![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > plttr | Structured version Visualization version GIF version |
Description: The less-than relation is transitive. (psstr 4117 analog.) (Contributed by NM, 2-Dec-2011.) |
Ref | Expression |
---|---|
pltnlt.b | ⊢ 𝐵 = (Base‘𝐾) |
pltnlt.s | ⊢ < = (lt‘𝐾) |
Ref | Expression |
---|---|
plttr | ⊢ ((𝐾 ∈ Poset ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 < 𝑌 ∧ 𝑌 < 𝑍) → 𝑋 < 𝑍)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2735 | . . . . . 6 ⊢ (le‘𝐾) = (le‘𝐾) | |
2 | pltnlt.s | . . . . . 6 ⊢ < = (lt‘𝐾) | |
3 | 1, 2 | pltle 18391 | . . . . 5 ⊢ ((𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 < 𝑌 → 𝑋(le‘𝐾)𝑌)) |
4 | 3 | 3adant3r3 1183 | . . . 4 ⊢ ((𝐾 ∈ Poset ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝑋 < 𝑌 → 𝑋(le‘𝐾)𝑌)) |
5 | 1, 2 | pltle 18391 | . . . . 5 ⊢ ((𝐾 ∈ Poset ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) → (𝑌 < 𝑍 → 𝑌(le‘𝐾)𝑍)) |
6 | 5 | 3adant3r1 1181 | . . . 4 ⊢ ((𝐾 ∈ Poset ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝑌 < 𝑍 → 𝑌(le‘𝐾)𝑍)) |
7 | pltnlt.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐾) | |
8 | 7, 1 | postr 18378 | . . . 4 ⊢ ((𝐾 ∈ Poset ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋(le‘𝐾)𝑌 ∧ 𝑌(le‘𝐾)𝑍) → 𝑋(le‘𝐾)𝑍)) |
9 | 4, 6, 8 | syl2and 608 | . . 3 ⊢ ((𝐾 ∈ Poset ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 < 𝑌 ∧ 𝑌 < 𝑍) → 𝑋(le‘𝐾)𝑍)) |
10 | 7, 2 | pltn2lp 18399 | . . . . . 6 ⊢ ((𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ¬ (𝑋 < 𝑌 ∧ 𝑌 < 𝑋)) |
11 | 10 | 3adant3r3 1183 | . . . . 5 ⊢ ((𝐾 ∈ Poset ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ¬ (𝑋 < 𝑌 ∧ 𝑌 < 𝑋)) |
12 | breq2 5152 | . . . . . . 7 ⊢ (𝑋 = 𝑍 → (𝑌 < 𝑋 ↔ 𝑌 < 𝑍)) | |
13 | 12 | anbi2d 630 | . . . . . 6 ⊢ (𝑋 = 𝑍 → ((𝑋 < 𝑌 ∧ 𝑌 < 𝑋) ↔ (𝑋 < 𝑌 ∧ 𝑌 < 𝑍))) |
14 | 13 | notbid 318 | . . . . 5 ⊢ (𝑋 = 𝑍 → (¬ (𝑋 < 𝑌 ∧ 𝑌 < 𝑋) ↔ ¬ (𝑋 < 𝑌 ∧ 𝑌 < 𝑍))) |
15 | 11, 14 | syl5ibcom 245 | . . . 4 ⊢ ((𝐾 ∈ Poset ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝑋 = 𝑍 → ¬ (𝑋 < 𝑌 ∧ 𝑌 < 𝑍))) |
16 | 15 | necon2ad 2953 | . . 3 ⊢ ((𝐾 ∈ Poset ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 < 𝑌 ∧ 𝑌 < 𝑍) → 𝑋 ≠ 𝑍)) |
17 | 9, 16 | jcad 512 | . 2 ⊢ ((𝐾 ∈ Poset ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 < 𝑌 ∧ 𝑌 < 𝑍) → (𝑋(le‘𝐾)𝑍 ∧ 𝑋 ≠ 𝑍))) |
18 | 1, 2 | pltval 18390 | . . 3 ⊢ ((𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) → (𝑋 < 𝑍 ↔ (𝑋(le‘𝐾)𝑍 ∧ 𝑋 ≠ 𝑍))) |
19 | 18 | 3adant3r2 1182 | . 2 ⊢ ((𝐾 ∈ Poset ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝑋 < 𝑍 ↔ (𝑋(le‘𝐾)𝑍 ∧ 𝑋 ≠ 𝑍))) |
20 | 17, 19 | sylibrd 259 | 1 ⊢ ((𝐾 ∈ Poset ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 < 𝑌 ∧ 𝑌 < 𝑍) → 𝑋 < 𝑍)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1537 ∈ wcel 2106 ≠ wne 2938 class class class wbr 5148 ‘cfv 6563 Basecbs 17245 lecple 17305 Posetcpo 18365 ltcplt 18366 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-sbc 3792 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-iota 6516 df-fun 6565 df-fv 6571 df-proset 18352 df-poset 18371 df-plt 18388 |
This theorem is referenced by: pltletr 18401 plelttr 18402 pospo 18403 archiabllem2c 33185 ofldchr 33324 hlhgt2 39372 hl0lt1N 39373 lhp0lt 39986 |
Copyright terms: Public domain | W3C validator |