Mathbox for Norm Megill < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lplncvrlvol Structured version   Visualization version   GIF version

Theorem lplncvrlvol 36931
 Description: An element covering a lattice plane is a lattice volume and vice-versa. (Contributed by NM, 15-Jul-2012.)
Hypotheses
Ref Expression
lplncvrlvol.b 𝐵 = (Base‘𝐾)
lplncvrlvol.c 𝐶 = ( ⋖ ‘𝐾)
lplncvrlvol.p 𝑃 = (LPlanes‘𝐾)
lplncvrlvol.v 𝑉 = (LVols‘𝐾)
Assertion
Ref Expression
lplncvrlvol (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) → (𝑋𝑃𝑌𝑉))

Proof of Theorem lplncvrlvol
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 simpll1 1209 . . 3 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑋𝑃) → 𝐾 ∈ HL)
2 simpll3 1211 . . 3 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑋𝑃) → 𝑌𝐵)
3 simpr 488 . . 3 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑋𝑃) → 𝑋𝑃)
4 simplr 768 . . 3 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑋𝑃) → 𝑋𝐶𝑌)
5 lplncvrlvol.b . . . 4 𝐵 = (Base‘𝐾)
6 lplncvrlvol.c . . . 4 𝐶 = ( ⋖ ‘𝐾)
7 lplncvrlvol.p . . . 4 𝑃 = (LPlanes‘𝐾)
8 lplncvrlvol.v . . . 4 𝑉 = (LVols‘𝐾)
95, 6, 7, 8lvoli 36890 . . 3 (((𝐾 ∈ HL ∧ 𝑌𝐵𝑋𝑃) ∧ 𝑋𝐶𝑌) → 𝑌𝑉)
101, 2, 3, 4, 9syl31anc 1370 . 2 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑋𝑃) → 𝑌𝑉)
11 simpll1 1209 . . . 4 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑌𝑉) → 𝐾 ∈ HL)
12 simpll2 1210 . . . 4 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑌𝑉) → 𝑋𝐵)
1311hllatd 36679 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑌𝑉) → 𝐾 ∈ Lat)
14 simpll3 1211 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑌𝑉) → 𝑌𝐵)
15 eqid 2798 . . . . . . . 8 (le‘𝐾) = (le‘𝐾)
165, 15latref 17658 . . . . . . 7 ((𝐾 ∈ Lat ∧ 𝑌𝐵) → 𝑌(le‘𝐾)𝑌)
1713, 14, 16syl2anc 587 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑌𝑉) → 𝑌(le‘𝐾)𝑌)
1811adantr 484 . . . . . . . 8 (((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑌𝑉) ∧ 𝑌 ∈ (Atoms‘𝐾)) → 𝐾 ∈ HL)
19 simplr 768 . . . . . . . 8 (((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑌𝑉) ∧ 𝑌 ∈ (Atoms‘𝐾)) → 𝑌𝑉)
20 simpr 488 . . . . . . . 8 (((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑌𝑉) ∧ 𝑌 ∈ (Atoms‘𝐾)) → 𝑌 ∈ (Atoms‘𝐾))
21 eqid 2798 . . . . . . . . 9 (Atoms‘𝐾) = (Atoms‘𝐾)
2215, 21, 8lvolnleat 36898 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑌𝑉𝑌 ∈ (Atoms‘𝐾)) → ¬ 𝑌(le‘𝐾)𝑌)
2318, 19, 20, 22syl3anc 1368 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑌𝑉) ∧ 𝑌 ∈ (Atoms‘𝐾)) → ¬ 𝑌(le‘𝐾)𝑌)
2423ex 416 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑌𝑉) → (𝑌 ∈ (Atoms‘𝐾) → ¬ 𝑌(le‘𝐾)𝑌))
2517, 24mt2d 138 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑌𝑉) → ¬ 𝑌 ∈ (Atoms‘𝐾))
26 simplr 768 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑌𝑉) → 𝑋𝐶𝑌)
27 breq1 5034 . . . . . . . 8 (𝑋 = (0.‘𝐾) → (𝑋𝐶𝑌 ↔ (0.‘𝐾)𝐶𝑌))
2826, 27syl5ibcom 248 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑌𝑉) → (𝑋 = (0.‘𝐾) → (0.‘𝐾)𝐶𝑌))
29 eqid 2798 . . . . . . . . 9 (0.‘𝐾) = (0.‘𝐾)
305, 29, 6, 21isat2 36602 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑌𝐵) → (𝑌 ∈ (Atoms‘𝐾) ↔ (0.‘𝐾)𝐶𝑌))
