| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > plttr | Structured version Visualization version GIF version | ||
| Description: The less-than relation is transitive. (psstr 4056 analog.) (Contributed by NM, 2-Dec-2011.) |
| Ref | Expression |
|---|---|
| pltnlt.b | ⊢ 𝐵 = (Base‘𝐾) |
| pltnlt.s | ⊢ < = (lt‘𝐾) |
| Ref | Expression |
|---|---|
| plttr | ⊢ ((𝐾 ∈ Poset ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 < 𝑌 ∧ 𝑌 < 𝑍) → 𝑋 < 𝑍)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2733 | . . . . . 6 ⊢ (le‘𝐾) = (le‘𝐾) | |
| 2 | pltnlt.s | . . . . . 6 ⊢ < = (lt‘𝐾) | |
| 3 | 1, 2 | pltle 18241 | . . . . 5 ⊢ ((𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 < 𝑌 → 𝑋(le‘𝐾)𝑌)) |
| 4 | 3 | 3adant3r3 1185 | . . . 4 ⊢ ((𝐾 ∈ Poset ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝑋 < 𝑌 → 𝑋(le‘𝐾)𝑌)) |
| 5 | 1, 2 | pltle 18241 | . . . . 5 ⊢ ((𝐾 ∈ Poset ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) → (𝑌 < 𝑍 → 𝑌(le‘𝐾)𝑍)) |
| 6 | 5 | 3adant3r1 1183 | . . . 4 ⊢ ((𝐾 ∈ Poset ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝑌 < 𝑍 → 𝑌(le‘𝐾)𝑍)) |
| 7 | pltnlt.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐾) | |
| 8 | 7, 1 | postr 18230 | . . . 4 ⊢ ((𝐾 ∈ Poset ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋(le‘𝐾)𝑌 ∧ 𝑌(le‘𝐾)𝑍) → 𝑋(le‘𝐾)𝑍)) |
| 9 | 4, 6, 8 | syl2and 608 | . . 3 ⊢ ((𝐾 ∈ Poset ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 < 𝑌 ∧ 𝑌 < 𝑍) → 𝑋(le‘𝐾)𝑍)) |
| 10 | 7, 2 | pltn2lp 18249 | . . . . . 6 ⊢ ((𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ¬ (𝑋 < 𝑌 ∧ 𝑌 < 𝑋)) |
| 11 | 10 | 3adant3r3 1185 | . . . . 5 ⊢ ((𝐾 ∈ Poset ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ¬ (𝑋 < 𝑌 ∧ 𝑌 < 𝑋)) |
| 12 | breq2 5099 | . . . . . . 7 ⊢ (𝑋 = 𝑍 → (𝑌 < 𝑋 ↔ 𝑌 < 𝑍)) | |
| 13 | 12 | anbi2d 630 | . . . . . 6 ⊢ (𝑋 = 𝑍 → ((𝑋 < 𝑌 ∧ 𝑌 < 𝑋) ↔ (𝑋 < 𝑌 ∧ 𝑌 < 𝑍))) |
| 14 | 13 | notbid 318 | . . . . 5 ⊢ (𝑋 = 𝑍 → (¬ (𝑋 < 𝑌 ∧ 𝑌 < 𝑋) ↔ ¬ (𝑋 < 𝑌 ∧ 𝑌 < 𝑍))) |
| 15 | 11, 14 | syl5ibcom 245 | . . . 4 ⊢ ((𝐾 ∈ Poset ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝑋 = 𝑍 → ¬ (𝑋 < 𝑌 ∧ 𝑌 < 𝑍))) |
| 16 | 15 | necon2ad 2944 | . . 3 ⊢ ((𝐾 ∈ Poset ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 < 𝑌 ∧ 𝑌 < 𝑍) → 𝑋 ≠ 𝑍)) |
| 17 | 9, 16 | jcad 512 | . 2 ⊢ ((𝐾 ∈ Poset ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 < 𝑌 ∧ 𝑌 < 𝑍) → (𝑋(le‘𝐾)𝑍 ∧ 𝑋 ≠ 𝑍))) |
| 18 | 1, 2 | pltval 18240 | . . 3 ⊢ ((𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) → (𝑋 < 𝑍 ↔ (𝑋(le‘𝐾)𝑍 ∧ 𝑋 ≠ 𝑍))) |
| 19 | 18 | 3adant3r2 1184 | . 2 ⊢ ((𝐾 ∈ Poset ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝑋 < 𝑍 ↔ (𝑋(le‘𝐾)𝑍 ∧ 𝑋 ≠ 𝑍))) |
| 20 | 17, 19 | sylibrd 259 | 1 ⊢ ((𝐾 ∈ Poset ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 < 𝑌 ∧ 𝑌 < 𝑍) → 𝑋 < 𝑍)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2113 ≠ wne 2929 class class class wbr 5095 ‘cfv 6488 Basecbs 17124 lecple 17172 Posetcpo 18217 ltcplt 18218 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-sbc 3738 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-iota 6444 df-fun 6490 df-fv 6496 df-proset 18204 df-poset 18223 df-plt 18238 |
| This theorem is referenced by: pltletr 18251 plelttr 18252 pospo 18253 ofldchr 21517 archiabllem2c 33173 hlhgt2 39511 hl0lt1N 39512 lhp0lt 40125 |
| Copyright terms: Public domain | W3C validator |