Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lplncvrlvol Structured version   Visualization version   GIF version

Theorem lplncvrlvol 39239
Description: An element covering a lattice plane is a lattice volume and vice-versa. (Contributed by NM, 15-Jul-2012.)
Hypotheses
Ref Expression
lplncvrlvol.b 𝐵 = (Base‘𝐾)
lplncvrlvol.c 𝐶 = ( ⋖ ‘𝐾)
lplncvrlvol.p 𝑃 = (LPlanes‘𝐾)
lplncvrlvol.v 𝑉 = (LVols‘𝐾)
Assertion
Ref Expression
lplncvrlvol (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) → (𝑋𝑃𝑌𝑉))

Proof of Theorem lplncvrlvol
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 simpll1 1209 . . 3 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑋𝑃) → 𝐾 ∈ HL)
2 simpll3 1211 . . 3 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑋𝑃) → 𝑌𝐵)
3 simpr 483 . . 3 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑋𝑃) → 𝑋𝑃)
4 simplr 767 . . 3 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑋𝑃) → 𝑋𝐶𝑌)
5 lplncvrlvol.b . . . 4 𝐵 = (Base‘𝐾)
6 lplncvrlvol.c . . . 4 𝐶 = ( ⋖ ‘𝐾)
7 lplncvrlvol.p . . . 4 𝑃 = (LPlanes‘𝐾)
8 lplncvrlvol.v . . . 4 𝑉 = (LVols‘𝐾)
95, 6, 7, 8lvoli 39198 . . 3 (((𝐾 ∈ HL ∧ 𝑌𝐵𝑋𝑃) ∧ 𝑋𝐶𝑌) → 𝑌𝑉)
101, 2, 3, 4, 9syl31anc 1370 . 2 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑋𝑃) → 𝑌𝑉)
11 simpll1 1209 . . . 4 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑌𝑉) → 𝐾 ∈ HL)
12 simpll2 1210 . . . 4 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑌𝑉) → 𝑋𝐵)
1311hllatd 38986 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑌𝑉) → 𝐾 ∈ Lat)
14 simpll3 1211 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑌𝑉) → 𝑌𝐵)
15 eqid 2725 . . . . . . . 8 (le‘𝐾) = (le‘𝐾)
165, 15latref 18452 . . . . . . 7 ((𝐾 ∈ Lat ∧ 𝑌𝐵) → 𝑌(le‘𝐾)𝑌)
1713, 14, 16syl2anc 582 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑌𝑉) → 𝑌(le‘𝐾)𝑌)
1811adantr 479 . . . . . . . 8 (((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑌𝑉) ∧ 𝑌 ∈ (Atoms‘𝐾)) → 𝐾 ∈ HL)
19 simplr 767 . . . . . . . 8 (((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑌𝑉) ∧ 𝑌 ∈ (Atoms‘𝐾)) → 𝑌𝑉)
20 simpr 483 . . . . . . . 8 (((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑌𝑉) ∧ 𝑌 ∈ (Atoms‘𝐾)) → 𝑌 ∈ (Atoms‘𝐾))
21 eqid 2725 . . . . . . . . 9 (Atoms‘𝐾) = (Atoms‘𝐾)
2215, 21, 8lvolnleat 39206 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑌𝑉𝑌 ∈ (Atoms‘𝐾)) → ¬ 𝑌(le‘𝐾)𝑌)
2318, 19, 20, 22syl3anc 1368 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑌𝑉) ∧ 𝑌 ∈ (Atoms‘𝐾)) → ¬ 𝑌(le‘𝐾)𝑌)
2423ex 411 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑌𝑉) → (𝑌 ∈ (Atoms‘𝐾) → ¬ 𝑌(le‘𝐾)𝑌))
2517, 24mt2d 136 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑌𝑉) → ¬ 𝑌 ∈ (Atoms‘𝐾))
26 simplr 767 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑌𝑉) → 𝑋𝐶𝑌)
27 breq1 5152 . . . . . . . 8 (𝑋 = (0.‘𝐾) → (𝑋𝐶𝑌 ↔ (0.‘𝐾)𝐶𝑌))
2826, 27syl5ibcom 244 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑌𝑉) → (𝑋 = (0.‘𝐾) → (0.‘𝐾)𝐶𝑌))
29 eqid 2725 . . . . . . . . 9 (0.‘𝐾) = (0.‘𝐾)
305, 29, 6, 21isat2 38909 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑌𝐵) → (𝑌 ∈ (Atoms‘𝐾) ↔ (0.‘𝐾)𝐶𝑌))