3111, 14, 30syl2anc 587 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑌𝑉) → (𝑌 ∈ (Atoms‘𝐾) ↔ (0.‘𝐾)𝐶𝑌))
3228, 31sylibrd 262 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑌𝑉) → (𝑋 = (0.‘𝐾) → 𝑌 ∈ (Atoms‘𝐾)))
3332necon3bd 3001 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑌𝑉) → (¬ 𝑌 ∈ (Atoms‘𝐾) → 𝑋 ≠ (0.‘𝐾)))
3425, 33mpd 15 . . . 4 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑌𝑉) → 𝑋 ≠ (0.‘𝐾))
35 eqid 2798 . . . . . . 7 (LLines‘𝐾) = (LLines‘𝐾)
3635, 8lvolnelln 36904 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑌𝑉) → ¬ 𝑌 ∈ (LLines‘𝐾))
3711, 36sylancom 591 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑌𝑉) → ¬ 𝑌 ∈ (LLines‘𝐾))
3811adantr 484 . . . . . 6 (((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑌𝑉) ∧ 𝑋 ∈ (Atoms‘𝐾)) → 𝐾 ∈ HL)
3914adantr 484 . . . . . 6 (((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑌𝑉) ∧ 𝑋 ∈ (Atoms‘𝐾)) → 𝑌𝐵)
40 simpr 488 . . . . . 6 (((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑌𝑉) ∧ 𝑋 ∈ (Atoms‘𝐾)) → 𝑋 ∈ (Atoms‘𝐾))
41 simpllr 775 . . . . . 6 (((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑌𝑉) ∧ 𝑋 ∈ (Atoms‘𝐾)) → 𝑋𝐶𝑌)
425, 6, 21, 35llni 36823 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑌𝐵𝑋 ∈ (Atoms‘𝐾)) ∧ 𝑋𝐶𝑌) → 𝑌 ∈ (LLines‘𝐾))
4338, 39, 40, 41, 42syl31anc 1370 . . . . 5 (((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑌𝑉) ∧ 𝑋 ∈ (Atoms‘𝐾)) → 𝑌 ∈ (LLines‘𝐾))
4437, 43mtand 815 . . . 4 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑌𝑉) → ¬ 𝑋 ∈ (Atoms‘𝐾))
457, 8lvolnelpln 36905 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑌𝑉) → ¬ 𝑌𝑃)
4611, 45sylancom 591 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑌𝑉) → ¬ 𝑌𝑃)
475, 6, 35, 7llncvrlpln 36873 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) → (𝑋 ∈ (LLines‘𝐾) ↔ 𝑌𝑃))
4847adantr 484 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑌𝑉) → (𝑋 ∈ (LLines‘𝐾) ↔ 𝑌𝑃))
4946, 48mtbird 328 . . . 4 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑌𝑉) → ¬ 𝑋 ∈ (LLines‘𝐾))
505, 15, 29, 21, 35, 7lplnle 36855 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑋 ≠ (0.‘𝐾) ∧ ¬ 𝑋 ∈ (Atoms‘𝐾) ∧ ¬ 𝑋 ∈ (LLines‘𝐾))) → ∃𝑧𝑃 𝑧(le‘𝐾)𝑋)
5111, 12, 34, 44, 49, 50syl23anc 1374 . . 3 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑌𝑉) → ∃𝑧𝑃 𝑧(le‘𝐾)𝑋)
52 simpr3 1193 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ (𝑌𝑉𝑧𝑃𝑧(le‘𝐾)𝑋)) → 𝑧(le‘𝐾)𝑋)
53 simpll1 1209 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ (𝑌𝑉𝑧𝑃𝑧(le‘𝐾)𝑋)) → 𝐾 ∈ HL)
54 hlop 36677 . . . . . . . . . 10 (𝐾 ∈ HL → 𝐾 ∈ OP)
5553, 54syl 17 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ (𝑌𝑉𝑧𝑃𝑧(le‘𝐾)𝑋)) → 𝐾 ∈ OP)
56 simpr2 1192 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ (𝑌𝑉𝑧𝑃𝑧(le‘𝐾)𝑋)) → 𝑧𝑃)
575, 7lplnbase 36849 . . . . . . . . . 10 (𝑧𝑃𝑧𝐵)
5856, 57syl 17 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ (𝑌𝑉𝑧𝑃𝑧(le‘𝐾)𝑋)) → 𝑧𝐵)
59 simpll2 1210 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ (𝑌𝑉𝑧𝑃𝑧(le‘𝐾)𝑋)) → 𝑋𝐵)
60 simpll3 1211 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ (𝑌𝑉𝑧𝑃𝑧(le‘𝐾)𝑋)) → 𝑌𝐵)
61 simpr1 1191 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ (𝑌𝑉𝑧𝑃𝑧(le‘𝐾)𝑋)) → 𝑌𝑉)
625, 15, 6cvrle 36593 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) → 𝑋(le‘𝐾)𝑌)
