Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lvolcmp Structured version   Visualization version   GIF version

Theorem lvolcmp 37617
Description: If two lattice planes are comparable, they are equal. (Contributed by NM, 12-Jul-2012.)
Hypotheses
Ref Expression
lvolcmp.l = (le‘𝐾)
lvolcmp.v 𝑉 = (LVols‘𝐾)
Assertion
Ref Expression
lvolcmp ((𝐾 ∈ HL ∧ 𝑋𝑉𝑌𝑉) → (𝑋 𝑌𝑋 = 𝑌))

Proof of Theorem lvolcmp
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 simp2 1136 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝑉𝑌𝑉) → 𝑋𝑉)
2 simp1 1135 . . . . 5 ((𝐾 ∈ HL ∧ 𝑋𝑉𝑌𝑉) → 𝐾 ∈ HL)
3 eqid 2738 . . . . . . 7 (Base‘𝐾) = (Base‘𝐾)
4 lvolcmp.v . . . . . . 7 𝑉 = (LVols‘𝐾)
53, 4lvolbase 37578 . . . . . 6 (𝑋𝑉𝑋 ∈ (Base‘𝐾))
653ad2ant2 1133 . . . . 5 ((𝐾 ∈ HL ∧ 𝑋𝑉𝑌𝑉) → 𝑋 ∈ (Base‘𝐾))
7 eqid 2738 . . . . . 6 ( ⋖ ‘𝐾) = ( ⋖ ‘𝐾)
8 eqid 2738 . . . . . 6 (LPlanes‘𝐾) = (LPlanes‘𝐾)
93, 7, 8, 4islvol4 37574 . . . . 5 ((𝐾 ∈ HL ∧ 𝑋 ∈ (Base‘𝐾)) → (𝑋𝑉 ↔ ∃𝑧 ∈ (LPlanes‘𝐾)𝑧( ⋖ ‘𝐾)𝑋))
102, 6, 9syl2anc 584 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝑉𝑌𝑉) → (𝑋𝑉 ↔ ∃𝑧 ∈ (LPlanes‘𝐾)𝑧( ⋖ ‘𝐾)𝑋))
111, 10mpbid 231 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝑉𝑌𝑉) → ∃𝑧 ∈ (LPlanes‘𝐾)𝑧( ⋖ ‘𝐾)𝑋)
12 simpr3 1195 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝑉𝑌𝑉) ∧ (𝑧 ∈ (LPlanes‘𝐾) ∧ 𝑧( ⋖ ‘𝐾)𝑋𝑋 𝑌)) → 𝑋 𝑌)
13 hlpos 37366 . . . . . . . . 9 (𝐾 ∈ HL → 𝐾 ∈ Poset)
14133ad2ant1 1132 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑋𝑉𝑌𝑉) → 𝐾 ∈ Poset)
1514adantr 481 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑋𝑉𝑌𝑉) ∧ (𝑧 ∈ (LPlanes‘𝐾) ∧ 𝑧( ⋖ ‘𝐾)𝑋𝑋 𝑌)) → 𝐾 ∈ Poset)
166adantr 481 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑋𝑉𝑌𝑉) ∧ (𝑧 ∈ (LPlanes‘𝐾) ∧ 𝑧( ⋖ ‘𝐾)𝑋𝑋 𝑌)) → 𝑋 ∈ (Base‘𝐾))
17 simpl3 1192 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑋𝑉𝑌𝑉) ∧ (𝑧 ∈ (LPlanes‘𝐾) ∧ 𝑧( ⋖ ‘𝐾)𝑋𝑋 𝑌)) → 𝑌𝑉)
183, 4lvolbase 37578 . . . . . . . 8 (𝑌𝑉𝑌 ∈ (Base‘𝐾))
1917, 18syl 17 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑋𝑉𝑌𝑉) ∧ (𝑧 ∈ (LPlanes‘𝐾) ∧ 𝑧( ⋖ ‘𝐾)𝑋𝑋 𝑌)) → 𝑌 ∈ (Base‘𝐾))
20 simpr1 1193 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑋𝑉𝑌𝑉) ∧ (𝑧 ∈ (LPlanes‘𝐾) ∧ 𝑧( ⋖ ‘𝐾)𝑋𝑋 𝑌)) → 𝑧 ∈ (LPlanes‘𝐾))
213, 8lplnbase 37534 . . . . . . . 8 (𝑧 ∈ (LPlanes‘𝐾) → 𝑧 ∈ (Base‘𝐾))
2220, 21syl 17 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑋𝑉𝑌𝑉) ∧ (𝑧 ∈ (LPlanes‘𝐾) ∧ 𝑧( ⋖ ‘𝐾)𝑋𝑋 𝑌)) → 𝑧 ∈ (Base‘𝐾))
23 simpr2 1194 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑋𝑉𝑌𝑉) ∧ (𝑧 ∈ (LPlanes‘𝐾) ∧ 𝑧( ⋖ ‘𝐾)𝑋𝑋 𝑌)) → 𝑧( ⋖ ‘𝐾)𝑋)
24 simpl1 1190 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑋𝑉𝑌𝑉) ∧ (𝑧 ∈ (LPlanes‘𝐾) ∧ 𝑧( ⋖ ‘𝐾)𝑋𝑋 𝑌)) → 𝐾 ∈ HL)
25 lvolcmp.l . . . . . . . . . . 11 = (le‘𝐾)
263, 25, 7cvrle 37278 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑧 ∈ (Base‘𝐾) ∧ 𝑋 ∈ (Base‘𝐾)) ∧ 𝑧( ⋖ ‘𝐾)𝑋) → 𝑧 𝑋)
2724, 22, 16, 23, 26syl31anc 1372 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑋𝑉𝑌𝑉) ∧ (𝑧 ∈ (LPlanes‘𝐾) ∧ 𝑧( ⋖ ‘𝐾)𝑋𝑋 𝑌)) → 𝑧 𝑋)
