| Step | Hyp | Ref
| Expression |
| 1 | | simpl 482 |
. . . 4
⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → 𝑥 = 𝐴) |
| 2 | 1 | eqeq1d 2738 |
. . 3
⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝑥 = +∞ ↔ 𝐴 = +∞)) |
| 3 | | simpr 484 |
. . . . 5
⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → 𝑦 = 𝐵) |
| 4 | 3 | eqeq1d 2738 |
. . . 4
⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝑦 = -∞ ↔ 𝐵 = -∞)) |
| 5 | 4 | ifbid 4548 |
. . 3
⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → if(𝑦 = -∞, 0, +∞) = if(𝐵 = -∞, 0,
+∞)) |
| 6 | 1 | eqeq1d 2738 |
. . . 4
⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝑥 = -∞ ↔ 𝐴 = -∞)) |
| 7 | 3 | eqeq1d 2738 |
. . . . 5
⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝑦 = +∞ ↔ 𝐵 = +∞)) |
| 8 | 7 | ifbid 4548 |
. . . 4
⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → if(𝑦 = +∞, 0, -∞) = if(𝐵 = +∞, 0,
-∞)) |
| 9 | | oveq12 7441 |
. . . . . 6
⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝑥 + 𝑦) = (𝐴 + 𝐵)) |
| 10 | 4, 9 | ifbieq2d 4551 |
. . . . 5
⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → if(𝑦 = -∞, -∞, (𝑥 + 𝑦)) = if(𝐵 = -∞, -∞, (𝐴 + 𝐵))) |
| 11 | 7, 10 | ifbieq2d 4551 |
. . . 4
⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → if(𝑦 = +∞, +∞, if(𝑦 = -∞, -∞, (𝑥 + 𝑦))) = if(𝐵 = +∞, +∞, if(𝐵 = -∞, -∞, (𝐴 + 𝐵)))) |
| 12 | 6, 8, 11 | ifbieq12d 4553 |
. . 3
⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → if(𝑥 = -∞, if(𝑦 = +∞, 0, -∞), if(𝑦 = +∞, +∞, if(𝑦 = -∞, -∞, (𝑥 + 𝑦)))) = if(𝐴 = -∞, if(𝐵 = +∞, 0, -∞), if(𝐵 = +∞, +∞, if(𝐵 = -∞, -∞, (𝐴 + 𝐵))))) |
| 13 | 2, 5, 12 | ifbieq12d 4553 |
. 2
⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → if(𝑥 = +∞, if(𝑦 = -∞, 0, +∞), if(𝑥 = -∞, if(𝑦 = +∞, 0, -∞),
if(𝑦 = +∞, +∞,
if(𝑦 = -∞, -∞,
(𝑥 + 𝑦))))) = if(𝐴 = +∞, if(𝐵 = -∞, 0, +∞), if(𝐴 = -∞, if(𝐵 = +∞, 0, -∞),
if(𝐵 = +∞, +∞,
if(𝐵 = -∞, -∞,
(𝐴 + 𝐵)))))) |
| 14 | | df-xadd 13156 |
. 2
⊢
+𝑒 = (𝑥
∈ ℝ*, 𝑦 ∈ ℝ* ↦ if(𝑥 = +∞, if(𝑦 = -∞, 0, +∞),
if(𝑥 = -∞, if(𝑦 = +∞, 0, -∞),
if(𝑦 = +∞, +∞,
if(𝑦 = -∞, -∞,
(𝑥 + 𝑦)))))) |
| 15 | | c0ex 11256 |
. . . 4
⊢ 0 ∈
V |
| 16 | | pnfex 11315 |
. . . 4
⊢ +∞
∈ V |
| 17 | 15, 16 | ifex 4575 |
. . 3
⊢ if(𝐵 = -∞, 0, +∞) ∈
V |
| 18 | | mnfxr 11319 |
. . . . . 6
⊢ -∞
∈ ℝ* |
| 19 | 18 | elexi 3502 |
. . . . 5
⊢ -∞
∈ V |
| 20 | 15, 19 | ifex 4575 |
. . . 4
⊢ if(𝐵 = +∞, 0, -∞) ∈
V |
| 21 | | ovex 7465 |
. . . . . 6
⊢ (𝐴 + 𝐵) ∈ V |
| 22 | 19, 21 | ifex 4575 |
. . . . 5
⊢ if(𝐵 = -∞, -∞, (𝐴 + 𝐵)) ∈ V |
| 23 | 16, 22 | ifex 4575 |
. . . 4
⊢ if(𝐵 = +∞, +∞, if(𝐵 = -∞, -∞, (𝐴 + 𝐵))) ∈ V |
| 24 | 20, 23 | ifex 4575 |
. . 3
⊢ if(𝐴 = -∞, if(𝐵 = +∞, 0, -∞),
if(𝐵 = +∞, +∞,
if(𝐵 = -∞, -∞,
(𝐴 + 𝐵)))) ∈ V |
| 25 | 17, 24 | ifex 4575 |
. 2
⊢ if(𝐴 = +∞, if(𝐵 = -∞, 0, +∞),
if(𝐴 = -∞, if(𝐵 = +∞, 0, -∞),
if(𝐵 = +∞, +∞,
if(𝐵 = -∞, -∞,
(𝐴 + 𝐵))))) ∈ V |
| 26 | 13, 14, 25 | ovmpoa 7589 |
1
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) → (𝐴 +𝑒 𝐵) = if(𝐴 = +∞, if(𝐵 = -∞, 0, +∞), if(𝐴 = -∞, if(𝐵 = +∞, 0, -∞),
if(𝐵 = +∞, +∞,
if(𝐵 = -∞, -∞,
(𝐴 + 𝐵)))))) |