Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lplncvrlvol Structured version   Visualization version   GIF version

Theorem lplncvrlvol 36746
Description: An element covering a lattice plane is a lattice volume and vice-versa. (Contributed by NM, 15-Jul-2012.)
Hypotheses
Ref Expression
lplncvrlvol.b 𝐵 = (Base‘𝐾)
lplncvrlvol.c 𝐶 = ( ⋖ ‘𝐾)
lplncvrlvol.p 𝑃 = (LPlanes‘𝐾)
lplncvrlvol.v 𝑉 = (LVols‘𝐾)
Assertion
Ref Expression
lplncvrlvol (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) → (𝑋𝑃𝑌𝑉))

Proof of Theorem lplncvrlvol
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 simpll1 1208 . . 3 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑋𝑃) → 𝐾 ∈ HL)
2 simpll3 1210 . . 3 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑋𝑃) → 𝑌𝐵)
3 simpr 487 . . 3 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑋𝑃) → 𝑋𝑃)
4 simplr 767 . . 3 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑋𝑃) → 𝑋𝐶𝑌)
5 lplncvrlvol.b . . . 4 𝐵 = (Base‘𝐾)
6 lplncvrlvol.c . . . 4 𝐶 = ( ⋖ ‘𝐾)
7 lplncvrlvol.p . . . 4 𝑃 = (LPlanes‘𝐾)
8 lplncvrlvol.v . . . 4 𝑉 = (LVols‘𝐾)
95, 6, 7, 8lvoli 36705 . . 3 (((𝐾 ∈ HL ∧ 𝑌𝐵𝑋𝑃) ∧ 𝑋𝐶𝑌) → 𝑌𝑉)
101, 2, 3, 4, 9syl31anc 1369 . 2 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑋𝑃) → 𝑌𝑉)
11 simpll1 1208 . . . 4 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑌𝑉) → 𝐾 ∈ HL)
12 simpll2 1209 . . . 4 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑌𝑉) → 𝑋𝐵)
1311hllatd 36494 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑌𝑉) → 𝐾 ∈ Lat)
14 simpll3 1210 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑌𝑉) → 𝑌𝐵)
15 eqid 2821 . . . . . . . 8 (le‘𝐾) = (le‘𝐾)
165, 15latref 17657 . . . . . . 7 ((𝐾 ∈ Lat ∧ 𝑌𝐵) → 𝑌(le‘𝐾)𝑌)
1713, 14, 16syl2anc 586 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑌𝑉) → 𝑌(le‘𝐾)𝑌)
1811adantr 483 . . . . . . . 8 (((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑌𝑉) ∧ 𝑌 ∈ (Atoms‘𝐾)) → 𝐾 ∈ HL)
19 simplr 767 . . . . . . . 8 (((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑌𝑉) ∧ 𝑌 ∈ (Atoms‘𝐾)) → 𝑌𝑉)
20 simpr 487 . . . . . . . 8 (((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑌𝑉) ∧ 𝑌 ∈ (Atoms‘𝐾)) → 𝑌 ∈ (Atoms‘𝐾))
21 eqid 2821 . . . . . . . . 9 (Atoms‘𝐾) = (Atoms‘𝐾)
2215, 21, 8lvolnleat 36713 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑌𝑉𝑌 ∈ (Atoms‘𝐾)) → ¬ 𝑌(le‘𝐾)𝑌)
2318, 19, 20, 22syl3anc 1367 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑌𝑉) ∧ 𝑌 ∈ (Atoms‘𝐾)) → ¬ 𝑌(le‘𝐾)𝑌)
2423ex 415 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑌𝑉) → (𝑌 ∈ (Atoms‘𝐾) → ¬ 𝑌(le‘𝐾)𝑌))
2517, 24mt2d 138 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑌𝑉) → ¬ 𝑌 ∈ (Atoms‘𝐾))
26 simplr 767 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑌𝑉) → 𝑋𝐶𝑌)
27 breq1 5061 . . . . . . . 8 (𝑋 = (0.‘𝐾) → (𝑋𝐶𝑌 ↔ (0.‘𝐾)𝐶𝑌))
2826, 27syl5ibcom 247 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑌𝑉) → (𝑋 = (0.‘𝐾) → (0.‘𝐾)𝐶𝑌))
29 eqid 2821 . . . . . . . . 9 (0.‘𝐾) = (0.‘𝐾)
305, 29, 6, 21isat2 36417 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑌𝐵) → (𝑌 ∈ (Atoms‘𝐾) ↔ (0.‘𝐾)𝐶𝑌))
