Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  llncmp Structured version   Visualization version   GIF version

Theorem llncmp 38393
Description: If two lattice lines are comparable, they are equal. (Contributed by NM, 19-Jun-2012.)
Hypotheses
Ref Expression
llncmp.l ≀ = (leβ€˜πΎ)
llncmp.n 𝑁 = (LLinesβ€˜πΎ)
Assertion
Ref Expression
llncmp ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑁 ∧ π‘Œ ∈ 𝑁) β†’ (𝑋 ≀ π‘Œ ↔ 𝑋 = π‘Œ))

Proof of Theorem llncmp
Dummy variable 𝑝 is distinct from all other variables.
StepHypRef Expression
1 simp2 1138 . . . 4 ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑁 ∧ π‘Œ ∈ 𝑁) β†’ 𝑋 ∈ 𝑁)
2 simp1 1137 . . . . 5 ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑁 ∧ π‘Œ ∈ 𝑁) β†’ 𝐾 ∈ HL)
3 eqid 2733 . . . . . . 7 (Baseβ€˜πΎ) = (Baseβ€˜πΎ)
4 llncmp.n . . . . . . 7 𝑁 = (LLinesβ€˜πΎ)
53, 4llnbase 38380 . . . . . 6 (𝑋 ∈ 𝑁 β†’ 𝑋 ∈ (Baseβ€˜πΎ))
653ad2ant2 1135 . . . . 5 ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑁 ∧ π‘Œ ∈ 𝑁) β†’ 𝑋 ∈ (Baseβ€˜πΎ))
7 eqid 2733 . . . . . 6 ( β‹– β€˜πΎ) = ( β‹– β€˜πΎ)
8 eqid 2733 . . . . . 6 (Atomsβ€˜πΎ) = (Atomsβ€˜πΎ)
93, 7, 8, 4islln4 38378 . . . . 5 ((𝐾 ∈ HL ∧ 𝑋 ∈ (Baseβ€˜πΎ)) β†’ (𝑋 ∈ 𝑁 ↔ βˆƒπ‘ ∈ (Atomsβ€˜πΎ)𝑝( β‹– β€˜πΎ)𝑋))
102, 6, 9syl2anc 585 . . . 4 ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑁 ∧ π‘Œ ∈ 𝑁) β†’ (𝑋 ∈ 𝑁 ↔ βˆƒπ‘ ∈ (Atomsβ€˜πΎ)𝑝( β‹– β€˜πΎ)𝑋))
111, 10mpbid 231 . . 3 ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑁 ∧ π‘Œ ∈ 𝑁) β†’ βˆƒπ‘ ∈ (Atomsβ€˜πΎ)𝑝( β‹– β€˜πΎ)𝑋)
12 simpr3 1197 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑁 ∧ π‘Œ ∈ 𝑁) ∧ (𝑝 ∈ (Atomsβ€˜πΎ) ∧ 𝑝( β‹– β€˜πΎ)𝑋 ∧ 𝑋 ≀ π‘Œ)) β†’ 𝑋 ≀ π‘Œ)
13 hlpos 38236 . . . . . . . . 9 (𝐾 ∈ HL β†’ 𝐾 ∈ Poset)
14133ad2ant1 1134 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑁 ∧ π‘Œ ∈ 𝑁) β†’ 𝐾 ∈ Poset)
1514adantr 482 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑁 ∧ π‘Œ ∈ 𝑁) ∧ (𝑝 ∈ (Atomsβ€˜πΎ) ∧ 𝑝( β‹– β€˜πΎ)𝑋 ∧ 𝑋 ≀ π‘Œ)) β†’ 𝐾 ∈ Poset)
166adantr 482 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑁 ∧ π‘Œ ∈ 𝑁) ∧ (𝑝 ∈ (Atomsβ€˜πΎ) ∧ 𝑝( β‹– β€˜πΎ)𝑋 ∧ 𝑋 ≀ π‘Œ)) β†’ 𝑋 ∈ (Baseβ€˜πΎ))
