Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lplncvrlvol Structured version   Visualization version   GIF version

Theorem lplncvrlvol 39635
Description: An element covering a lattice plane is a lattice volume and vice-versa. (Contributed by NM, 15-Jul-2012.)
Hypotheses
Ref Expression
lplncvrlvol.b 𝐵 = (Base‘𝐾)
lplncvrlvol.c 𝐶 = ( ⋖ ‘𝐾)
lplncvrlvol.p 𝑃 = (LPlanes‘𝐾)
lplncvrlvol.v 𝑉 = (LVols‘𝐾)
Assertion
Ref Expression
lplncvrlvol (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) → (𝑋𝑃𝑌𝑉))

Proof of Theorem lplncvrlvol
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 simpll1 1213 . . 3 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑋𝑃) → 𝐾 ∈ HL)
2 simpll3 1215 . . 3 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑋𝑃) → 𝑌𝐵)
3 simpr 484 . . 3 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑋𝑃) → 𝑋𝑃)
4 simplr 768 . . 3 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑋𝑃) → 𝑋𝐶𝑌)
5 lplncvrlvol.b . . . 4 𝐵 = (Base‘𝐾)
6 lplncvrlvol.c . . . 4 𝐶 = ( ⋖ ‘𝐾)
7 lplncvrlvol.p . . . 4 𝑃 = (LPlanes‘𝐾)
8 lplncvrlvol.v . . . 4 𝑉 = (LVols‘𝐾)
95, 6, 7, 8lvoli 39594 . . 3 (((𝐾 ∈ HL ∧ 𝑌𝐵𝑋𝑃) ∧ 𝑋𝐶𝑌) → 𝑌𝑉)
101, 2, 3, 4, 9syl31anc 1375 . 2 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑋𝑃) → 𝑌𝑉)
11 simpll1 1213 . . . 4 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑌𝑉) → 𝐾 ∈ HL)
12 simpll2 1214 . . . 4 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑌𝑉) → 𝑋𝐵)
1311hllatd 39382 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑌𝑉) → 𝐾 ∈ Lat)
14 simpll3 1215 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑌𝑉) → 𝑌𝐵)
15 eqid 2735 . . . . . . . 8 (le‘𝐾) = (le‘𝐾)
165, 15latref 18451 . . . . . . 7 ((𝐾 ∈ Lat ∧ 𝑌𝐵) → 𝑌(le‘𝐾)𝑌)
1713, 14, 16syl2anc 584 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑌𝑉) → 𝑌(le‘𝐾)𝑌)
1811adantr 480 . . . . . . . 8 (((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑌𝑉) ∧ 𝑌 ∈ (Atoms‘𝐾)) → 𝐾 ∈ HL)
19 simplr 768 . . . . . . . 8 (((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑌𝑉) ∧ 𝑌 ∈ (Atoms‘𝐾)) → 𝑌𝑉)
20 simpr 484 . . . . . . . 8 (((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑌𝑉) ∧ 𝑌 ∈ (Atoms‘𝐾)) → 𝑌 ∈ (Atoms‘𝐾))
21 eqid 2735 . . . . . . . . 9 (Atoms‘𝐾) = (Atoms‘𝐾)
2215, 21, 8lvolnleat 39602 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑌𝑉𝑌 ∈ (Atoms‘𝐾)) → ¬ 𝑌(le‘𝐾)𝑌)
2318, 19, 20, 22syl3anc 1373 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑌𝑉) ∧ 𝑌 ∈ (Atoms‘𝐾)) → ¬ 𝑌(le‘𝐾)𝑌)
2423ex 412 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑌𝑉) → (𝑌 ∈ (Atoms‘𝐾) → ¬ 𝑌(le‘𝐾)𝑌))
2517, 24mt2d 136 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑌𝑉) → ¬ 𝑌 ∈ (Atoms‘𝐾))
26 simplr 768 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑌𝑉) → 𝑋𝐶𝑌)
27 breq1 5122 . . . . . . . 8 (𝑋 = (0.‘𝐾) → (𝑋𝐶𝑌 ↔ (0.‘𝐾)𝐶𝑌))
2826, 27syl5ibcom 245 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑌𝑉) → (𝑋 = (0.‘𝐾) → (0.‘𝐾)𝐶𝑌))
29 eqid 2735 . . . . . . . . 9 (0.‘𝐾) = (0.‘𝐾)
