Step | Hyp | Ref
| Expression |
1 | | simp2 1138 |
. . . 4
β’ ((πΎ β HL β§ π β π β§ π β π) β π β π) |
2 | | simp1 1137 |
. . . . 5
β’ ((πΎ β HL β§ π β π β§ π β π) β πΎ β HL) |
3 | | eqid 2737 |
. . . . . . 7
β’
(BaseβπΎ) =
(BaseβπΎ) |
4 | | llncmp.n |
. . . . . . 7
β’ π = (LLinesβπΎ) |
5 | 3, 4 | llnbase 38001 |
. . . . . 6
β’ (π β π β π β (BaseβπΎ)) |
6 | 5 | 3ad2ant2 1135 |
. . . . 5
β’ ((πΎ β HL β§ π β π β§ π β π) β π β (BaseβπΎ)) |
7 | | eqid 2737 |
. . . . . 6
β’ ( β
βπΎ) = ( β
βπΎ) |
8 | | eqid 2737 |
. . . . . 6
β’
(AtomsβπΎ) =
(AtomsβπΎ) |
9 | 3, 7, 8, 4 | islln4 37999 |
. . . . 5
β’ ((πΎ β HL β§ π β (BaseβπΎ)) β (π β π β βπ β (AtomsβπΎ)π( β βπΎ)π)) |
10 | 2, 6, 9 | syl2anc 585 |
. . . 4
β’ ((πΎ β HL β§ π β π β§ π β π) β (π β π β βπ β (AtomsβπΎ)π( β βπΎ)π)) |
11 | 1, 10 | mpbid 231 |
. . 3
β’ ((πΎ β HL β§ π β π β§ π β π) β βπ β (AtomsβπΎ)π( β βπΎ)π) |
12 | | simpr3 1197 |
. . . . . 6
β’ (((πΎ β HL β§ π β π β§ π β π) β§ (π β (AtomsβπΎ) β§ π( β βπΎ)π β§ π β€ π)) β π β€ π) |
13 | | hlpos 37857 |
. . . . . . . . 9
β’ (πΎ β HL β πΎ β Poset) |
14 | 13 | 3ad2ant1 1134 |
. . . . . . . 8
β’ ((πΎ β HL β§ π β π β§ π β π) β πΎ β Poset) |
15 | 14 | adantr 482 |
. . . . . . 7
β’ (((πΎ β HL β§ π β π β§ π β π) β§ (π β (AtomsβπΎ) β§ π( β βπΎ)π β§ π β€ π)) β πΎ β Poset) |
16 | 6 | adantr 482 |
. . . . . . 7
β’ (((πΎ β HL β§ π β π β§ π β π) β§ (π β (AtomsβπΎ) β§ π( β βπΎ)π β§ π β€ π)) β π β (BaseβπΎ)) |
17 | | simpl3 1194 |
. . . . . . . 8
β’ (((πΎ β HL β§ π β π β§ π β π) β§ (π β (AtomsβπΎ) β§ π( β βπΎ)π β§ π β€ π)) β π β π) |
18 | 3, 4 | llnbase 38001 |
. . . . . . . 8
β’ (π β π β π β (BaseβπΎ)) |
19 | 17, 18 | syl 17 |
. . . . . . 7
β’ (((πΎ β HL β§ π β π β§ π β π) β§ (π β (AtomsβπΎ) β§ π( β βπΎ)π β§ π β€ π)) β π β (BaseβπΎ)) |
20 | | simpr1 1195 |
. . . . . . . 8
β’ (((πΎ β HL β§ π β π β§ π β π) β§ (π β (AtomsβπΎ) β§ π( β βπΎ)π β§ π β€ π)) β π β (AtomsβπΎ)) |
21 | 3, 8 | atbase 37780 |
. . . . . . . 8
β’ (π β (AtomsβπΎ) β π β (BaseβπΎ)) |
22 | 20, 21 | syl 17 |
. . . . . . 7
β’ (((πΎ β HL β§ π β π β§ π β π) β§ (π β (AtomsβπΎ) β§ π( β βπΎ)π β§ π β€ π)) β π β (BaseβπΎ)) |
23 | | simpr2 1196 |
. . . . . . 7
β’ (((πΎ β HL β§ π β π β§ π β π) β§ (π β (AtomsβπΎ) β§ π( β βπΎ)π β§ π β€ π)) β π( β βπΎ)π) |
24 | | simpl1 1192 |
. . . . . . . 8
