| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | simp2 1137 | . . . 4
⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → 𝑋 ∈ 𝑉) | 
| 2 |  | simp1 1136 | . . . . 5
⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → 𝐾 ∈ HL) | 
| 3 |  | eqid 2736 | . . . . . . 7
⊢
(Base‘𝐾) =
(Base‘𝐾) | 
| 4 |  | lvolcmp.v | . . . . . . 7
⊢ 𝑉 = (LVols‘𝐾) | 
| 5 | 3, 4 | lvolbase 39581 | . . . . . 6
⊢ (𝑋 ∈ 𝑉 → 𝑋 ∈ (Base‘𝐾)) | 
| 6 | 5 | 3ad2ant2 1134 | . . . . 5
⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → 𝑋 ∈ (Base‘𝐾)) | 
| 7 |  | eqid 2736 | . . . . . 6
⊢ ( ⋖
‘𝐾) = ( ⋖
‘𝐾) | 
| 8 |  | eqid 2736 | . . . . . 6
⊢
(LPlanes‘𝐾) =
(LPlanes‘𝐾) | 
| 9 | 3, 7, 8, 4 | islvol4 39577 | . . . . 5
⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ (Base‘𝐾)) → (𝑋 ∈ 𝑉 ↔ ∃𝑧 ∈ (LPlanes‘𝐾)𝑧( ⋖ ‘𝐾)𝑋)) | 
| 10 | 2, 6, 9 | syl2anc 584 | . . . 4
⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → (𝑋 ∈ 𝑉 ↔ ∃𝑧 ∈ (LPlanes‘𝐾)𝑧( ⋖ ‘𝐾)𝑋)) | 
| 11 | 1, 10 | mpbid 232 | . . 3
⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → ∃𝑧 ∈ (LPlanes‘𝐾)𝑧( ⋖ ‘𝐾)𝑋) | 
| 12 |  | simpr3 1196 | . . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) ∧ (𝑧 ∈ (LPlanes‘𝐾) ∧ 𝑧( ⋖ ‘𝐾)𝑋 ∧ 𝑋 ≤ 𝑌)) → 𝑋 ≤ 𝑌) | 
| 13 |  | hlpos 39368 | . . . . . . . . 9
⊢ (𝐾 ∈ HL → 𝐾 ∈ Poset) | 
| 14 | 13 | 3ad2ant1 1133 | . . . . . . . 8
⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → 𝐾 ∈ Poset) | 
| 15 | 14 | adantr 480 | . . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) ∧ (𝑧 ∈ (LPlanes‘𝐾) ∧ 𝑧( ⋖ ‘𝐾)𝑋 ∧ 𝑋 ≤ 𝑌)) → 𝐾 ∈ Poset) | 
| 16 | 6 | adantr 480 | . . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) ∧ (𝑧 ∈ (LPlanes‘𝐾) ∧ 𝑧( ⋖ ‘𝐾)𝑋 ∧ 𝑋 ≤ 𝑌)) → 𝑋 ∈ (Base‘𝐾)) | 
| 17 |  | simpl3 1193 | . . . . . . . 8
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) ∧ (𝑧 ∈ (LPlanes‘𝐾) ∧ 𝑧( ⋖ ‘𝐾)𝑋 ∧ 𝑋 ≤ 𝑌)) → 𝑌 ∈ 𝑉) | 
| 18 | 3, 4 | lvolbase 39581 | . . . . . . . 8
⊢ (𝑌 ∈ 𝑉 → 𝑌 ∈ (Base‘𝐾)) | 
| 19 | 17, 18 | syl 17 | . . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) ∧ (𝑧 ∈ (LPlanes‘𝐾) ∧ 𝑧( ⋖ ‘𝐾)𝑋 ∧ 𝑋 ≤ 𝑌)) → 𝑌 ∈ (Base‘𝐾)) | 
| 20 |  | simpr1 1194 | . . . . . . . 8
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) ∧ (𝑧 ∈ (LPlanes‘𝐾) ∧ 𝑧( ⋖ ‘𝐾)𝑋 ∧ 𝑋 ≤ 𝑌)) → 𝑧 ∈ (LPlanes‘𝐾)) | 
| 21 | 3, 8 | lplnbase 39537 | . . . . . . . 8
⊢ (𝑧 ∈ (LPlanes‘𝐾) → 𝑧 ∈ (Base‘𝐾)) | 
| 22 | 20, 21 | syl 17 | . . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) ∧ (𝑧 ∈ (LPlanes‘𝐾) ∧ 𝑧( ⋖ ‘𝐾)𝑋 ∧ 𝑋 ≤ 𝑌)) → 𝑧 ∈ (Base‘𝐾)) | 
| 23 |  | simpr2 1195 | . . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) ∧ (𝑧 ∈ (LPlanes‘𝐾) ∧ 𝑧( ⋖ ‘𝐾)𝑋 ∧ 𝑋 ≤ 𝑌)) → 𝑧( ⋖ ‘𝐾)𝑋) | 
| 24 |  | simpl1 1191 | . . . . . . . 8