305, 29, 6, 21isat2 39305 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑌𝐵) → (𝑌 ∈ (Atoms‘𝐾) ↔ (0.‘𝐾)𝐶𝑌))
3111, 14, 30syl2anc 584 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑌𝑉) → (𝑌 ∈ (Atoms‘𝐾) ↔ (0.‘𝐾)𝐶𝑌))
3228, 31sylibrd 259 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑌𝑉) → (𝑋 = (0.‘𝐾) → 𝑌 ∈ (Atoms‘𝐾)))
3332necon3bd 2946 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑌𝑉) → (¬ 𝑌 ∈ (Atoms‘𝐾) → 𝑋 ≠ (0.‘𝐾)))
3425, 33mpd 15 . . . 4 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑌𝑉) → 𝑋 ≠ (0.‘𝐾))
35 eqid 2735 . . . . . . 7 (LLines‘𝐾) = (LLines‘𝐾)
3635, 8lvolnelln 39608 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑌𝑉) → ¬ 𝑌 ∈ (LLines‘𝐾))
3711, 36sylancom 588 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑌𝑉) → ¬ 𝑌 ∈ (LLines‘𝐾))
3811adantr 480 . . . . . 6 (((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑌𝑉) ∧ 𝑋 ∈ (Atoms‘𝐾)) → 𝐾 ∈ HL)
3914adantr 480 . . . . . 6 (((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑌𝑉) ∧ 𝑋 ∈ (Atoms‘𝐾)) → 𝑌𝐵)
40 simpr 484 . . . . . 6 (((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑌𝑉) ∧ 𝑋 ∈ (Atoms‘𝐾)) → 𝑋 ∈ (Atoms‘𝐾))
41 simpllr 775 . . . . . 6 (((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑌𝑉) ∧ 𝑋 ∈ (Atoms‘𝐾)) → 𝑋𝐶𝑌)
425, 6, 21, 35llni 39527 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑌𝐵𝑋 ∈ (Atoms‘𝐾)) ∧ 𝑋𝐶𝑌) → 𝑌 ∈ (LLines‘𝐾))
4338, 39, 40, 41, 42syl31anc 1375 . . . . 5 (((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑌𝑉) ∧ 𝑋 ∈ (Atoms‘𝐾)) → 𝑌 ∈ (LLines‘𝐾))
4437, 43mtand 815 . . . 4 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑌𝑉) → ¬ 𝑋 ∈ (Atoms‘𝐾))
457, 8lvolnelpln 39609 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑌𝑉) → ¬ 𝑌𝑃)
4611, 45sylancom 588 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑌𝑉) → ¬ 𝑌𝑃)
475, 6, 35, 7llncvrlpln 39577 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) → (𝑋 ∈ (LLines‘𝐾) ↔ 𝑌𝑃))
4847adantr 480 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑌𝑉) → (𝑋 ∈ (LLines‘𝐾) ↔ 𝑌𝑃))
4946, 48mtbird 325 . . . 4 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑌𝑉) → ¬ 𝑋 ∈ (LLines‘𝐾))
505, 15, 29, 21, 35, 7lplnle 39559 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑋 ≠ (0.‘𝐾) ∧ ¬ 𝑋 ∈ (Atoms‘𝐾) ∧ ¬ 𝑋 ∈ (LLines‘𝐾))) → ∃𝑧𝑃 𝑧(le‘𝐾)𝑋)
5111, 12, 34, 44, 49, 50syl23anc 1379 . . 3 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑌𝑉) → ∃𝑧𝑃 𝑧(le‘𝐾)𝑋)
52 simpr3 1197 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ (𝑌𝑉𝑧𝑃𝑧(le‘𝐾)𝑋)) → 𝑧(le‘𝐾)𝑋)
53 simpll1 1213 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ (𝑌𝑉𝑧𝑃𝑧(le‘𝐾)𝑋)) → 𝐾 ∈ HL)
54 hlop 39380 . . . . . . . . . 10 (𝐾 ∈ HL → 𝐾 ∈ OP)
5553, 54syl 17 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ (𝑌𝑉𝑧𝑃𝑧(le‘𝐾)𝑋)) → 𝐾 ∈ OP)
56 simpr2 1196 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ (𝑌𝑉𝑧𝑃𝑧(le‘𝐾)𝑋)) → 𝑧𝑃)
575, 7lplnbase 39553 . . . . . . . . . 10 (𝑧𝑃𝑧𝐵)
5856, 57syl 17 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ (𝑌𝑉𝑧𝑃𝑧(le‘𝐾)𝑋)) → 𝑧𝐵)
