Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lvolcmp Structured version   Visualization version   GIF version

Theorem lvolcmp 39641
Description: If two lattice planes are comparable, they are equal. (Contributed by NM, 12-Jul-2012.)
Hypotheses
Ref Expression
lvolcmp.l = (le‘𝐾)
lvolcmp.v 𝑉 = (LVols‘𝐾)
Assertion
Ref Expression
lvolcmp ((𝐾 ∈ HL ∧ 𝑋𝑉𝑌𝑉) → (𝑋 𝑌𝑋 = 𝑌))

Proof of Theorem lvolcmp
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 simp2 1137 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝑉𝑌𝑉) → 𝑋𝑉)
2 simp1 1136 . . . . 5 ((𝐾 ∈ HL ∧ 𝑋𝑉𝑌𝑉) → 𝐾 ∈ HL)
3 eqid 2736 . . . . . . 7 (Base‘𝐾) = (Base‘𝐾)
4 lvolcmp.v . . . . . . 7 𝑉 = (LVols‘𝐾)
53, 4lvolbase 39602 . . . . . 6 (𝑋𝑉𝑋 ∈ (Base‘𝐾))
653ad2ant2 1134 . . . . 5 ((𝐾 ∈ HL ∧ 𝑋𝑉𝑌𝑉) → 𝑋 ∈ (Base‘𝐾))
7 eqid 2736 . . . . . 6 ( ⋖ ‘𝐾) = ( ⋖ ‘𝐾)
8 eqid 2736 . . . . . 6 (LPlanes‘𝐾) = (LPlanes‘𝐾)
93, 7, 8, 4islvol4 39598 . . . . 5 ((𝐾 ∈ HL ∧ 𝑋 ∈ (Base‘𝐾)) → (𝑋𝑉 ↔ ∃𝑧 ∈ (LPlanes‘𝐾)𝑧( ⋖ ‘𝐾)𝑋))
102, 6, 9syl2anc 584 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝑉𝑌𝑉) → (𝑋𝑉 ↔ ∃𝑧 ∈ (LPlanes‘𝐾)𝑧( ⋖ ‘𝐾)𝑋))
111, 10mpbid 232 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝑉𝑌𝑉) → ∃𝑧 ∈ (LPlanes‘𝐾)𝑧( ⋖ ‘𝐾)𝑋)
12 simpr3 1197 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝑉𝑌𝑉) ∧ (𝑧 ∈ (LPlanes‘𝐾) ∧ 𝑧( ⋖ ‘𝐾)𝑋𝑋 𝑌)) → 𝑋 𝑌)
13 hlpos 39389 . . . . . . . . 9 (𝐾 ∈ HL → 𝐾 ∈ Poset)
14133ad2ant1 1133 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑋𝑉𝑌𝑉) → 𝐾 ∈ Poset)
1514adantr 480 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑋𝑉𝑌𝑉) ∧ (𝑧 ∈ (LPlanes‘𝐾) ∧ 𝑧( ⋖ ‘𝐾)𝑋𝑋 𝑌)) → 𝐾 ∈ Poset)
166adantr 480 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑋𝑉𝑌𝑉) ∧ (𝑧 ∈ (LPlanes‘𝐾) ∧ 𝑧( ⋖ ‘𝐾)𝑋𝑋 𝑌)) → 𝑋 ∈ (Base‘𝐾))
17 simpl3 1194 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑋𝑉𝑌𝑉) ∧ (𝑧 ∈ (LPlanes‘𝐾) ∧ 𝑧( ⋖ ‘𝐾)𝑋𝑋 𝑌)) → 𝑌𝑉)
183, 4lvolbase 39602 . . . . . . . 8 (𝑌𝑉𝑌 ∈ (Base‘𝐾))
1917, 18syl 17 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑋𝑉𝑌𝑉) ∧ (𝑧 ∈ (LPlanes‘𝐾) ∧ 𝑧( ⋖ ‘𝐾)𝑋𝑋 𝑌)) → 𝑌 ∈ (Base‘𝐾))
20 simpr1 1195 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑋𝑉𝑌𝑉) ∧ (𝑧 ∈ (LPlanes‘𝐾) ∧ 𝑧( ⋖ ‘𝐾)𝑋𝑋 𝑌)) → 𝑧 ∈ (LPlanes‘𝐾))
213, 8lplnbase 39558 . . . . . . . 8 (𝑧 ∈ (LPlanes‘𝐾) → 𝑧 ∈ (Base‘𝐾))
2220, 21syl 17 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑋𝑉𝑌𝑉) ∧ (𝑧 ∈ (LPlanes‘𝐾) ∧ 𝑧( ⋖ ‘𝐾)𝑋𝑋 𝑌)) → 𝑧 ∈ (Base‘𝐾))
23 simpr2 1196 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑋𝑉𝑌𝑉) ∧ (𝑧 ∈ (LPlanes‘𝐾) ∧ 𝑧( ⋖ ‘𝐾)𝑋𝑋 𝑌)) → 𝑧( ⋖ ‘𝐾)𝑋)
24 simpl1 1192 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑋𝑉𝑌𝑉) ∧ (𝑧 ∈ (LPlanes‘𝐾) ∧ 𝑧( ⋖ ‘𝐾)𝑋𝑋 𝑌)) → 𝐾 ∈ HL)
25 lvolcmp.l . . . . . . . . . . 11 = (le‘𝐾)
