Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  llncmp Structured version   Visualization version   GIF version

Theorem llncmp 39567
Description: If two lattice lines are comparable, they are equal. (Contributed by NM, 19-Jun-2012.)
Hypotheses
Ref Expression
llncmp.l = (le‘𝐾)
llncmp.n 𝑁 = (LLines‘𝐾)
Assertion
Ref Expression
llncmp ((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) → (𝑋 𝑌𝑋 = 𝑌))

Proof of Theorem llncmp
Dummy variable 𝑝 is distinct from all other variables.
StepHypRef Expression
1 simp2 1137 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) → 𝑋𝑁)
2 simp1 1136 . . . . 5 ((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) → 𝐾 ∈ HL)
3 eqid 2731 . . . . . . 7 (Base‘𝐾) = (Base‘𝐾)
4 llncmp.n . . . . . . 7 𝑁 = (LLines‘𝐾)
53, 4llnbase 39554 . . . . . 6 (𝑋𝑁𝑋 ∈ (Base‘𝐾))
653ad2ant2 1134 . . . . 5 ((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) → 𝑋 ∈ (Base‘𝐾))
7 eqid 2731 . . . . . 6 ( ⋖ ‘𝐾) = ( ⋖ ‘𝐾)
8 eqid 2731 . . . . . 6 (Atoms‘𝐾) = (Atoms‘𝐾)
93, 7, 8, 4islln4 39552 . . . . 5 ((𝐾 ∈ HL ∧ 𝑋 ∈ (Base‘𝐾)) → (𝑋𝑁 ↔ ∃𝑝 ∈ (Atoms‘𝐾)𝑝( ⋖ ‘𝐾)𝑋))
102, 6, 9syl2anc 584 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) → (𝑋𝑁 ↔ ∃𝑝 ∈ (Atoms‘𝐾)𝑝( ⋖ ‘𝐾)𝑋))
111, 10mpbid 232 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) → ∃𝑝 ∈ (Atoms‘𝐾)𝑝( ⋖ ‘𝐾)𝑋)
12 simpr3 1197 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑝( ⋖ ‘𝐾)𝑋𝑋 𝑌)) → 𝑋 𝑌)
13 hlpos 39411 . . . . . . . . 9 (𝐾 ∈ HL → 𝐾 ∈ Poset)
14133ad2ant1 1133 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) → 𝐾 ∈ Poset)
1514adantr 480 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑝( ⋖ ‘𝐾)𝑋𝑋 𝑌)) → 𝐾 ∈ Poset)
166adantr 480 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑝( ⋖ ‘𝐾)𝑋𝑋 𝑌)) → 𝑋 ∈ (Base‘𝐾))
17 simpl3 1194 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑝( ⋖ ‘𝐾)𝑋𝑋 𝑌)) → 𝑌𝑁)
183, 4llnbase 39554 . . . . . . . 8 (𝑌𝑁𝑌 ∈ (Base‘𝐾))
1917, 18syl 17 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑝( ⋖ ‘𝐾)𝑋𝑋 𝑌)) → 𝑌 ∈ (Base‘𝐾))
20 simpr1 1195 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑝( ⋖ ‘𝐾)𝑋𝑋 𝑌)) → 𝑝 ∈ (Atoms‘𝐾))
213, 8atbase 39334 . . . . . . . 8 (𝑝 ∈ (Atoms‘𝐾) → 𝑝 ∈ (Base‘𝐾))
2220, 21syl 17 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑝( ⋖ ‘𝐾)𝑋𝑋 𝑌)) → 𝑝 ∈ (Base‘𝐾))
23 simpr2 1196 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑝( ⋖ ‘𝐾)𝑋𝑋 𝑌)) → 𝑝( ⋖ ‘𝐾)𝑋)
24 simpl1 1192 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑝( ⋖ ‘𝐾)𝑋𝑋 𝑌)) → 𝐾 ∈ HL)
25 llncmp.l . . . . . . . . . . 11 = (le‘𝐾)