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) ∧ (𝑧 ∈ (LPlanes‘𝐾) ∧ 𝑧( ⋖ ‘𝐾)𝑋 ∧ 𝑋 ≤ 𝑌)) → 𝐾 ∈ HL) | 
| 25 |  | lvolcmp.l | . . . . . . . . . . 11
⊢  ≤ =
(le‘𝐾) | 
| 26 | 3, 25, 7 | cvrle 39280 | . . . . . . . . . 10
⊢ (((𝐾 ∈ HL ∧ 𝑧 ∈ (Base‘𝐾) ∧ 𝑋 ∈ (Base‘𝐾)) ∧ 𝑧( ⋖ ‘𝐾)𝑋) → 𝑧 ≤ 𝑋) | 
| 27 | 24, 22, 16, 23, 26 | syl31anc 1374 | . . . . . . . . 9
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) ∧ (𝑧 ∈ (LPlanes‘𝐾) ∧ 𝑧( ⋖ ‘𝐾)𝑋 ∧ 𝑋 ≤ 𝑌)) → 𝑧 ≤ 𝑋) | 
| 28 | 3, 25 | postr 18367 | . . . . . . . . . 10
⊢ ((𝐾 ∈ Poset ∧ (𝑧 ∈ (Base‘𝐾) ∧ 𝑋 ∈ (Base‘𝐾) ∧ 𝑌 ∈ (Base‘𝐾))) → ((𝑧 ≤ 𝑋 ∧ 𝑋 ≤ 𝑌) → 𝑧 ≤ 𝑌)) | 
| 29 | 15, 22, 16, 19, 28 | syl13anc 1373 | . . . . . . . . 9
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) ∧ (𝑧 ∈ (LPlanes‘𝐾) ∧ 𝑧( ⋖ ‘𝐾)𝑋 ∧ 𝑋 ≤ 𝑌)) → ((𝑧 ≤ 𝑋 ∧ 𝑋 ≤ 𝑌) → 𝑧 ≤ 𝑌)) | 
| 30 | 27, 12, 29 | mp2and 699 | . . . . . . . 8
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) ∧ (𝑧 ∈ (LPlanes‘𝐾) ∧ 𝑧( ⋖ ‘𝐾)𝑋 ∧ 𝑋 ≤ 𝑌)) → 𝑧 ≤ 𝑌) | 
| 31 | 25, 7, 8, 4 | lplncvrlvol2 39618 | . . . . . . . 8
⊢ (((𝐾 ∈ HL ∧ 𝑧 ∈ (LPlanes‘𝐾) ∧ 𝑌 ∈ 𝑉) ∧ 𝑧 ≤ 𝑌) → 𝑧( ⋖ ‘𝐾)𝑌) | 
| 32 | 24, 20, 17, 30, 31 | syl31anc 1374 | . . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) ∧ (𝑧 ∈ (LPlanes‘𝐾) ∧ 𝑧( ⋖ ‘𝐾)𝑋 ∧ 𝑋 ≤ 𝑌)) → 𝑧( ⋖ ‘𝐾)𝑌) | 
| 33 | 3, 25, 7 | cvrcmp 39285 | . . . . . . 7
⊢ ((𝐾 ∈ Poset ∧ (𝑋 ∈ (Base‘𝐾) ∧ 𝑌 ∈ (Base‘𝐾) ∧ 𝑧 ∈ (Base‘𝐾)) ∧ (𝑧( ⋖ ‘𝐾)𝑋 ∧ 𝑧( ⋖ ‘𝐾)𝑌)) → (𝑋 ≤ 𝑌 ↔ 𝑋 = 𝑌)) | 
| 34 | 15, 16, 19, 22, 23, 32, 33 | syl132anc 1389 | . . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) ∧ (𝑧 ∈ (LPlanes‘𝐾) ∧ 𝑧( ⋖ ‘𝐾)𝑋 ∧ 𝑋 ≤ 𝑌)) → (𝑋 ≤ 𝑌 ↔ 𝑋 = 𝑌)) | 
| 35 | 12, 34 | mpbid 232 | . . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) ∧ (𝑧 ∈ (LPlanes‘𝐾) ∧ 𝑧( ⋖ ‘𝐾)𝑋 ∧ 𝑋 ≤ 𝑌)) → 𝑋 = 𝑌) | 
| 36 | 35 | 3exp2 1354 | . . . 4
⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → (𝑧 ∈ (LPlanes‘𝐾) → (𝑧( ⋖ ‘𝐾)𝑋 → (𝑋 ≤ 𝑌 → 𝑋 = 𝑌)))) | 
| 37 | 36 | rexlimdv 3152 | . . 3
⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → (∃𝑧 ∈ (LPlanes‘𝐾)𝑧( ⋖ ‘𝐾)𝑋 → (𝑋 ≤ 𝑌 → 𝑋 = 𝑌))) | 
| 38 | 11, 37 | mpd 15 | . 2
⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → (𝑋 ≤ 𝑌 → 𝑋 = 𝑌)) | 
| 39 | 3, 25 | posref 18365 | . . . 4
⊢ ((𝐾 ∈ Poset ∧ 𝑋 ∈ (Base‘𝐾)) → 𝑋 ≤ 𝑋) | 
| 40 | 14, 6, 39 | syl2anc 584 | . . 3
⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → 𝑋 ≤ 𝑋) | 
| 41 |  | breq2 5146 | . . 3
⊢ (𝑋 = 𝑌 → (𝑋 ≤ 𝑋 ↔ 𝑋 ≤ 𝑌)) | 
| 42 | 40, 41 | syl5ibcom 245 | . 2
⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → (𝑋 = 𝑌 → 𝑋 ≤ 𝑌)) | 
| 43 | 38, 42 | impbid 212 | 1
⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → (𝑋 ≤ 𝑌 ↔ 𝑋 = 𝑌)) |