3111, 14, 30syl2anc 586 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑌𝑉) → (𝑌 ∈ (Atoms‘𝐾) ↔ (0.‘𝐾)𝐶𝑌))
3228, 31sylibrd 261 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑌𝑉) → (𝑋 = (0.‘𝐾) → 𝑌 ∈ (Atoms‘𝐾)))
3332necon3bd 3030 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑌𝑉) → (¬ 𝑌 ∈ (Atoms‘𝐾) → 𝑋 ≠ (0.‘𝐾)))
3425, 33mpd 15 . . . 4 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑌𝑉) → 𝑋 ≠ (0.‘𝐾))
35 eqid 2821 . . . . . . 7 (LLines‘𝐾) = (LLines‘𝐾)
3635, 8lvolnelln 36719 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑌𝑉) → ¬ 𝑌 ∈ (LLines‘𝐾))
3711, 36sylancom 590 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑌𝑉) → ¬ 𝑌 ∈ (LLines‘𝐾))
3811adantr 483 . . . . . 6 (((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑌𝑉) ∧ 𝑋 ∈ (Atoms‘𝐾)) → 𝐾 ∈ HL)
3914adantr 483 . . . . . 6 (((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑌𝑉) ∧ 𝑋 ∈ (Atoms‘𝐾)) → 𝑌𝐵)
40 simpr 487 . . . . . 6 (((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑌𝑉) ∧ 𝑋 ∈ (Atoms‘𝐾)) → 𝑋 ∈ (Atoms‘𝐾))
41 simpllr 774 . . . . . 6 (((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑌𝑉) ∧ 𝑋 ∈ (Atoms‘𝐾)) → 𝑋𝐶𝑌)
425, 6, 21, 35llni 36638 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑌𝐵𝑋 ∈ (Atoms‘𝐾)) ∧ 𝑋𝐶𝑌) → 𝑌 ∈ (LLines‘𝐾))
4338, 39, 40, 41, 42syl31anc 1369 . . . . 5 (((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑌𝑉) ∧ 𝑋 ∈ (Atoms‘𝐾)) → 𝑌 ∈ (LLines‘𝐾))
4437, 43mtand 814 . . . 4 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑌𝑉) → ¬ 𝑋 ∈ (Atoms‘𝐾))
457, 8lvolnelpln 36720 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑌𝑉) → ¬ 𝑌𝑃)
4611, 45sylancom 590 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑌𝑉) → ¬ 𝑌𝑃)
475, 6, 35, 7llncvrlpln 36688 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) → (𝑋 ∈ (LLines‘𝐾) ↔ 𝑌𝑃))
4847adantr 483 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑌𝑉) → (𝑋 ∈ (LLines‘𝐾) ↔ 𝑌𝑃))
4946, 48mtbird 327 . . . 4 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑌𝑉) → ¬ 𝑋 ∈ (LLines‘𝐾))
505, 15, 29, 21, 35, 7lplnle 36670 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑋 ≠ (0.‘𝐾) ∧ ¬ 𝑋 ∈ (Atoms‘𝐾) ∧ ¬ 𝑋 ∈ (LLines‘𝐾))) → ∃𝑧𝑃 𝑧(le‘𝐾)𝑋)
5111, 12, 34, 44, 49, 50syl23anc 1373 . . 3 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑌𝑉) → ∃𝑧𝑃 𝑧(le‘𝐾)𝑋)
52 simpr3 1192 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ (𝑌𝑉𝑧𝑃𝑧(le‘𝐾)𝑋)) → 𝑧(le‘𝐾)𝑋)
53 simpll1 1208 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ (𝑌𝑉𝑧𝑃𝑧(le‘𝐾)𝑋)) → 𝐾 ∈ HL)
54 hlop 36492 . . . . . . . . . 10 (𝐾 ∈ HL → 𝐾 ∈ OP)
5553, 54syl 17 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ (𝑌𝑉𝑧𝑃𝑧(le‘𝐾)𝑋)) → 𝐾 ∈ OP)
56 simpr2 1191 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ (𝑌𝑉𝑧𝑃𝑧(le‘𝐾)𝑋)) → 𝑧𝑃)
575, 7lplnbase 36664 . . . . . . . . . 10 (𝑧𝑃𝑧𝐵)
5856, 57syl 17 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ (𝑌𝑉𝑧𝑃𝑧(le‘𝐾)𝑋)) → 𝑧𝐵)
59 simpll2 1209 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ (𝑌𝑉𝑧𝑃𝑧(le‘𝐾)𝑋)) → 𝑋𝐵)
60 simpll3 1210 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ (𝑌𝑉𝑧𝑃𝑧(le‘𝐾)𝑋)) → 𝑌𝐵)
