Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  llncmp Structured version   Visualization version   GIF version

Theorem llncmp 37148
Description: If two lattice lines are comparable, they are equal. (Contributed by NM, 19-Jun-2012.)
Hypotheses
Ref Expression
llncmp.l = (le‘𝐾)
llncmp.n 𝑁 = (LLines‘𝐾)
Assertion
Ref Expression
llncmp ((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) → (𝑋 𝑌𝑋 = 𝑌))

Proof of Theorem llncmp
Dummy variable 𝑝 is distinct from all other variables.
StepHypRef Expression
1 simp2 1138 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) → 𝑋𝑁)
2 simp1 1137 . . . . 5 ((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) → 𝐾 ∈ HL)
3 eqid 2738 . . . . . . 7 (Base‘𝐾) = (Base‘𝐾)
4 llncmp.n . . . . . . 7 𝑁 = (LLines‘𝐾)
53, 4llnbase 37135 . . . . . 6 (𝑋𝑁𝑋 ∈ (Base‘𝐾))
653ad2ant2 1135 . . . . 5 ((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) → 𝑋 ∈ (Base‘𝐾))
7 eqid 2738 . . . . . 6 ( ⋖ ‘𝐾) = ( ⋖ ‘𝐾)
8 eqid 2738 . . . . . 6 (Atoms‘𝐾) = (Atoms‘𝐾)
93, 7, 8, 4islln4 37133 . . . . 5 ((𝐾 ∈ HL ∧ 𝑋 ∈ (Base‘𝐾)) → (𝑋𝑁 ↔ ∃𝑝 ∈ (Atoms‘𝐾)𝑝( ⋖ ‘𝐾)𝑋))
102, 6, 9syl2anc 587 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) → (𝑋𝑁 ↔ ∃𝑝 ∈ (Atoms‘𝐾)𝑝( ⋖ ‘𝐾)𝑋))
111, 10mpbid 235 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) → ∃𝑝 ∈ (Atoms‘𝐾)𝑝( ⋖ ‘𝐾)𝑋)
12 simpr3 1197 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑝( ⋖ ‘𝐾)𝑋𝑋 𝑌)) → 𝑋 𝑌)
13 hlpos 36992 . . . . . . . . 9 (𝐾 ∈ HL → 𝐾 ∈ Poset)
14133ad2ant1 1134 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) → 𝐾 ∈ Poset)
1514adantr 484 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑝( ⋖ ‘𝐾)𝑋𝑋 𝑌)) → 𝐾 ∈ Poset)
166adantr 484 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑝( ⋖ ‘𝐾)𝑋𝑋 𝑌)) → 𝑋 ∈ (Base‘𝐾))
17 simpl3 1194 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑝( ⋖ ‘𝐾)𝑋𝑋 𝑌)) → 𝑌𝑁)
183, 4llnbase 37135 . . . . . . . 8 (𝑌𝑁𝑌 ∈ (Base‘𝐾))
1917, 18syl 17 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑝( ⋖ ‘𝐾)𝑋𝑋 𝑌)) → 𝑌 ∈ (Base‘𝐾))
20 simpr1 1195 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑝( ⋖ ‘𝐾)𝑋𝑋 𝑌)) → 𝑝 ∈ (Atoms‘𝐾))
213, 8atbase 36915 . . . . . . . 8 (𝑝 ∈ (Atoms‘𝐾) → 𝑝 ∈ (Base‘𝐾))
2220, 21syl 17 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑝( ⋖ ‘𝐾)𝑋𝑋 𝑌)) → 𝑝 ∈ (Base‘𝐾))
23 simpr2 1196 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑝( ⋖ ‘𝐾)𝑋𝑋 𝑌)) → 𝑝( ⋖ ‘𝐾)𝑋)
24 simpl1 1192 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑝( ⋖ ‘𝐾)𝑋𝑋 𝑌)) → 𝐾 ∈ HL)
25 llncmp.l . . . . . . . . . . 11 = (le‘𝐾)
263, 25, 7cvrle 36904 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑝 ∈ (Base‘𝐾) ∧ 𝑋 ∈ (Base‘𝐾)) ∧ 𝑝( ⋖ ‘𝐾)𝑋) → 𝑝 𝑋)
2724, 22, 16, 23, 26syl31anc 1374 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑝( ⋖ ‘𝐾)𝑋𝑋 𝑌)) → 𝑝 𝑋)
283, 25postr 17672 . . . . . . . . . 10 ((𝐾 ∈ Poset ∧ (𝑝 ∈ (Base‘𝐾) ∧ 𝑋 ∈ (Base‘𝐾) ∧ 𝑌 ∈ (Base‘𝐾))) → ((𝑝 𝑋𝑋 𝑌) → 𝑝 𝑌))
2915, 22, 16, 19, 28syl13anc 1373 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑝( ⋖ ‘𝐾)𝑋𝑋 𝑌)) → ((𝑝 𝑋𝑋 𝑌) → 𝑝 𝑌))