6362adantr 484 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ (𝑌𝑉𝑧𝑃𝑧(le‘𝐾)𝑋)) → 𝑋(le‘𝐾)𝑌)
64 hlpos 36681 . . . . . . . . . . . . 13 (𝐾 ∈ HL → 𝐾 ∈ Poset)
6553, 64syl 17 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ (𝑌𝑉𝑧𝑃𝑧(le‘𝐾)𝑋)) → 𝐾 ∈ Poset)
665, 15postr 17558 . . . . . . . . . . . 12 ((𝐾 ∈ Poset ∧ (𝑧𝐵𝑋𝐵𝑌𝐵)) → ((𝑧(le‘𝐾)𝑋𝑋(le‘𝐾)𝑌) → 𝑧(le‘𝐾)𝑌))
6765, 58, 59, 60, 66syl13anc 1369 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ (𝑌𝑉𝑧𝑃𝑧(le‘𝐾)𝑋)) → ((𝑧(le‘𝐾)𝑋𝑋(le‘𝐾)𝑌) → 𝑧(le‘𝐾)𝑌))
6852, 63, 67mp2and 698 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ (𝑌𝑉𝑧𝑃𝑧(le‘𝐾)𝑋)) → 𝑧(le‘𝐾)𝑌)
6915, 6, 7, 8lplncvrlvol2 36930 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑧𝑃𝑌𝑉) ∧ 𝑧(le‘𝐾)𝑌) → 𝑧𝐶𝑌)
7053, 56, 61, 68, 69syl31anc 1370 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ (𝑌𝑉𝑧𝑃𝑧(le‘𝐾)𝑋)) → 𝑧𝐶𝑌)
71 simplr 768 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ (𝑌𝑉𝑧𝑃𝑧(le‘𝐾)𝑋)) → 𝑋𝐶𝑌)
725, 15, 6cvrcmp2 36599 . . . . . . . . 9 ((𝐾 ∈ OP ∧ (𝑧𝐵𝑋𝐵𝑌𝐵) ∧ (𝑧𝐶𝑌𝑋𝐶𝑌)) → (𝑧(le‘𝐾)𝑋𝑧 = 𝑋))
7355, 58, 59, 60, 70, 71, 72syl132anc 1385 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ (𝑌𝑉𝑧𝑃𝑧(le‘𝐾)𝑋)) → (𝑧(le‘𝐾)𝑋𝑧 = 𝑋))
7452, 73mpbid 235 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ (𝑌𝑉𝑧𝑃𝑧(le‘𝐾)𝑋)) → 𝑧 = 𝑋)
7574, 56eqeltrrd 2891 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ (𝑌𝑉𝑧𝑃𝑧(le‘𝐾)𝑋)) → 𝑋𝑃)
76753exp2 1351 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) → (𝑌𝑉 → (𝑧𝑃 → (𝑧(le‘𝐾)𝑋𝑋𝑃))))
7776imp 410 . . . 4 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑌𝑉) → (𝑧𝑃 → (𝑧(le‘𝐾)𝑋𝑋𝑃)))
7877rexlimdv 3242 . . 3 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑌𝑉) → (∃𝑧𝑃 𝑧(le‘𝐾)𝑋𝑋𝑃))
7951, 78mpd 15 . 2 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑌𝑉) → 𝑋𝑃)
8010, 79impbida 800 1 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) → (𝑋𝑃𝑌𝑉))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 209   ∧ wa 399   ∧ w3a 1084   = wceq 1538   ∈ wcel 2111   ≠ wne 2987  ∃wrex 3107   class class class wbr 5031  ‘cfv 6325  Basecbs 16478  lecple 16567  Posetcpo 17545  0.cp0 17642  Latclat 17650  OPcops 36487   ⋖ ccvr 36577  Atomscatm 36578  HLchlt 36665  LLinesclln 36806  LPlanesclpl 36807  LVolsclvol 36808 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5155  ax-sep 5168  ax-nul 5175  ax-pow 5232  ax-pr 5296  ax-un 7444 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4802  df-iun 4884  df-br 5032  df-opab 5094  df-mpt 5112  df-id 5426  df-xp 5526  df-rel 5527  df-cnv 5528  df-co 5529  df-dm 5530  df-rn 5531  df-res 5532  df-ima 5533  df-iota 6284  df-fun 6327  df-fn 6328  df-f 6329  df-f1 6330  df-fo 6331  df-f1o 6332  df-fv 6333  df-riota 7094  df-ov 7139  df-oprab 7140  df-proset 17533  df-poset 17551  df-plt 17563  df-lub 17579  df-glb 17580  df-join 17581  df-meet 17582  df-p0 17644  df-lat 17651  df-clat 17713  df-oposet 36491  df-ol 36493  df-oml 36494  df-covers 36581  df-ats 36582  df-atl 36613  df-cvlat 36637  df-hlat 36666  df-llines 36813  df-lplanes 36814  df-lvols 36815 This theorem is referenced by:  2lplnmj  36937
 Copyright terms: Public domain W3C validator