3111, 14, 30syl2anc 582 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑌𝑉) → (𝑌 ∈ (Atoms‘𝐾) ↔ (0.‘𝐾)𝐶𝑌))
3228, 31sylibrd 258 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑌𝑉) → (𝑋 = (0.‘𝐾) → 𝑌 ∈ (Atoms‘𝐾)))
3332necon3bd 2943 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑌𝑉) → (¬ 𝑌 ∈ (Atoms‘𝐾) → 𝑋 ≠ (0.‘𝐾)))
3425, 33mpd 15 . . . 4 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑌𝑉) → 𝑋 ≠ (0.‘𝐾))
35 eqid 2725 . . . . . . 7 (LLines‘𝐾) = (LLines‘𝐾)
3635, 8lvolnelln 39212 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑌𝑉) → ¬ 𝑌 ∈ (LLines‘𝐾))
3711, 36sylancom 586 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑌𝑉) → ¬ 𝑌 ∈ (LLines‘𝐾))
3811adantr 479 . . . . . 6 (((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑌𝑉) ∧ 𝑋 ∈ (Atoms‘𝐾)) → 𝐾 ∈ HL)
3914adantr 479 . . . . . 6 (((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑌𝑉) ∧ 𝑋 ∈ (Atoms‘𝐾)) → 𝑌𝐵)
40 simpr 483 . . . . . 6 (((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑌𝑉) ∧ 𝑋 ∈ (Atoms‘𝐾)) → 𝑋 ∈ (Atoms‘𝐾))
41 simpllr 774 . . . . . 6 (((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑌𝑉) ∧ 𝑋 ∈ (Atoms‘𝐾)) → 𝑋𝐶𝑌)
425, 6, 21, 35llni 39131 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑌𝐵𝑋 ∈ (Atoms‘𝐾)) ∧ 𝑋𝐶𝑌) → 𝑌 ∈ (LLines‘𝐾))
4338, 39, 40, 41, 42syl31anc 1370 . . . . 5 (((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑌𝑉) ∧ 𝑋 ∈ (Atoms‘𝐾)) → 𝑌 ∈ (LLines‘𝐾))
4437, 43mtand 814 . . . 4 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑌𝑉) → ¬ 𝑋 ∈ (Atoms‘𝐾))
457, 8lvolnelpln 39213 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑌𝑉) → ¬ 𝑌𝑃)
4611, 45sylancom 586 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑌𝑉) → ¬ 𝑌𝑃)
475, 6, 35, 7llncvrlpln 39181 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) → (𝑋 ∈ (LLines‘𝐾) ↔ 𝑌𝑃))
4847adantr 479 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑌𝑉) → (𝑋 ∈ (LLines‘𝐾) ↔ 𝑌𝑃))
4946, 48mtbird 324 . . . 4 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑌𝑉) → ¬ 𝑋 ∈ (LLines‘𝐾))
505, 15, 29, 21, 35, 7lplnle 39163 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑋 ≠ (0.‘𝐾) ∧ ¬ 𝑋 ∈ (Atoms‘𝐾) ∧ ¬ 𝑋 ∈ (LLines‘𝐾))) → ∃𝑧𝑃 𝑧(le‘𝐾)𝑋)
5111, 12, 34, 44, 49, 50syl23anc 1374 . . 3 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑌𝑉) → ∃𝑧𝑃 𝑧(le‘𝐾)𝑋)
52 simpr3 1193 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ (𝑌𝑉𝑧𝑃𝑧(le‘𝐾)𝑋)) → 𝑧(le‘𝐾)𝑋)
53 simpll1 1209 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ (𝑌𝑉𝑧𝑃𝑧(le‘𝐾)𝑋)) → 𝐾 ∈ HL)
54 hlop 38984 . . . . . . . . . 10 (𝐾 ∈ HL → 𝐾 ∈ OP)
5553, 54syl 17 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ (𝑌𝑉𝑧𝑃𝑧(le‘𝐾)𝑋)) → 𝐾 ∈ OP)
56 simpr2 1192 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ (𝑌𝑉𝑧𝑃𝑧(le‘𝐾)𝑋)) → 𝑧𝑃)
575, 7lplnbase 39157 . . . . . . . . . 10 (𝑧𝑃𝑧𝐵)
5856, 57syl 17 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ (𝑌𝑉𝑧𝑃𝑧(le‘𝐾)𝑋)) → 𝑧𝐵)
59 simpll2 1210 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ (𝑌𝑉𝑧𝑃𝑧(le‘𝐾)𝑋)) → 𝑋𝐵)
