Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  llncmp Structured version   Visualization version   GIF version

Theorem llncmp 38058
Description: If two lattice lines are comparable, they are equal. (Contributed by NM, 19-Jun-2012.)
Hypotheses
Ref Expression
llncmp.l = (le‘𝐾)
llncmp.n 𝑁 = (LLines‘𝐾)
Assertion
Ref Expression
llncmp ((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) → (𝑋 𝑌𝑋 = 𝑌))

Proof of Theorem llncmp
Dummy variable 𝑝 is distinct from all other variables.
StepHypRef Expression
1 simp2 1137 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) → 𝑋𝑁)
2 simp1 1136 . . . . 5 ((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) → 𝐾 ∈ HL)
3 eqid 2731 . . . . . . 7 (Base‘𝐾) = (Base‘𝐾)
4 llncmp.n . . . . . . 7 𝑁 = (LLines‘𝐾)
53, 4llnbase 38045 . . . . . 6 (𝑋𝑁𝑋 ∈ (Base‘𝐾))
653ad2ant2 1134 . . . . 5 ((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) → 𝑋 ∈ (Base‘𝐾))
7 eqid 2731 . . . . . 6 ( ⋖ ‘𝐾) = ( ⋖ ‘𝐾)
8 eqid 2731 . . . . . 6 (Atoms‘𝐾) = (Atoms‘𝐾)
93, 7, 8, 4islln4 38043 . . . . 5 ((𝐾 ∈ HL ∧ 𝑋 ∈ (Base‘𝐾)) → (𝑋𝑁 ↔ ∃𝑝 ∈ (Atoms‘𝐾)𝑝( ⋖ ‘𝐾)𝑋))
102, 6, 9syl2anc 584 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) → (𝑋𝑁 ↔ ∃𝑝 ∈ (Atoms‘𝐾)𝑝( ⋖ ‘𝐾)𝑋))
111, 10mpbid 231 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) → ∃𝑝 ∈ (Atoms‘𝐾)𝑝( ⋖ ‘𝐾)𝑋)
12 simpr3 1196 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑝( ⋖ ‘𝐾)𝑋𝑋 𝑌)) → 𝑋 𝑌)
13 hlpos 37901 . . . . . . . . 9 (𝐾 ∈ HL → 𝐾 ∈ Poset)
14133ad2ant1 1133 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) → 𝐾 ∈ Poset)
1514adantr 481 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑝( ⋖ ‘𝐾)𝑋𝑋 𝑌)) → 𝐾 ∈ Poset)
166adantr 481 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑝( ⋖ ‘𝐾)𝑋𝑋 𝑌)) → 𝑋 ∈ (Base‘𝐾))
17 simpl3 1193 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑝( ⋖ ‘𝐾)𝑋𝑋 𝑌)) → 𝑌𝑁)
183, 4llnbase 38045 . . . . . . . 8 (𝑌𝑁𝑌 ∈ (Base‘𝐾))
1917, 18syl 17 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑝( ⋖ ‘𝐾)𝑋𝑋 𝑌)) → 𝑌 ∈ (Base‘𝐾))
20 simpr1 1194 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑝( ⋖ ‘𝐾)𝑋𝑋 𝑌)) → 𝑝 ∈ (Atoms‘𝐾))
213, 8atbase 37824 . . . . . . . 8 (𝑝 ∈ (Atoms‘𝐾) → 𝑝 ∈ (Base‘𝐾))
2220, 21syl 17 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑝( ⋖ ‘𝐾)𝑋𝑋 𝑌)) → 𝑝 ∈ (Base‘𝐾))
23 simpr2 1195 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑝( ⋖ ‘𝐾)𝑋𝑋 𝑌)) → 𝑝( ⋖ ‘𝐾)𝑋)
24 simpl1 1191 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑝( ⋖ ‘𝐾)𝑋𝑋 𝑌)) → 𝐾 ∈ HL)
25 llncmp.l . . . . . . . . . . 11 = (le‘𝐾)
263, 25, 7cvrle 37813 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑝 ∈ (Base‘𝐾) ∧ 𝑋 ∈ (Base‘𝐾)) ∧ 𝑝( ⋖ ‘𝐾)𝑋) → 𝑝 𝑋)
2724, 22, 16, 23, 26syl31anc 1373 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑝( ⋖ ‘𝐾)𝑋𝑋 𝑌)) → 𝑝 𝑋)
283, 25postr 18223 . . . . . . . . . 10 ((𝐾 ∈ Poset ∧ (𝑝 ∈ (Base‘𝐾) ∧ 𝑋 ∈ (Base‘𝐾) ∧ 𝑌 ∈ (Base‘𝐾))) → ((𝑝 𝑋𝑋 𝑌) → 𝑝 𝑌))