263, 25, 7cvrle 39301 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑧 ∈ (Base‘𝐾) ∧ 𝑋 ∈ (Base‘𝐾)) ∧ 𝑧( ⋖ ‘𝐾)𝑋) → 𝑧 𝑋)
2724, 22, 16, 23, 26syl31anc 1375 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑋𝑉𝑌𝑉) ∧ (𝑧 ∈ (LPlanes‘𝐾) ∧ 𝑧( ⋖ ‘𝐾)𝑋𝑋 𝑌)) → 𝑧 𝑋)
283, 25postr 18337 . . . . . . . . . 10 ((𝐾 ∈ Poset ∧ (𝑧 ∈ (Base‘𝐾) ∧ 𝑋 ∈ (Base‘𝐾) ∧ 𝑌 ∈ (Base‘𝐾))) → ((𝑧 𝑋𝑋 𝑌) → 𝑧 𝑌))
2915, 22, 16, 19, 28syl13anc 1374 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑋𝑉𝑌𝑉) ∧ (𝑧 ∈ (LPlanes‘𝐾) ∧ 𝑧( ⋖ ‘𝐾)𝑋𝑋 𝑌)) → ((𝑧 𝑋𝑋 𝑌) → 𝑧 𝑌))
3027, 12, 29mp2and 699 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑋𝑉𝑌𝑉) ∧ (𝑧 ∈ (LPlanes‘𝐾) ∧ 𝑧( ⋖ ‘𝐾)𝑋𝑋 𝑌)) → 𝑧 𝑌)
3125, 7, 8, 4lplncvrlvol2 39639 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑧 ∈ (LPlanes‘𝐾) ∧ 𝑌𝑉) ∧ 𝑧 𝑌) → 𝑧( ⋖ ‘𝐾)𝑌)
3224, 20, 17, 30, 31syl31anc 1375 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑋𝑉𝑌𝑉) ∧ (𝑧 ∈ (LPlanes‘𝐾) ∧ 𝑧( ⋖ ‘𝐾)𝑋𝑋 𝑌)) → 𝑧( ⋖ ‘𝐾)𝑌)
333, 25, 7cvrcmp 39306 . . . . . . 7 ((𝐾 ∈ Poset ∧ (𝑋 ∈ (Base‘𝐾) ∧ 𝑌 ∈ (Base‘𝐾) ∧ 𝑧 ∈ (Base‘𝐾)) ∧ (𝑧( ⋖ ‘𝐾)𝑋𝑧( ⋖ ‘𝐾)𝑌)) → (𝑋 𝑌𝑋 = 𝑌))
3415, 16, 19, 22, 23, 32, 33syl132anc 1390 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝑉𝑌𝑉) ∧ (𝑧 ∈ (LPlanes‘𝐾) ∧ 𝑧( ⋖ ‘𝐾)𝑋𝑋 𝑌)) → (𝑋 𝑌𝑋 = 𝑌))
3512, 34mpbid 232 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝑉𝑌𝑉) ∧ (𝑧 ∈ (LPlanes‘𝐾) ∧ 𝑧( ⋖ ‘𝐾)𝑋𝑋 𝑌)) → 𝑋 = 𝑌)
36353exp2 1355 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝑉𝑌𝑉) → (𝑧 ∈ (LPlanes‘𝐾) → (𝑧( ⋖ ‘𝐾)𝑋 → (𝑋 𝑌𝑋 = 𝑌))))
3736rexlimdv 3140 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝑉𝑌𝑉) → (∃𝑧 ∈ (LPlanes‘𝐾)𝑧( ⋖ ‘𝐾)𝑋 → (𝑋 𝑌𝑋 = 𝑌)))
3811, 37mpd 15 . 2 ((𝐾 ∈ HL ∧ 𝑋𝑉𝑌𝑉) → (𝑋 𝑌𝑋 = 𝑌))
393, 25posref 18335 . . . 4 ((𝐾 ∈ Poset ∧ 𝑋 ∈ (Base‘𝐾)) → 𝑋 𝑋)
4014, 6, 39syl2anc 584 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝑉𝑌𝑉) → 𝑋 𝑋)
41 breq2 5128 . . 3 (𝑋 = 𝑌 → (𝑋 𝑋𝑋 𝑌))
4240, 41syl5ibcom 245 . 2 ((𝐾 ∈ HL ∧ 𝑋𝑉𝑌𝑉) → (𝑋 = 𝑌𝑋 𝑌))
4338, 42impbid 212 1 ((𝐾 ∈ HL ∧ 𝑋𝑉𝑌𝑉) → (𝑋 𝑌𝑋 = 𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wrex 3061   class class class wbr 5124  cfv 6536  Basecbs 17233  lecple 17283  Posetcpo 18324  ccvr 39285  HLchlt 39373  LPlanesclpl 39516  LVolsclvol 39517
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-proset 18311  df-poset 18330  df-plt 18345  df-lub 18361  df-glb 18362  df-join 18363  df-meet 18364  df-p0 18440  df-lat 18447  df-clat 18514  df-oposet 39199  df-ol 39201  df-oml 39202  df-covers 39289  df-ats 39290  df-atl 39321  df-cvlat 39345  df-hlat 39374  df-llines 39522  df-lplanes 39523  df-lvols 39524
This theorem is referenced by:  lvolnltN  39642  2lplnja  39643
  Copyright terms: Public domain W3C validator