3027, 12, 29mp2and 699 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑝( ⋖ ‘𝐾)𝑋𝑋 𝑌)) → 𝑝 𝑌)
3125, 7, 8, 4atcvrlln2 37145 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑌𝑁) ∧ 𝑝 𝑌) → 𝑝( ⋖ ‘𝐾)𝑌)
3224, 20, 17, 30, 31syl31anc 1374 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑝( ⋖ ‘𝐾)𝑋𝑋 𝑌)) → 𝑝( ⋖ ‘𝐾)𝑌)
333, 25, 7cvrcmp 36909 . . . . . . 7 ((𝐾 ∈ Poset ∧ (𝑋 ∈ (Base‘𝐾) ∧ 𝑌 ∈ (Base‘𝐾) ∧ 𝑝 ∈ (Base‘𝐾)) ∧ (𝑝( ⋖ ‘𝐾)𝑋𝑝( ⋖ ‘𝐾)𝑌)) → (𝑋 𝑌𝑋 = 𝑌))
3415, 16, 19, 22, 23, 32, 33syl132anc 1389 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑝( ⋖ ‘𝐾)𝑋𝑋 𝑌)) → (𝑋 𝑌𝑋 = 𝑌))
3512, 34mpbid 235 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑝( ⋖ ‘𝐾)𝑋𝑋 𝑌)) → 𝑋 = 𝑌)
36353exp2 1355 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) → (𝑝 ∈ (Atoms‘𝐾) → (𝑝( ⋖ ‘𝐾)𝑋 → (𝑋 𝑌𝑋 = 𝑌))))
3736rexlimdv 3192 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) → (∃𝑝 ∈ (Atoms‘𝐾)𝑝( ⋖ ‘𝐾)𝑋 → (𝑋 𝑌𝑋 = 𝑌)))
3811, 37mpd 15 . 2 ((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) → (𝑋 𝑌𝑋 = 𝑌))
393, 25posref 17670 . . . 4 ((𝐾 ∈ Poset ∧ 𝑋 ∈ (Base‘𝐾)) → 𝑋 𝑋)
4014, 6, 39syl2anc 587 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) → 𝑋 𝑋)
41 breq2 5031 . . 3 (𝑋 = 𝑌 → (𝑋 𝑋𝑋 𝑌))
4240, 41syl5ibcom 248 . 2 ((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) → (𝑋 = 𝑌𝑋 𝑌))
4338, 42impbid 215 1 ((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) → (𝑋 𝑌𝑋 = 𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1088   = wceq 1542  wcel 2113  wrex 3054   class class class wbr 5027  cfv 6333  Basecbs 16579  lecple 16668  Posetcpo 17659  ccvr 36888  Atomscatm 36889  HLchlt 36976  LLinesclln 37117
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1916  ax-6 1974  ax-7 2019  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2161  ax-12 2178  ax-ext 2710  ax-rep 5151  ax-sep 5164  ax-nul 5171  ax-pow 5229  ax-pr 5293  ax-un 7473
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2074  df-mo 2540  df-eu 2570  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ne 2935  df-ral 3058  df-rex 3059  df-reu 3060  df-rab 3062  df-v 3399  df-sbc 3680  df-csb 3789  df-dif 3844  df-un 3846  df-in 3848  df-ss 3858  df-nul 4210  df-if 4412  df-pw 4487  df-sn 4514  df-pr 4516  df-op 4520  df-uni 4794  df-iun 4880  df-br 5028  df-opab 5090  df-mpt 5108  df-id 5425  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-iota 6291  df-fun 6335  df-fn 6336  df-f 6337  df-f1 6338  df-fo 6339  df-f1o 6340  df-fv 6341  df-riota 7121  df-ov 7167  df-oprab 7168  df-proset 17647  df-poset 17665  df-plt 17677  df-lub 17693  df-glb 17694  df-join 17695  df-meet 17696  df-p0 17758  df-lat 17765  df-clat 17827  df-oposet 36802  df-ol 36804  df-oml 36805  df-covers 36892  df-ats 36893  df-atl 36924  df-cvlat 36948  df-hlat 36977  df-llines 37124
This theorem is referenced by:  llnnlt  37149  2llnmat  37150  llnmlplnN  37165  dalem16  37305  dalem60  37358  llnexchb2  37495
  Copyright terms: Public domain W3C validator