17 simpl3 1194 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑁 ∧ π‘Œ ∈ 𝑁) ∧ (𝑝 ∈ (Atomsβ€˜πΎ) ∧ 𝑝( β‹– β€˜πΎ)𝑋 ∧ 𝑋 ≀ π‘Œ)) β†’ π‘Œ ∈ 𝑁)
183, 4llnbase 38380 . . . . . . . 8 (π‘Œ ∈ 𝑁 β†’ π‘Œ ∈ (Baseβ€˜πΎ))
1917, 18syl 17 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑁 ∧ π‘Œ ∈ 𝑁) ∧ (𝑝 ∈ (Atomsβ€˜πΎ) ∧ 𝑝( β‹– β€˜πΎ)𝑋 ∧ 𝑋 ≀ π‘Œ)) β†’ π‘Œ ∈ (Baseβ€˜πΎ))
20 simpr1 1195 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑁 ∧ π‘Œ ∈ 𝑁) ∧ (𝑝 ∈ (Atomsβ€˜πΎ) ∧ 𝑝( β‹– β€˜πΎ)𝑋 ∧ 𝑋 ≀ π‘Œ)) β†’ 𝑝 ∈ (Atomsβ€˜πΎ))
213, 8atbase 38159 . . . . . . . 8 (𝑝 ∈ (Atomsβ€˜πΎ) β†’ 𝑝 ∈ (Baseβ€˜πΎ))
2220, 21syl 17 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑁 ∧ π‘Œ ∈ 𝑁) ∧ (𝑝 ∈ (Atomsβ€˜πΎ) ∧ 𝑝( β‹– β€˜πΎ)𝑋 ∧ 𝑋 ≀ π‘Œ)) β†’ 𝑝 ∈ (Baseβ€˜πΎ))
23 simpr2 1196 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑁 ∧ π‘Œ ∈ 𝑁) ∧ (𝑝 ∈ (Atomsβ€˜πΎ) ∧ 𝑝( β‹– β€˜πΎ)𝑋 ∧ 𝑋 ≀ π‘Œ)) β†’ 𝑝( β‹– β€˜πΎ)𝑋)
24 simpl1 1192 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑁 ∧ π‘Œ ∈ 𝑁) ∧ (𝑝 ∈ (Atomsβ€˜πΎ) ∧ 𝑝( β‹– β€˜πΎ)𝑋 ∧ 𝑋 ≀ π‘Œ)) β†’ 𝐾 ∈ HL)
25 llncmp.l . . . . . . . . . . 11 ≀ = (leβ€˜πΎ)
263, 25, 7cvrle 38148 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑝 ∈ (Baseβ€˜πΎ) ∧ 𝑋 ∈ (Baseβ€˜πΎ)) ∧ 𝑝( β‹– β€˜πΎ)𝑋) β†’ 𝑝 ≀ 𝑋)
2724, 22, 16, 23, 26syl31anc 1374 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑁 ∧ π‘Œ ∈ 𝑁) ∧ (𝑝 ∈ (Atomsβ€˜πΎ) ∧ 𝑝( β‹– β€˜πΎ)𝑋 ∧ 𝑋 ≀ π‘Œ)) β†’ 𝑝 ≀ 𝑋)
283, 25postr 18273 . . . . . . . . . 10 ((𝐾 ∈ Poset ∧ (𝑝 ∈ (Baseβ€˜πΎ) ∧ 𝑋 ∈ (Baseβ€˜πΎ) ∧ π‘Œ ∈ (Baseβ€˜πΎ))) β†’ ((𝑝 ≀ 𝑋 ∧ 𝑋 ≀ π‘Œ) β†’ 𝑝 ≀ π‘Œ))
2915, 22, 16, 19, 28syl13anc 1373 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑁 ∧ π‘Œ ∈ 𝑁) ∧ (𝑝 ∈ (Atomsβ€˜πΎ) ∧ 𝑝( β‹– β€˜πΎ)𝑋 ∧ 𝑋 ≀ π‘Œ)) β†’ ((𝑝 ≀ 𝑋 ∧ 𝑋 ≀ π‘Œ) β†’ 𝑝 ≀ π‘Œ))
3027, 12, 29mp2and 698 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑁 ∧ π‘Œ ∈ 𝑁) ∧ (𝑝 ∈ (Atomsβ€˜πΎ) ∧ 𝑝( β‹– β€˜πΎ)𝑋 ∧ 𝑋 ≀ π‘Œ)) β†’ 𝑝 ≀ π‘Œ)
3125, 7, 8, 4atcvrlln2 38390 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑝 ∈ (Atomsβ€˜πΎ) ∧ π‘Œ ∈ 𝑁) ∧ 𝑝 ≀ π‘Œ) β†’ 𝑝( β‹– β€˜πΎ)π‘Œ)
3224, 20, 17, 30, 31syl31anc 1374 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑁 ∧ π‘Œ ∈ 𝑁) ∧ (𝑝 ∈ (Atomsβ€˜πΎ) ∧ 𝑝( β‹– β€˜πΎ)𝑋 ∧ 𝑋 ≀ π‘Œ)) β†’ 𝑝( β‹– β€˜πΎ)π‘Œ)
