MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  plttr Structured version   Visualization version   GIF version

Theorem plttr 18400
Description: The less-than relation is transitive. (psstr 4117 analog.) (Contributed by NM, 2-Dec-2011.)
Hypotheses
Ref Expression
pltnlt.b 𝐵 = (Base‘𝐾)
pltnlt.s < = (lt‘𝐾)
Assertion
Ref Expression
plttr ((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 < 𝑌𝑌 < 𝑍) → 𝑋 < 𝑍))

Proof of Theorem plttr
StepHypRef Expression
1 eqid 2735 . . . . . 6 (le‘𝐾) = (le‘𝐾)
2 pltnlt.s . . . . . 6 < = (lt‘𝐾)
31, 2pltle 18391 . . . . 5 ((𝐾 ∈ Poset ∧ 𝑋𝐵𝑌𝐵) → (𝑋 < 𝑌𝑋(le‘𝐾)𝑌))
433adant3r3 1183 . . . 4 ((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋 < 𝑌𝑋(le‘𝐾)𝑌))
51, 2pltle 18391 . . . . 5 ((𝐾 ∈ Poset ∧ 𝑌𝐵𝑍𝐵) → (𝑌 < 𝑍𝑌(le‘𝐾)𝑍))
653adant3r1 1181 . . . 4 ((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑌 < 𝑍𝑌(le‘𝐾)𝑍))
7 pltnlt.b . . . . 5 𝐵 = (Base‘𝐾)
87, 1postr 18378 . . . 4 ((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋(le‘𝐾)𝑌𝑌(le‘𝐾)𝑍) → 𝑋(le‘𝐾)𝑍))
94, 6, 8syl2and 608 . . 3 ((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 < 𝑌𝑌 < 𝑍) → 𝑋(le‘𝐾)𝑍))
107, 2pltn2lp 18399 . . . . . 6 ((𝐾 ∈ Poset ∧ 𝑋𝐵𝑌𝐵) → ¬ (𝑋 < 𝑌𝑌 < 𝑋))
11103adant3r3 1183 . . . . 5 ((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ¬ (𝑋 < 𝑌𝑌 < 𝑋))
12 breq2 5152 . . . . . . 7 (𝑋 = 𝑍 → (𝑌 < 𝑋𝑌 < 𝑍))
1312anbi2d 630 . . . . . 6 (𝑋 = 𝑍 → ((𝑋 < 𝑌𝑌 < 𝑋) ↔ (𝑋 < 𝑌𝑌 < 𝑍)))
1413notbid 318 . . . . 5 (𝑋 = 𝑍 → (¬ (𝑋 < 𝑌𝑌 < 𝑋) ↔ ¬ (𝑋 < 𝑌𝑌 < 𝑍)))
1511, 14syl5ibcom 245 . . . 4 ((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋 = 𝑍 → ¬ (𝑋 < 𝑌𝑌 < 𝑍)))
1615necon2ad 2953 . . 3 ((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 < 𝑌𝑌 < 𝑍) → 𝑋𝑍))
179, 16jcad 512 . 2 ((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 < 𝑌𝑌 < 𝑍) → (𝑋(le‘𝐾)𝑍𝑋𝑍)))
181, 2pltval 18390 . . 3 ((𝐾 ∈ Poset ∧ 𝑋𝐵𝑍𝐵) → (𝑋 < 𝑍 ↔ (𝑋(le‘𝐾)𝑍𝑋𝑍)))
19183adant3r2 1182 . 2 ((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋 < 𝑍 ↔ (𝑋(le‘𝐾)𝑍𝑋𝑍)))
2017, 19sylibrd 259 1 ((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 < 𝑌𝑌 < 𝑍) → 𝑋 < 𝑍))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1537  wcel 2106  wne 2938   class class class wbr 5148  cfv 6563  Basecbs 17245  lecple 17305  Posetcpo 18365  ltcplt 18366
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-sbc 3792  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-iota 6516  df-fun 6565  df-fv 6571  df-proset 18352  df-poset 18371  df-plt 18388
This theorem is referenced by:  pltletr  18401  plelttr  18402  pospo  18403  archiabllem2c  33185  ofldchr  33324  hlhgt2  39372  hl0lt1N  39373  lhp0lt  39986
  Copyright terms: Public domain W3C validator