Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xrge0iifcv Structured version   Visualization version   GIF version

Theorem xrge0iifcv 33444
Description: The defined function's value in the real. (Contributed by Thierry Arnoux, 1-Apr-2017.)
Hypothesis
Ref Expression
xrge0iifhmeo.1 𝐹 = (𝑥 ∈ (0[,]1) ↦ if(𝑥 = 0, +∞, -(log‘𝑥)))
Assertion
Ref Expression
xrge0iifcv (𝑋 ∈ (0(,]1) → (𝐹𝑋) = -(log‘𝑋))
Distinct variable group:   𝑥,𝑋
Allowed substitution hint:   𝐹(𝑥)

Proof of Theorem xrge0iifcv
StepHypRef Expression
1 iocssicc 13420 . . . 4 (0(,]1) ⊆ (0[,]1)
21sseli 3973 . . 3 (𝑋 ∈ (0(,]1) → 𝑋 ∈ (0[,]1))
3 eqeq1 2730 . . . . 5 (𝑥 = 𝑋 → (𝑥 = 0 ↔ 𝑋 = 0))
4 fveq2 6885 . . . . . 6 (𝑥 = 𝑋 → (log‘𝑥) = (log‘𝑋))
54negeqd 11458 . . . . 5 (𝑥 = 𝑋 → -(log‘𝑥) = -(log‘𝑋))
63, 5ifbieq2d 4549 . . . 4 (𝑥 = 𝑋 → if(𝑥 = 0, +∞, -(log‘𝑥)) = if(𝑋 = 0, +∞, -(log‘𝑋)))
7 xrge0iifhmeo.1 . . . 4 𝐹 = (𝑥 ∈ (0[,]1) ↦ if(𝑥 = 0, +∞, -(log‘𝑥)))
8 pnfex 11271 . . . . 5 +∞ ∈ V
9 negex 11462 . . . . 5 -(log‘𝑋) ∈ V
108, 9ifex 4573 . . . 4 if(𝑋 = 0, +∞, -(log‘𝑋)) ∈ V
116, 7, 10fvmpt 6992 . . 3 (𝑋 ∈ (0[,]1) → (𝐹𝑋) = if(𝑋 = 0, +∞, -(log‘𝑋)))
122, 11syl 17 . 2 (𝑋 ∈ (0(,]1) → (𝐹𝑋) = if(𝑋 = 0, +∞, -(log‘𝑋)))
13 0xr 11265 . . . . . . 7 0 ∈ ℝ*
14 1re 11218 . . . . . . 7 1 ∈ ℝ
15 elioc2 13393 . . . . . . 7 ((0 ∈ ℝ* ∧ 1 ∈ ℝ) → (𝑋 ∈ (0(,]1) ↔ (𝑋 ∈ ℝ ∧ 0 < 𝑋𝑋 ≤ 1)))
1613, 14, 15mp2an 689 . . . . . 6 (𝑋 ∈ (0(,]1) ↔ (𝑋 ∈ ℝ ∧ 0 < 𝑋𝑋 ≤ 1))
1716simp2bi 1143 . . . . 5 (𝑋 ∈ (0(,]1) → 0 < 𝑋)
1817gt0ne0d 11782 . . . 4 (𝑋 ∈ (0(,]1) → 𝑋 ≠ 0)
1918neneqd 2939 . . 3 (𝑋 ∈ (0(,]1) → ¬ 𝑋 = 0)
2019iffalsed 4534 . 2 (𝑋 ∈ (0(,]1) → if(𝑋 = 0, +∞, -(log‘𝑋)) = -(log‘𝑋))
2112, 20eqtrd 2766 1 (𝑋 ∈ (0(,]1) → (𝐹𝑋) = -(log‘𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  w3a 1084   = wceq 1533  wcel 2098  ifcif 4523   class class class wbr 5141  cmpt 5224  cfv 6537  (class class class)co 7405  cr 11111  0cc0 11112  1c1 11113  +∞cpnf 11249  *cxr 11251   < clt 11252  cle 11253  -cneg 11449  (,]cioc 13331  [,]cicc 13333  logclog 26443
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7722  ax-cnex 11168  ax-resscn 11169  ax-1cn 11170  ax-icn 11171  ax-addcl 11172  ax-addrcl 11173  ax-mulcl 11174  ax-mulrcl 11175  ax-i2m1 11180  ax-1ne0 11181  ax-rnegex 11183  ax-rrecex 11184  ax-cnre 11185  ax-pre-lttri 11186  ax-pre-lttrn 11187
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-nel 3041  df-ral 3056  df-rex 3065  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-br 5142  df-opab 5204  df-mpt 5225  df-id 5567  df-po 5581  df-so 5582  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-iota 6489  df-fun 6539  df-fn 6540  df-f 6541  df-f1 6542  df-fo 6543  df-f1o 6544  df-fv 6545  df-ov 7408  df-oprab 7409  df-mpo 7410  df-er 8705  df-en 8942  df-dom 8943  df-sdom 8944  df-pnf 11254  df-mnf 11255  df-xr 11256  df-ltxr 11257  df-le 11258  df-neg 11451  df-ioc 13335  df-icc 13337
This theorem is referenced by:  xrge0iifiso  33445  xrge0iifhom  33447
  Copyright terms: Public domain W3C validator