β’ (((πΎ β HL β§ π β π β§ π β π) β§ (π β (AtomsβπΎ) β§ π( β βπΎ)π β§ π β€ π)) β πΎ β HL) |
25 | | llncmp.l |
. . . . . . . . . . 11
β’ β€ =
(leβπΎ) |
26 | 3, 25, 7 | cvrle 37769 |
. . . . . . . . . 10
β’ (((πΎ β HL β§ π β (BaseβπΎ) β§ π β (BaseβπΎ)) β§ π( β βπΎ)π) β π β€ π) |
27 | 24, 22, 16, 23, 26 | syl31anc 1374 |
. . . . . . . . 9
β’ (((πΎ β HL β§ π β π β§ π β π) β§ (π β (AtomsβπΎ) β§ π( β βπΎ)π β§ π β€ π)) β π β€ π) |
28 | 3, 25 | postr 18216 |
. . . . . . . . . 10
β’ ((πΎ β Poset β§ (π β (BaseβπΎ) β§ π β (BaseβπΎ) β§ π β (BaseβπΎ))) β ((π β€ π β§ π β€ π) β π β€ π)) |
29 | 15, 22, 16, 19, 28 | syl13anc 1373 |
. . . . . . . . 9
β’ (((πΎ β HL β§ π β π β§ π β π) β§ (π β (AtomsβπΎ) β§ π( β βπΎ)π β§ π β€ π)) β ((π β€ π β§ π β€ π) β π β€ π)) |
30 | 27, 12, 29 | mp2and 698 |
. . . . . . . 8
β’ (((πΎ β HL β§ π β π β§ π β π) β§ (π β (AtomsβπΎ) β§ π( β βπΎ)π β§ π β€ π)) β π β€ π) |
31 | 25, 7, 8, 4 | atcvrlln2 38011 |
. . . . . . . 8
β’ (((πΎ β HL β§ π β (AtomsβπΎ) β§ π β π) β§ π β€ π) β π( β βπΎ)π) |
32 | 24, 20, 17, 30, 31 | syl31anc 1374 |
. . . . . . 7
β’ (((πΎ β HL β§ π β π β§ π β π) β§ (π β (AtomsβπΎ) β§ π( β βπΎ)π β§ π β€ π)) β π( β βπΎ)π) |
33 | 3, 25, 7 | cvrcmp 37774 |
. . . . . . 7
β’ ((πΎ β Poset β§ (π β (BaseβπΎ) β§ π β (BaseβπΎ) β§ π β (BaseβπΎ)) β§ (π( β βπΎ)π β§ π( β βπΎ)π)) β (π β€ π β π = π)) |
34 | 15, 16, 19, 22, 23, 32, 33 | syl132anc 1389 |
. . . . . 6
β’ (((πΎ β HL β§ π β π β§ π β π) β§ (π β (AtomsβπΎ) β§ π( β βπΎ)π β§ π β€ π)) β (π β€ π β π = π)) |
35 | 12, 34 | mpbid 231 |
. . . . 5
β’ (((πΎ β HL β§ π β π β§ π β π) β§ (π β (AtomsβπΎ) β§ π( β βπΎ)π β§ π β€ π)) β π = π) |
36 | 35 | 3exp2 1355 |
. . . 4
β’ ((πΎ β HL β§ π β π β§ π β π) β (π β (AtomsβπΎ) β (π( β βπΎ)π β (π β€ π β π = π)))) |
37 | 36 | rexlimdv 3151 |
. . 3
β’ ((πΎ β HL β§ π β π β§ π β π) β (βπ β (AtomsβπΎ)π( β βπΎ)π β (π β€ π β π = π))) |
38 | 11, 37 | mpd 15 |
. 2
β’ ((πΎ β HL β§ π β π β§ π β π) β (π β€ π β π = π)) |
39 | 3, 25 | posref 18214 |
. . . 4
β’ ((πΎ β Poset β§ π β (BaseβπΎ)) β π β€ π) |
40 | 14, 6, 39 | syl2anc 585 |
. . 3
β’ ((πΎ β HL β§ π β π β§ π β π) β π β€ π) |
41 | | breq2 5114 |
. . 3
β’ (π = π β (π β€ π β π β€ π)) |
42 | 40, 41 | syl5ibcom 244 |
. 2
β’ ((πΎ β HL β§ π β π β§ π β π) β (π = π β π β€ π)) |
43 | 38, 42 | impbid 211 |
1
β’ ((πΎ β HL β§ π β π β§ π β π) β (π β€ π β π = π)) |