60 simpll3 1211 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ (𝑌𝑉𝑧𝑃𝑧(le‘𝐾)𝑋)) → 𝑌𝐵)
61 simpr1 1191 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ (𝑌𝑉𝑧𝑃𝑧(le‘𝐾)𝑋)) → 𝑌𝑉)
625, 15, 6cvrle 38900 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) → 𝑋(le‘𝐾)𝑌)
6362adantr 479 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ (𝑌𝑉𝑧𝑃𝑧(le‘𝐾)𝑋)) → 𝑋(le‘𝐾)𝑌)
64 hlpos 38988 . . . . . . . . . . . . 13 (𝐾 ∈ HL → 𝐾 ∈ Poset)
6553, 64syl 17 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ (𝑌𝑉𝑧𝑃𝑧(le‘𝐾)𝑋)) → 𝐾 ∈ Poset)
665, 15postr 18331 . . . . . . . . . . . 12 ((𝐾 ∈ Poset ∧ (𝑧𝐵𝑋𝐵𝑌𝐵)) → ((𝑧(le‘𝐾)𝑋𝑋(le‘𝐾)𝑌) → 𝑧(le‘𝐾)𝑌))
6765, 58, 59, 60, 66syl13anc 1369 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ (𝑌𝑉𝑧𝑃𝑧(le‘𝐾)𝑋)) → ((𝑧(le‘𝐾)𝑋𝑋(le‘𝐾)𝑌) → 𝑧(le‘𝐾)𝑌))
6852, 63, 67mp2and 697 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ (𝑌𝑉𝑧𝑃𝑧(le‘𝐾)𝑋)) → 𝑧(le‘𝐾)𝑌)
6915, 6, 7, 8lplncvrlvol2 39238 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑧𝑃𝑌𝑉) ∧ 𝑧(le‘𝐾)𝑌) → 𝑧𝐶𝑌)
7053, 56, 61, 68, 69syl31anc 1370 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ (𝑌𝑉𝑧𝑃𝑧(le‘𝐾)𝑋)) → 𝑧𝐶𝑌)
71 simplr 767 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ (𝑌𝑉𝑧𝑃𝑧(le‘𝐾)𝑋)) → 𝑋𝐶𝑌)
725, 15, 6cvrcmp2 38906 . . . . . . . . 9 ((𝐾 ∈ OP ∧ (𝑧𝐵𝑋𝐵𝑌𝐵) ∧ (𝑧𝐶𝑌𝑋𝐶𝑌)) → (𝑧(le‘𝐾)𝑋𝑧 = 𝑋))
7355, 58, 59, 60, 70, 71, 72syl132anc 1385 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ (𝑌𝑉𝑧𝑃𝑧(le‘𝐾)𝑋)) → (𝑧(le‘𝐾)𝑋𝑧 = 𝑋))
7452, 73mpbid 231 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ (𝑌𝑉𝑧𝑃𝑧(le‘𝐾)𝑋)) → 𝑧 = 𝑋)
7574, 56eqeltrrd 2826 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ (𝑌𝑉𝑧𝑃𝑧(le‘𝐾)𝑋)) → 𝑋𝑃)
76753exp2 1351 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) → (𝑌𝑉 → (𝑧𝑃 → (𝑧(le‘𝐾)𝑋𝑋𝑃))))
7776imp 405 . . . 4 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑌𝑉) → (𝑧𝑃 → (𝑧(le‘𝐾)𝑋𝑋𝑃)))
7877rexlimdv 3142 . . 3 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑌𝑉) → (∃𝑧𝑃 𝑧(le‘𝐾)𝑋𝑋𝑃))
7951, 78mpd 15 . 2 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑌𝑉) → 𝑋𝑃)
8010, 79impbida 799 1 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) → (𝑋𝑃𝑌𝑉))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 394  w3a 1084   = wceq 1533  wcel 2098  wne 2929  wrex 3059   class class class wbr 5149  cfv 6549  Basecbs 17199  lecple 17259  Posetcpo 18318  0.cp0 18434  Latclat 18442  OPcops 38794  ccvr 38884  Atomscatm 38885  HLchlt 38972  LLinesclln 39114  LPlanesclpl 39115  LVolsclvol 39116
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-iun 4999  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5576  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-riota 7375  df-ov 7422  df-oprab 7423  df-proset 18306  df-poset 18324  df-plt 18341  df-lub 18357  df-glb 18358  df-join 18359  df-meet 18360  df-p0 18436  df-lat 18443  df-clat 18510  df-oposet 38798  df-ol 38800  df-oml 38801  df-covers 38888  df-ats 38889  df-atl 38920  df-cvlat 38944  df-hlat 38973  df-llines 39121  df-lplanes 39122  df-lvols 39123
This theorem is referenced by:  2lplnmj  39245
  Copyright terms: Public domain W3C validator