333, 25, 7cvrcmp 38153 . . . . . . 7 ((𝐾 ∈ Poset ∧ (𝑋 ∈ (Baseβ€˜πΎ) ∧ π‘Œ ∈ (Baseβ€˜πΎ) ∧ 𝑝 ∈ (Baseβ€˜πΎ)) ∧ (𝑝( β‹– β€˜πΎ)𝑋 ∧ 𝑝( β‹– β€˜πΎ)π‘Œ)) β†’ (𝑋 ≀ π‘Œ ↔ 𝑋 = π‘Œ))
3415, 16, 19, 22, 23, 32, 33syl132anc 1389 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑁 ∧ π‘Œ ∈ 𝑁) ∧ (𝑝 ∈ (Atomsβ€˜πΎ) ∧ 𝑝( β‹– β€˜πΎ)𝑋 ∧ 𝑋 ≀ π‘Œ)) β†’ (𝑋 ≀ π‘Œ ↔ 𝑋 = π‘Œ))
3512, 34mpbid 231 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑁 ∧ π‘Œ ∈ 𝑁) ∧ (𝑝 ∈ (Atomsβ€˜πΎ) ∧ 𝑝( β‹– β€˜πΎ)𝑋 ∧ 𝑋 ≀ π‘Œ)) β†’ 𝑋 = π‘Œ)
36353exp2 1355 . . . 4 ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑁 ∧ π‘Œ ∈ 𝑁) β†’ (𝑝 ∈ (Atomsβ€˜πΎ) β†’ (𝑝( β‹– β€˜πΎ)𝑋 β†’ (𝑋 ≀ π‘Œ β†’ 𝑋 = π‘Œ))))
3736rexlimdv 3154 . . 3 ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑁 ∧ π‘Œ ∈ 𝑁) β†’ (βˆƒπ‘ ∈ (Atomsβ€˜πΎ)𝑝( β‹– β€˜πΎ)𝑋 β†’ (𝑋 ≀ π‘Œ β†’ 𝑋 = π‘Œ)))
3811, 37mpd 15 . 2 ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑁 ∧ π‘Œ ∈ 𝑁) β†’ (𝑋 ≀ π‘Œ β†’ 𝑋 = π‘Œ))
393, 25posref 18271 . . . 4 ((𝐾 ∈ Poset ∧ 𝑋 ∈ (Baseβ€˜πΎ)) β†’ 𝑋 ≀ 𝑋)
4014, 6, 39syl2anc 585 . . 3 ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑁 ∧ π‘Œ ∈ 𝑁) β†’ 𝑋 ≀ 𝑋)
41 breq2 5153 . . 3 (𝑋 = π‘Œ β†’ (𝑋 ≀ 𝑋 ↔ 𝑋 ≀ π‘Œ))
4240, 41syl5ibcom 244 . 2 ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑁 ∧ π‘Œ ∈ 𝑁) β†’ (𝑋 = π‘Œ β†’ 𝑋 ≀ π‘Œ))
4338, 42impbid 211 1 ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑁 ∧ π‘Œ ∈ 𝑁) β†’ (𝑋 ≀ π‘Œ ↔ 𝑋 = π‘Œ))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 397   ∧ w3a 1088   = wceq 1542   ∈ wcel 2107  βˆƒwrex 3071   class class class wbr 5149  β€˜cfv 6544  Basecbs 17144  lecple 17204  Posetcpo 18260   β‹– ccvr 38132  Atomscatm 38133  HLchlt 38220  LLinesclln 38362
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-riota 7365  df-ov 7412  df-oprab 7413  df-proset 18248  df-poset 18266  df-plt 18283  df-lub 18299  df-glb 18300  df-join 18301  df-meet 18302  df-p0 18378  df-lat 18385  df-clat 18452  df-oposet 38046  df-ol 38048  df-oml 38049  df-covers 38136  df-ats 38137  df-atl 38168  df-cvlat 38192  df-hlat 38221  df-llines 38369
This theorem is referenced by:  llnnlt  38394  2llnmat  38395  llnmlplnN  38410  dalem16  38550  dalem60  38603  llnexchb2  38740
  Copyright terms: Public domain W3C validator