283, 25postr 18026 . . . . . . . . . 10 ((𝐾 ∈ Poset ∧ (𝑧 ∈ (Base‘𝐾) ∧ 𝑋 ∈ (Base‘𝐾) ∧ 𝑌 ∈ (Base‘𝐾))) → ((𝑧 𝑋𝑋 𝑌) → 𝑧 𝑌))
2915, 22, 16, 19, 28syl13anc 1371 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑋𝑉𝑌𝑉) ∧ (𝑧 ∈ (LPlanes‘𝐾) ∧ 𝑧( ⋖ ‘𝐾)𝑋𝑋 𝑌)) → ((𝑧 𝑋𝑋 𝑌) → 𝑧 𝑌))
3027, 12, 29mp2and 696 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑋𝑉𝑌𝑉) ∧ (𝑧 ∈ (LPlanes‘𝐾) ∧ 𝑧( ⋖ ‘𝐾)𝑋𝑋 𝑌)) → 𝑧 𝑌)
3125, 7, 8, 4lplncvrlvol2 37615 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑧 ∈ (LPlanes‘𝐾) ∧ 𝑌𝑉) ∧ 𝑧 𝑌) → 𝑧( ⋖ ‘𝐾)𝑌)
3224, 20, 17, 30, 31syl31anc 1372 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑋𝑉𝑌𝑉) ∧ (𝑧 ∈ (LPlanes‘𝐾) ∧ 𝑧( ⋖ ‘𝐾)𝑋𝑋 𝑌)) → 𝑧( ⋖ ‘𝐾)𝑌)
333, 25, 7cvrcmp 37283 . . . . . . 7 ((𝐾 ∈ Poset ∧ (𝑋 ∈ (Base‘𝐾) ∧ 𝑌 ∈ (Base‘𝐾) ∧ 𝑧 ∈ (Base‘𝐾)) ∧ (𝑧( ⋖ ‘𝐾)𝑋𝑧( ⋖ ‘𝐾)𝑌)) → (𝑋 𝑌𝑋 = 𝑌))
3415, 16, 19, 22, 23, 32, 33syl132anc 1387 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝑉𝑌𝑉) ∧ (𝑧 ∈ (LPlanes‘𝐾) ∧ 𝑧( ⋖ ‘𝐾)𝑋𝑋 𝑌)) → (𝑋 𝑌𝑋 = 𝑌))
3512, 34mpbid 231 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝑉𝑌𝑉) ∧ (𝑧 ∈ (LPlanes‘𝐾) ∧ 𝑧( ⋖ ‘𝐾)𝑋𝑋 𝑌)) → 𝑋 = 𝑌)
36353exp2 1353 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝑉𝑌𝑉) → (𝑧 ∈ (LPlanes‘𝐾) → (𝑧( ⋖ ‘𝐾)𝑋 → (𝑋 𝑌𝑋 = 𝑌))))
3736rexlimdv 3210 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝑉𝑌𝑉) → (∃𝑧 ∈ (LPlanes‘𝐾)𝑧( ⋖ ‘𝐾)𝑋 → (𝑋 𝑌𝑋 = 𝑌)))
3811, 37mpd 15 . 2 ((𝐾 ∈ HL ∧ 𝑋𝑉𝑌𝑉) → (𝑋 𝑌𝑋 = 𝑌))
393, 25posref 18024 . . . 4 ((𝐾 ∈ Poset ∧ 𝑋 ∈ (Base‘𝐾)) → 𝑋 𝑋)
4014, 6, 39syl2anc 584 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝑉𝑌𝑉) → 𝑋 𝑋)
41 breq2 5078 . . 3 (𝑋 = 𝑌 → (𝑋 𝑋𝑋 𝑌))
4240, 41syl5ibcom 244 . 2 ((𝐾 ∈ HL ∧ 𝑋𝑉𝑌𝑉) → (𝑋 = 𝑌𝑋 𝑌))
4338, 42impbid 211 1 ((𝐾 ∈ HL ∧ 𝑋𝑉𝑌𝑉) → (𝑋 𝑌𝑋 = 𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  wrex 3065   class class class wbr 5074  cfv 6427  Basecbs 16900  lecple 16957  Posetcpo 18013  ccvr 37262  HLchlt 37350  LPlanesclpl 37492  LVolsclvol 37493
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5222  ax-nul 5229  ax-pow 5287  ax-pr 5351  ax-un 7579
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3071  df-rab 3073  df-v 3432  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4258  df-if 4461  df-pw 4536  df-sn 4563  df-pr 4565  df-op 4569  df-uni 4841  df-iun 4927  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5485  df-xp 5591  df-rel 5592  df-cnv 5593  df-co 5594  df-dm 5595  df-rn 5596  df-res 5597  df-ima 5598  df-iota 6385  df-fun 6429  df-fn 6430  df-f 6431  df-f1 6432  df-fo 6433  df-f1o 6434  df-fv 6435  df-riota 7225  df-ov 7271  df-oprab 7272  df-proset 18001  df-poset 18019  df-plt 18036  df-lub 18052  df-glb 18053  df-join 18054  df-meet 18055  df-p0 18131  df-lat 18138  df-clat 18205  df-oposet 37176  df-ol 37178  df-oml 37179  df-covers 37266  df-ats 37267  df-atl 37298  df-cvlat 37322  df-hlat 37351  df-llines 37498  df-lplanes 37499  df-lvols 37500
This theorem is referenced by:  lvolnltN  37618  2lplnja  37619
  Copyright terms: Public domain W3C validator