61 simpr1 1190 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ (𝑌𝑉𝑧𝑃𝑧(le‘𝐾)𝑋)) → 𝑌𝑉)
625, 15, 6cvrle 36408 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) → 𝑋(le‘𝐾)𝑌)
6362adantr 483 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ (𝑌𝑉𝑧𝑃𝑧(le‘𝐾)𝑋)) → 𝑋(le‘𝐾)𝑌)
64 hlpos 36496 . . . . . . . . . . . . 13 (𝐾 ∈ HL → 𝐾 ∈ Poset)
6553, 64syl 17 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ (𝑌𝑉𝑧𝑃𝑧(le‘𝐾)𝑋)) → 𝐾 ∈ Poset)
665, 15postr 17557 . . . . . . . . . . . 12 ((𝐾 ∈ Poset ∧ (𝑧𝐵𝑋𝐵𝑌𝐵)) → ((𝑧(le‘𝐾)𝑋𝑋(le‘𝐾)𝑌) → 𝑧(le‘𝐾)𝑌))
6765, 58, 59, 60, 66syl13anc 1368 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ (𝑌𝑉𝑧𝑃𝑧(le‘𝐾)𝑋)) → ((𝑧(le‘𝐾)𝑋𝑋(le‘𝐾)𝑌) → 𝑧(le‘𝐾)𝑌))
6852, 63, 67mp2and 697 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ (𝑌𝑉𝑧𝑃𝑧(le‘𝐾)𝑋)) → 𝑧(le‘𝐾)𝑌)
6915, 6, 7, 8lplncvrlvol2 36745 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑧𝑃𝑌𝑉) ∧ 𝑧(le‘𝐾)𝑌) → 𝑧𝐶𝑌)
7053, 56, 61, 68, 69syl31anc 1369 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ (𝑌𝑉𝑧𝑃𝑧(le‘𝐾)𝑋)) → 𝑧𝐶𝑌)
71 simplr 767 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ (𝑌𝑉𝑧𝑃𝑧(le‘𝐾)𝑋)) → 𝑋𝐶𝑌)
725, 15, 6cvrcmp2 36414 . . . . . . . . 9 ((𝐾 ∈ OP ∧ (𝑧𝐵𝑋𝐵𝑌𝐵) ∧ (𝑧𝐶𝑌𝑋𝐶𝑌)) → (𝑧(le‘𝐾)𝑋𝑧 = 𝑋))
7355, 58, 59, 60, 70, 71, 72syl132anc 1384 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ (𝑌𝑉𝑧𝑃𝑧(le‘𝐾)𝑋)) → (𝑧(le‘𝐾)𝑋𝑧 = 𝑋))
7452, 73mpbid 234 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ (𝑌𝑉𝑧𝑃𝑧(le‘𝐾)𝑋)) → 𝑧 = 𝑋)
7574, 56eqeltrrd 2914 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ (𝑌𝑉𝑧𝑃𝑧(le‘𝐾)𝑋)) → 𝑋𝑃)
76753exp2 1350 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) → (𝑌𝑉 → (𝑧𝑃 → (𝑧(le‘𝐾)𝑋𝑋𝑃))))
7776imp 409 . . . 4 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑌𝑉) → (𝑧𝑃 → (𝑧(le‘𝐾)𝑋𝑋𝑃)))
7877rexlimdv 3283 . . 3 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑌𝑉) → (∃𝑧𝑃 𝑧(le‘𝐾)𝑋𝑋𝑃))
7951, 78mpd 15 . 2 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑌𝑉) → 𝑋𝑃)
8010, 79impbida 799 1 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) → (𝑋𝑃𝑌𝑉))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  w3a 1083   = wceq 1533  wcel 2110  wne 3016  wrex 3139   class class class wbr 5058  cfv 6349  Basecbs 16477  lecple 16566  Posetcpo 17544  0.cp0 17641  Latclat 17649  OPcops 36302  ccvr 36392  Atomscatm 36393  HLchlt 36480  LLinesclln 36621  LPlanesclpl 36622  LVolsclvol 36623
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5182  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-op 4567  df-uni 4832  df-iun 4913  df-br 5059  df-opab 5121  df-mpt 5139  df-id 5454  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-riota 7108  df-ov 7153  df-oprab 7154  df-proset 17532  df-poset 17550  df-plt 17562  df-lub 17578  df-glb 17579  df-join 17580  df-meet 17581  df-p0 17643  df-lat 17650  df-clat 17712  df-oposet 36306  df-ol 36308  df-oml 36309  df-covers 36396  df-ats 36397  df-atl 36428  df-cvlat 36452  df-hlat 36481  df-llines 36628  df-lplanes 36629  df-lvols 36630
This theorem is referenced by:  2lplnmj  36752
  Copyright terms: Public domain W3C validator