263, 25, 7cvrle 39323 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑝 ∈ (Base‘𝐾) ∧ 𝑋 ∈ (Base‘𝐾)) ∧ 𝑝( ⋖ ‘𝐾)𝑋) → 𝑝 𝑋)
2724, 22, 16, 23, 26syl31anc 1375 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑝( ⋖ ‘𝐾)𝑋𝑋 𝑌)) → 𝑝 𝑋)
283, 25postr 18226 . . . . . . . . . 10 ((𝐾 ∈ Poset ∧ (𝑝 ∈ (Base‘𝐾) ∧ 𝑋 ∈ (Base‘𝐾) ∧ 𝑌 ∈ (Base‘𝐾))) → ((𝑝 𝑋𝑋 𝑌) → 𝑝 𝑌))
2915, 22, 16, 19, 28syl13anc 1374 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑝( ⋖ ‘𝐾)𝑋𝑋 𝑌)) → ((𝑝 𝑋𝑋 𝑌) → 𝑝 𝑌))
3027, 12, 29mp2and 699 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑝( ⋖ ‘𝐾)𝑋𝑋 𝑌)) → 𝑝 𝑌)
3125, 7, 8, 4atcvrlln2 39564 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑌𝑁) ∧ 𝑝 𝑌) → 𝑝( ⋖ ‘𝐾)𝑌)
3224, 20, 17, 30, 31syl31anc 1375 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑝( ⋖ ‘𝐾)𝑋𝑋 𝑌)) → 𝑝( ⋖ ‘𝐾)𝑌)
333, 25, 7cvrcmp 39328 . . . . . . 7 ((𝐾 ∈ Poset ∧ (𝑋 ∈ (Base‘𝐾) ∧ 𝑌 ∈ (Base‘𝐾) ∧ 𝑝 ∈ (Base‘𝐾)) ∧ (𝑝( ⋖ ‘𝐾)𝑋𝑝( ⋖ ‘𝐾)𝑌)) → (𝑋 𝑌𝑋 = 𝑌))
3415, 16, 19, 22, 23, 32, 33syl132anc 1390 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑝( ⋖ ‘𝐾)𝑋𝑋 𝑌)) → (𝑋 𝑌𝑋 = 𝑌))
3512, 34mpbid 232 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑝( ⋖ ‘𝐾)𝑋𝑋 𝑌)) → 𝑋 = 𝑌)
36353exp2 1355 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) → (𝑝 ∈ (Atoms‘𝐾) → (𝑝( ⋖ ‘𝐾)𝑋 → (𝑋 𝑌𝑋 = 𝑌))))
3736rexlimdv 3131 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) → (∃𝑝 ∈ (Atoms‘𝐾)𝑝( ⋖ ‘𝐾)𝑋 → (𝑋 𝑌𝑋 = 𝑌)))
3811, 37mpd 15 . 2 ((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) → (𝑋 𝑌𝑋 = 𝑌))
393, 25posref 18224 . . . 4 ((𝐾 ∈ Poset ∧ 𝑋 ∈ (Base‘𝐾)) → 𝑋 𝑋)
4014, 6, 39syl2anc 584 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) → 𝑋 𝑋)
41 breq2 5095 . . 3 (𝑋 = 𝑌 → (𝑋 𝑋𝑋 𝑌))
4240, 41syl5ibcom 245 . 2 ((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) → (𝑋 = 𝑌𝑋 𝑌))
4338, 42impbid 212 1 ((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) → (𝑋 𝑌𝑋 = 𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2111  wrex 3056   class class class wbr 5091  cfv 6481  Basecbs 17120  lecple 17168  Posetcpo 18213  ccvr 39307  Atomscatm 39308  HLchlt 39395  LLinesclln 39536
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-proset 18200  df-poset 18219  df-plt 18234  df-lub 18250  df-glb 18251  df-join 18252  df-meet 18253  df-p0 18329  df-lat 18338  df-clat 18405  df-oposet 39221  df-ol 39223  df-oml 39224  df-covers 39311  df-ats 39312  df-atl 39343  df-cvlat 39367  df-hlat 39396  df-llines 39543
This theorem is referenced by:  llnnlt  39568  2llnmat  39569  llnmlplnN  39584  dalem16  39724  dalem60  39777  llnexchb2  39914
  Copyright terms: Public domain W3C validator