59 simpll2 1214 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ (𝑌𝑉𝑧𝑃𝑧(le‘𝐾)𝑋)) → 𝑋𝐵)
60 simpll3 1215 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ (𝑌𝑉𝑧𝑃𝑧(le‘𝐾)𝑋)) → 𝑌𝐵)
61 simpr1 1195 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ (𝑌𝑉𝑧𝑃𝑧(le‘𝐾)𝑋)) → 𝑌𝑉)
625, 15, 6cvrle 39296 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) → 𝑋(le‘𝐾)𝑌)
6362adantr 480 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ (𝑌𝑉𝑧𝑃𝑧(le‘𝐾)𝑋)) → 𝑋(le‘𝐾)𝑌)
64 hlpos 39384 . . . . . . . . . . . . 13 (𝐾 ∈ HL → 𝐾 ∈ Poset)
6553, 64syl 17 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ (𝑌𝑉𝑧𝑃𝑧(le‘𝐾)𝑋)) → 𝐾 ∈ Poset)
665, 15postr 18332 . . . . . . . . . . . 12 ((𝐾 ∈ Poset ∧ (𝑧𝐵𝑋𝐵𝑌𝐵)) → ((𝑧(le‘𝐾)𝑋𝑋(le‘𝐾)𝑌) → 𝑧(le‘𝐾)𝑌))
6765, 58, 59, 60, 66syl13anc 1374 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ (𝑌𝑉𝑧𝑃𝑧(le‘𝐾)𝑋)) → ((𝑧(le‘𝐾)𝑋𝑋(le‘𝐾)𝑌) → 𝑧(le‘𝐾)𝑌))
6852, 63, 67mp2and 699 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ (𝑌𝑉𝑧𝑃𝑧(le‘𝐾)𝑋)) → 𝑧(le‘𝐾)𝑌)
6915, 6, 7, 8lplncvrlvol2 39634 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑧𝑃𝑌𝑉) ∧ 𝑧(le‘𝐾)𝑌) → 𝑧𝐶𝑌)
7053, 56, 61, 68, 69syl31anc 1375 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ (𝑌𝑉𝑧𝑃𝑧(le‘𝐾)𝑋)) → 𝑧𝐶𝑌)
71 simplr 768 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ (𝑌𝑉𝑧𝑃𝑧(le‘𝐾)𝑋)) → 𝑋𝐶𝑌)
725, 15, 6cvrcmp2 39302 . . . . . . . . 9 ((𝐾 ∈ OP ∧ (𝑧𝐵𝑋𝐵𝑌𝐵) ∧ (𝑧𝐶𝑌𝑋𝐶𝑌)) → (𝑧(le‘𝐾)𝑋𝑧 = 𝑋))
7355, 58, 59, 60, 70, 71, 72syl132anc 1390 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ (𝑌𝑉𝑧𝑃𝑧(le‘𝐾)𝑋)) → (𝑧(le‘𝐾)𝑋𝑧 = 𝑋))
7452, 73mpbid 232 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ (𝑌𝑉𝑧𝑃𝑧(le‘𝐾)𝑋)) → 𝑧 = 𝑋)
7574, 56eqeltrrd 2835 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ (𝑌𝑉𝑧𝑃𝑧(le‘𝐾)𝑋)) → 𝑋𝑃)
76753exp2 1355 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) → (𝑌𝑉 → (𝑧𝑃 → (𝑧(le‘𝐾)𝑋𝑋𝑃))))
7776imp 406 . . . 4 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑌𝑉) → (𝑧𝑃 → (𝑧(le‘𝐾)𝑋𝑋𝑃)))
7877rexlimdv 3139 . . 3 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑌𝑉) → (∃𝑧𝑃 𝑧(le‘𝐾)𝑋𝑋𝑃))
7951, 78mpd 15 . 2 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑌𝑉) → 𝑋𝑃)
8010, 79impbida 800 1 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) → (𝑋𝑃𝑌𝑉))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2108  wne 2932  wrex 3060   class class class wbr 5119  cfv 6531  Basecbs 17228  lecple 17278  Posetcpo 18319  0.cp0 18433  Latclat 18441  OPcops 39190  ccvr 39280  Atomscatm 39281  HLchlt 39368  LLinesclln 39510  LPlanesclpl 39511  LVolsclvol 39512
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-proset 18306  df-poset 18325  df-plt 18340  df-lub 18356  df-glb 18357  df-join 18358  df-meet 18359  df-p0 18435  df-lat 18442  df-clat 18509  df-oposet 39194  df-ol 39196  df-oml 39197  df-covers 39284  df-ats 39285  df-atl 39316  df-cvlat 39340  df-hlat 39369  df-llines 39517  df-lplanes 39518  df-lvols 39519
This theorem is referenced by:  2lplnmj  39641
  Copyright terms: Public domain W3C validator