| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > xrge0iifcv | Structured version Visualization version GIF version | ||
| Description: The defined function's value in the real. (Contributed by Thierry Arnoux, 1-Apr-2017.) |
| Ref | Expression |
|---|---|
| xrge0iifhmeo.1 | ⊢ 𝐹 = (𝑥 ∈ (0[,]1) ↦ if(𝑥 = 0, +∞, -(log‘𝑥))) |
| Ref | Expression |
|---|---|
| xrge0iifcv | ⊢ (𝑋 ∈ (0(,]1) → (𝐹‘𝑋) = -(log‘𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iocssicc 13452 | . . . 4 ⊢ (0(,]1) ⊆ (0[,]1) | |
| 2 | 1 | sseli 3954 | . . 3 ⊢ (𝑋 ∈ (0(,]1) → 𝑋 ∈ (0[,]1)) |
| 3 | eqeq1 2739 | . . . . 5 ⊢ (𝑥 = 𝑋 → (𝑥 = 0 ↔ 𝑋 = 0)) | |
| 4 | fveq2 6875 | . . . . . 6 ⊢ (𝑥 = 𝑋 → (log‘𝑥) = (log‘𝑋)) | |
| 5 | 4 | negeqd 11474 | . . . . 5 ⊢ (𝑥 = 𝑋 → -(log‘𝑥) = -(log‘𝑋)) |
| 6 | 3, 5 | ifbieq2d 4527 | . . . 4 ⊢ (𝑥 = 𝑋 → if(𝑥 = 0, +∞, -(log‘𝑥)) = if(𝑋 = 0, +∞, -(log‘𝑋))) |
| 7 | xrge0iifhmeo.1 | . . . 4 ⊢ 𝐹 = (𝑥 ∈ (0[,]1) ↦ if(𝑥 = 0, +∞, -(log‘𝑥))) | |
| 8 | pnfex 11286 | . . . . 5 ⊢ +∞ ∈ V | |
| 9 | negex 11478 | . . . . 5 ⊢ -(log‘𝑋) ∈ V | |
| 10 | 8, 9 | ifex 4551 | . . . 4 ⊢ if(𝑋 = 0, +∞, -(log‘𝑋)) ∈ V |
| 11 | 6, 7, 10 | fvmpt 6985 | . . 3 ⊢ (𝑋 ∈ (0[,]1) → (𝐹‘𝑋) = if(𝑋 = 0, +∞, -(log‘𝑋))) |
| 12 | 2, 11 | syl 17 | . 2 ⊢ (𝑋 ∈ (0(,]1) → (𝐹‘𝑋) = if(𝑋 = 0, +∞, -(log‘𝑋))) |
| 13 | 0xr 11280 | . . . . . . 7 ⊢ 0 ∈ ℝ* | |
| 14 | 1re 11233 | . . . . . . 7 ⊢ 1 ∈ ℝ | |
| 15 | elioc2 13424 | . . . . . . 7 ⊢ ((0 ∈ ℝ* ∧ 1 ∈ ℝ) → (𝑋 ∈ (0(,]1) ↔ (𝑋 ∈ ℝ ∧ 0 < 𝑋 ∧ 𝑋 ≤ 1))) | |
| 16 | 13, 14, 15 | mp2an 692 | . . . . . 6 ⊢ (𝑋 ∈ (0(,]1) ↔ (𝑋 ∈ ℝ ∧ 0 < 𝑋 ∧ 𝑋 ≤ 1)) |
| 17 | 16 | simp2bi 1146 | . . . . 5 ⊢ (𝑋 ∈ (0(,]1) → 0 < 𝑋) |
| 18 | 17 | gt0ne0d 11799 | . . . 4 ⊢ (𝑋 ∈ (0(,]1) → 𝑋 ≠ 0) |
| 19 | 18 | neneqd 2937 | . . 3 ⊢ (𝑋 ∈ (0(,]1) → ¬ 𝑋 = 0) |
| 20 | 19 | iffalsed 4511 | . 2 ⊢ (𝑋 ∈ (0(,]1) → if(𝑋 = 0, +∞, -(log‘𝑋)) = -(log‘𝑋)) |
| 21 | 12, 20 | eqtrd 2770 | 1 ⊢ (𝑋 ∈ (0(,]1) → (𝐹‘𝑋) = -(log‘𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ w3a 1086 = wceq 1540 ∈ wcel 2108 ifcif 4500 class class class wbr 5119 ↦ cmpt 5201 ‘cfv 6530 (class class class)co 7403 ℝcr 11126 0cc0 11127 1c1 11128 +∞cpnf 11264 ℝ*cxr 11266 < clt 11267 ≤ cle 11268 -cneg 11465 (,]cioc 13361 [,]cicc 13363 logclog 26513 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7727 ax-cnex 11183 ax-resscn 11184 ax-1cn 11185 ax-icn 11186 ax-addcl 11187 ax-addrcl 11188 ax-mulcl 11189 ax-mulrcl 11190 ax-i2m1 11195 ax-1ne0 11196 ax-rnegex 11198 ax-rrecex 11199 ax-cnre 11200 ax-pre-lttri 11201 ax-pre-lttrn 11202 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-po 5561 df-so 5562 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6483 df-fun 6532 df-fn 6533 df-f 6534 df-f1 6535 df-fo 6536 df-f1o 6537 df-fv 6538 df-ov 7406 df-oprab 7407 df-mpo 7408 df-er 8717 df-en 8958 df-dom 8959 df-sdom 8960 df-pnf 11269 df-mnf 11270 df-xr 11271 df-ltxr 11272 df-le 11273 df-neg 11467 df-ioc 13365 df-icc 13367 |
| This theorem is referenced by: xrge0iifiso 33912 xrge0iifhom 33914 |
| Copyright terms: Public domain | W3C validator |