Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lvolcmp Structured version   Visualization version   GIF version

Theorem lvolcmp 39596
Description: If two lattice planes are comparable, they are equal. (Contributed by NM, 12-Jul-2012.)
Hypotheses
Ref Expression
lvolcmp.l = (le‘𝐾)
lvolcmp.v 𝑉 = (LVols‘𝐾)
Assertion
Ref Expression
lvolcmp ((𝐾 ∈ HL ∧ 𝑋𝑉𝑌𝑉) → (𝑋 𝑌𝑋 = 𝑌))

Proof of Theorem lvolcmp
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 simp2 1137 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝑉𝑌𝑉) → 𝑋𝑉)
2 simp1 1136 . . . . 5 ((𝐾 ∈ HL ∧ 𝑋𝑉𝑌𝑉) → 𝐾 ∈ HL)
3 eqid 2729 . . . . . . 7 (Base‘𝐾) = (Base‘𝐾)
4 lvolcmp.v . . . . . . 7 𝑉 = (LVols‘𝐾)
53, 4lvolbase 39557 . . . . . 6 (𝑋𝑉𝑋 ∈ (Base‘𝐾))
653ad2ant2 1134 . . . . 5 ((𝐾 ∈ HL ∧ 𝑋𝑉𝑌𝑉) → 𝑋 ∈ (Base‘𝐾))
7 eqid 2729 . . . . . 6 ( ⋖ ‘𝐾) = ( ⋖ ‘𝐾)
8 eqid 2729 . . . . . 6 (LPlanes‘𝐾) = (LPlanes‘𝐾)
93, 7, 8, 4islvol4 39553 . . . . 5 ((𝐾 ∈ HL ∧ 𝑋 ∈ (Base‘𝐾)) → (𝑋𝑉 ↔ ∃𝑧 ∈ (LPlanes‘𝐾)𝑧( ⋖ ‘𝐾)𝑋))
102, 6, 9syl2anc 584 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝑉𝑌𝑉) → (𝑋𝑉 ↔ ∃𝑧 ∈ (LPlanes‘𝐾)𝑧( ⋖ ‘𝐾)𝑋))
111, 10mpbid 232 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝑉𝑌𝑉) → ∃𝑧 ∈ (LPlanes‘𝐾)𝑧( ⋖ ‘𝐾)𝑋)
12 simpr3 1197 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝑉𝑌𝑉) ∧ (𝑧 ∈ (LPlanes‘𝐾) ∧ 𝑧( ⋖ ‘𝐾)𝑋𝑋 𝑌)) → 𝑋 𝑌)
13 hlpos 39344 . . . . . . . . 9 (𝐾 ∈ HL → 𝐾 ∈ Poset)
14133ad2ant1 1133 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑋𝑉𝑌𝑉) → 𝐾 ∈ Poset)
1514adantr 480 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑋𝑉𝑌𝑉) ∧ (𝑧 ∈ (LPlanes‘𝐾) ∧ 𝑧( ⋖ ‘𝐾)𝑋𝑋 𝑌)) → 𝐾 ∈ Poset)
166adantr 480 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑋𝑉𝑌𝑉) ∧ (𝑧 ∈ (LPlanes‘𝐾) ∧ 𝑧( ⋖ ‘𝐾)𝑋𝑋 𝑌)) → 𝑋 ∈ (Base‘𝐾))
17 simpl3 1194 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑋𝑉𝑌𝑉) ∧ (𝑧 ∈ (LPlanes‘𝐾) ∧ 𝑧( ⋖ ‘𝐾)𝑋𝑋 𝑌)) → 𝑌𝑉)
183, 4lvolbase 39557 . . . . . . . 8 (𝑌𝑉𝑌 ∈ (Base‘𝐾))
1917, 18syl 17 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑋𝑉𝑌𝑉) ∧ (𝑧 ∈ (LPlanes‘𝐾) ∧ 𝑧( ⋖ ‘𝐾)𝑋𝑋 𝑌)) → 𝑌 ∈ (Base‘𝐾))
20 simpr1 1195 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑋𝑉𝑌𝑉) ∧ (𝑧 ∈ (LPlanes‘𝐾) ∧ 𝑧( ⋖ ‘𝐾)𝑋𝑋 𝑌)) → 𝑧 ∈ (LPlanes‘𝐾))
213, 8lplnbase 39513 . . . . . . . 8 (𝑧 ∈ (LPlanes‘𝐾) → 𝑧 ∈ (Base‘𝐾))
2220, 21syl 17 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑋𝑉𝑌𝑉) ∧ (𝑧 ∈ (LPlanes‘𝐾) ∧ 𝑧( ⋖ ‘𝐾)𝑋𝑋 𝑌)) → 𝑧 ∈ (Base‘𝐾))
23 simpr2 1196 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑋𝑉𝑌𝑉) ∧ (𝑧 ∈ (LPlanes‘𝐾) ∧ 𝑧( ⋖ ‘𝐾)𝑋𝑋 𝑌)) → 𝑧( ⋖ ‘𝐾)𝑋)
24 simpl1 1192 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑋𝑉𝑌𝑉) ∧ (𝑧 ∈ (LPlanes‘𝐾) ∧ 𝑧( ⋖ ‘𝐾)𝑋𝑋 𝑌)) → 𝐾 ∈ HL)
25 lvolcmp.l . . . . . . . . . . 11 = (le‘𝐾)