2915, 22, 16, 19, 28syl13anc 1372 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑝( ⋖ ‘𝐾)𝑋𝑋 𝑌)) → ((𝑝 𝑋𝑋 𝑌) → 𝑝 𝑌))
3027, 12, 29mp2and 697 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑝( ⋖ ‘𝐾)𝑋𝑋 𝑌)) → 𝑝 𝑌)
3125, 7, 8, 4atcvrlln2 38055 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑌𝑁) ∧ 𝑝 𝑌) → 𝑝( ⋖ ‘𝐾)𝑌)
3224, 20, 17, 30, 31syl31anc 1373 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑝( ⋖ ‘𝐾)𝑋𝑋 𝑌)) → 𝑝( ⋖ ‘𝐾)𝑌)
333, 25, 7cvrcmp 37818 . . . . . . 7 ((𝐾 ∈ Poset ∧ (𝑋 ∈ (Base‘𝐾) ∧ 𝑌 ∈ (Base‘𝐾) ∧ 𝑝 ∈ (Base‘𝐾)) ∧ (𝑝( ⋖ ‘𝐾)𝑋𝑝( ⋖ ‘𝐾)𝑌)) → (𝑋 𝑌𝑋 = 𝑌))
3415, 16, 19, 22, 23, 32, 33syl132anc 1388 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑝( ⋖ ‘𝐾)𝑋𝑋 𝑌)) → (𝑋 𝑌𝑋 = 𝑌))
3512, 34mpbid 231 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑝( ⋖ ‘𝐾)𝑋𝑋 𝑌)) → 𝑋 = 𝑌)
36353exp2 1354 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) → (𝑝 ∈ (Atoms‘𝐾) → (𝑝( ⋖ ‘𝐾)𝑋 → (𝑋 𝑌𝑋 = 𝑌))))
3736rexlimdv 3146 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) → (∃𝑝 ∈ (Atoms‘𝐾)𝑝( ⋖ ‘𝐾)𝑋 → (𝑋 𝑌𝑋 = 𝑌)))
3811, 37mpd 15 . 2 ((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) → (𝑋 𝑌𝑋 = 𝑌))
393, 25posref 18221 . . . 4 ((𝐾 ∈ Poset ∧ 𝑋 ∈ (Base‘𝐾)) → 𝑋 𝑋)
4014, 6, 39syl2anc 584 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) → 𝑋 𝑋)
41 breq2 5114 . . 3 (𝑋 = 𝑌 → (𝑋 𝑋𝑋 𝑌))
4240, 41syl5ibcom 244 . 2 ((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) → (𝑋 = 𝑌𝑋 𝑌))
4338, 42impbid 211 1 ((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) → (𝑋 𝑌𝑋 = 𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106  wrex 3069   class class class wbr 5110  cfv 6501  Basecbs 17094  lecple 17154  Posetcpo 18210  ccvr 37797  Atomscatm 37798  HLchlt 37885  LLinesclln 38027
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2702  ax-rep 5247  ax-sep 5261  ax-nul 5268  ax-pow 5325  ax-pr 5389  ax-un 7677
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-reu 3352  df-rab 3406  df-v 3448  df-sbc 3743  df-csb 3859  df-dif 3916  df-un 3918  df-in 3920  df-ss 3930  df-nul 4288  df-if 4492  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4871  df-iun 4961  df-br 5111  df-opab 5173  df-mpt 5194  df-id 5536  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6453  df-fun 6503  df-fn 6504  df-f 6505  df-f1 6506  df-fo 6507  df-f1o 6508  df-fv 6509  df-riota 7318  df-ov 7365  df-oprab 7366  df-proset 18198  df-poset 18216  df-plt 18233  df-lub 18249  df-glb 18250  df-join 18251  df-meet 18252  df-p0 18328  df-lat 18335  df-clat 18402  df-oposet 37711  df-ol 37713  df-oml 37714  df-covers 37801  df-ats 37802  df-atl 37833  df-cvlat 37857  df-hlat 37886  df-llines 38034
This theorem is referenced by:  llnnlt  38059  2llnmat  38060  llnmlplnN  38075  dalem16  38215  dalem60  38268  llnexchb2  38405
  Copyright terms: Public domain W3C validator