,]1) ⊆ (0[,]1) | |
2 | 1 | sseli 3917 | . . 3 ⊢ (𝑋 ∈ (0(,]1) → 𝑋 ∈ (0[,]1)) |
3 | eqeq1 2742 | . . . . 5 ⊢ (𝑥 = 𝑋 → (𝑥 = 0 ↔ 𝑋 = 0)) | |
4 | fveq2 6774 | . . . . . 6 ⊢ (𝑥 = 𝑋 → (log‘𝑥) = (log‘𝑋)) | |
5 | 4 | negeqd 11215 | . . . . 5 ⊢ (𝑥 = 𝑋 → -(log‘𝑥) = -(log‘𝑋)) |
6 | 3, 5 | ifbieq2d 4485 | . . . 4 ⊢ (𝑥 = 𝑋 → if(𝑥 = 0, +∞, -(log‘𝑥)) = if(𝑋 = 0, +∞, -(log‘𝑋))) |
7 | xrge0iifhmeo.1 | . . . 4 ⊢ 𝐹 = (𝑥 ∈ (0[,]1) ↦ if(𝑥 = 0, +∞, -(log‘𝑥))) | |
8 | pnfex 11028 | . . . . 5 ⊢ +∞ ∈ V | |
9 | negex 11219 | . . . . 5 ⊢ -(log‘𝑋) ∈ V | |
10 | 8, 9 | ifex 4509 | . . . 4 ⊢ if(𝑋 = 0, +∞, -(log‘𝑋)) ∈ V |
11 | 6, 7, 10 | fvmpt 6875 | . . 3 ⊢ (𝑋 ∈ (0[,]1) → (𝐹‘𝑋) = if(𝑋 = 0, +∞, -(log‘𝑋))) |
12 | 2, 11 | syl 17 | . 2 ⊢ (𝑋 ∈ (0(,]1) → (𝐹‘𝑋) = if(𝑋 = 0, +∞, -(log‘𝑋))) |
13 | 0xr 11022 | . . . . . . 7 ⊢ 0 ∈ ℝ* | |
14 | 1re 10975 | . . . . . . 7 ⊢ 1 ∈ ℝ | |
15 | elioc2 13142 | . . . . . . 7 ⊢ ((0 ∈ ℝ* ∧ 1 ∈ ℝ) → (𝑋 ∈ (0(,]1) ↔ (𝑋 ∈ ℝ ∧ 0 < 𝑋 ∧ 𝑋 ≤ 1))) | |
16 | 13, 14, 15 | mp2an 689 | . . . . . 6 ⊢ (𝑋 ∈ (0(,]1) ↔ (𝑋 ∈ ℝ ∧ 0 < 𝑋 ∧ 𝑋 ≤ 1)) |
17 | 16 | simp2bi 1145 | . . . . 5 ⊢ (𝑋 ∈ (0(,]1) → 0 < 𝑋) |
18 | 17 | gt0ne0d 11539 | . . . 4 ⊢ (𝑋 ∈ (0(,]1) → 𝑋 ≠ 0) |
19 | 18 | neneqd 2948 | . . 3 ⊢ (𝑋 ∈ (0(,]1) → ¬ 𝑋 = 0) |
20 | 19 | iffalsed 4470 | . 2 ⊢ (𝑋 ∈ (0(,]1) → if(𝑋 = 0, +∞, -(log‘𝑋)) = -(log‘𝑋)) |
21 | 12, 20 | eqtrd 2778 | 1 ⊢ (𝑋 ∈ (0(,]1) → (𝐹‘𝑋) = -(log‘𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ w3a 1086 = wceq 1539 ∈ wcel 2106 ifcif 4459 class class class wbr 5074 ↦ cmpt 5157 ‘cfv 6433 (class class class)co 7275 ℝcr 10870 0cc0 10871 1c1 10872 +∞cpnf 11006 ℝ*cxr 11008 < clt 11009 ≤ cle 11010 -cneg 11206 (,]cioc 13080 [,]cicc 13082 logclog 25710 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-i2m1 10939 ax-1ne0 10940 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-po 5503 df-so 5504 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-ov 7278 df-oprab 7279 df-mpo 7280 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-neg 11208 df-ioc 13084 df-icc 13086 |
This theorem is referenced by: xrge0iifiso 31885 xrge0iifhom 31887 |
Copyright terms: Public domain | W3C validator |