263, 25, 7cvrle 39256 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑧 ∈ (Base‘𝐾) ∧ 𝑋 ∈ (Base‘𝐾)) ∧ 𝑧( ⋖ ‘𝐾)𝑋) → 𝑧 𝑋)
2724, 22, 16, 23, 26syl31anc 1375 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑋𝑉𝑌𝑉) ∧ (𝑧 ∈ (LPlanes‘𝐾) ∧ 𝑧( ⋖ ‘𝐾)𝑋𝑋 𝑌)) → 𝑧 𝑋)
283, 25postr 18244 . . . . . . . . . 10 ((𝐾 ∈ Poset ∧ (𝑧 ∈ (Base‘𝐾) ∧ 𝑋 ∈ (Base‘𝐾) ∧ 𝑌 ∈ (Base‘𝐾))) → ((𝑧 𝑋𝑋 𝑌) → 𝑧 𝑌))
2915, 22, 16, 19, 28syl13anc 1374 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑋𝑉𝑌𝑉) ∧ (𝑧 ∈ (LPlanes‘𝐾) ∧ 𝑧( ⋖ ‘𝐾)𝑋𝑋 𝑌)) → ((𝑧 𝑋𝑋 𝑌) → 𝑧 𝑌))
3027, 12, 29mp2and 699 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑋𝑉𝑌𝑉) ∧ (𝑧 ∈ (LPlanes‘𝐾) ∧ 𝑧( ⋖ ‘𝐾)𝑋𝑋 𝑌)) → 𝑧 𝑌)
3125, 7, 8, 4lplncvrlvol2 39594 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑧 ∈ (LPlanes‘𝐾) ∧ 𝑌𝑉) ∧ 𝑧 𝑌) → 𝑧( ⋖ ‘𝐾)𝑌)
3224, 20, 17, 30, 31syl31anc 1375 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑋𝑉𝑌𝑉) ∧ (𝑧 ∈ (LPlanes‘𝐾) ∧ 𝑧( ⋖ ‘𝐾)𝑋𝑋 𝑌)) → 𝑧( ⋖ ‘𝐾)𝑌)
333, 25, 7cvrcmp 39261 . . . . . . 7 ((𝐾 ∈ Poset ∧ (𝑋 ∈ (Base‘𝐾) ∧ 𝑌 ∈ (Base‘𝐾) ∧ 𝑧 ∈ (Base‘𝐾)) ∧ (𝑧( ⋖ ‘𝐾)𝑋𝑧( ⋖ ‘𝐾)𝑌)) → (𝑋 𝑌𝑋 = 𝑌))
3415, 16, 19, 22, 23, 32, 33syl132anc 1390 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝑉𝑌𝑉) ∧ (𝑧 ∈ (LPlanes‘𝐾) ∧ 𝑧( ⋖ ‘𝐾)𝑋𝑋 𝑌)) → (𝑋 𝑌𝑋 = 𝑌))
3512, 34mpbid 232 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝑉𝑌𝑉) ∧ (𝑧 ∈ (LPlanes‘𝐾) ∧ 𝑧( ⋖ ‘𝐾)𝑋𝑋 𝑌)) → 𝑋 = 𝑌)
36353exp2 1355 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝑉𝑌𝑉) → (𝑧 ∈ (LPlanes‘𝐾) → (𝑧( ⋖ ‘𝐾)𝑋 → (𝑋 𝑌𝑋 = 𝑌))))
3736rexlimdv 3128 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝑉𝑌𝑉) → (∃𝑧 ∈ (LPlanes‘𝐾)𝑧( ⋖ ‘𝐾)𝑋 → (𝑋 𝑌𝑋 = 𝑌)))
3811, 37mpd 15 . 2 ((𝐾 ∈ HL ∧ 𝑋𝑉𝑌𝑉) → (𝑋 𝑌𝑋 = 𝑌))
393, 25posref 18242 . . . 4 ((𝐾 ∈ Poset ∧ 𝑋 ∈ (Base‘𝐾)) → 𝑋 𝑋)
4014, 6, 39syl2anc 584 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝑉𝑌𝑉) → 𝑋 𝑋)
41 breq2 5099 . . 3 (𝑋 = 𝑌 → (𝑋 𝑋𝑋 𝑌))
4240, 41syl5ibcom 245 . 2 ((𝐾 ∈ HL ∧ 𝑋𝑉𝑌𝑉) → (𝑋 = 𝑌𝑋 𝑌))
4338, 42impbid 212 1 ((𝐾 ∈ HL ∧ 𝑋𝑉𝑌𝑉) → (𝑋 𝑌𝑋 = 𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wrex 3053   class class class wbr 5095  cfv 6486  Basecbs 17138  lecple 17186  Posetcpo 18231  ccvr 39240  HLchlt 39328  LPlanesclpl 39471  LVolsclvol 39472
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-proset 18218  df-poset 18237  df-plt 18252  df-lub 18268  df-glb 18269  df-join 18270  df-meet 18271  df-p0 18347  df-lat 18356  df-clat 18423  df-oposet 39154  df-ol 39156  df-oml 39157  df-covers 39244  df-ats 39245  df-atl 39276  df-cvlat 39300  df-hlat 39329  df-llines 39477  df-lplanes 39478  df-lvols 39479
This theorem is referenced by:  lvolnltN  39597  2lplnja  39598
  Copyright terms: Public domain W3C validator