MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  plttr Structured version   Visualization version   GIF version

Theorem plttr 17572
Description: The less-than relation is transitive. (psstr 4032 analog.) (Contributed by NM, 2-Dec-2011.)
Hypotheses
Ref Expression
pltnlt.b 𝐵 = (Base‘𝐾)
pltnlt.s < = (lt‘𝐾)
Assertion
Ref Expression
plttr ((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 < 𝑌𝑌 < 𝑍) → 𝑋 < 𝑍))

Proof of Theorem plttr
StepHypRef Expression
1 eqid 2798 . . . . . 6 (le‘𝐾) = (le‘𝐾)
2 pltnlt.s . . . . . 6 < = (lt‘𝐾)
31, 2pltle 17563 . . . . 5 ((𝐾 ∈ Poset ∧ 𝑋𝐵𝑌𝐵) → (𝑋 < 𝑌𝑋(le‘𝐾)𝑌))
433adant3r3 1181 . . . 4 ((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋 < 𝑌𝑋(le‘𝐾)𝑌))
51, 2pltle 17563 . . . . 5 ((𝐾 ∈ Poset ∧ 𝑌𝐵𝑍𝐵) → (𝑌 < 𝑍𝑌(le‘𝐾)𝑍))
653adant3r1 1179 . . . 4 ((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑌 < 𝑍𝑌(le‘𝐾)𝑍))
7 pltnlt.b . . . . 5 𝐵 = (Base‘𝐾)
87, 1postr 17555 . . . 4 ((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋(le‘𝐾)𝑌𝑌(le‘𝐾)𝑍) → 𝑋(le‘𝐾)𝑍))
94, 6, 8syl2and 610 . . 3 ((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 < 𝑌𝑌 < 𝑍) → 𝑋(le‘𝐾)𝑍))
107, 2pltn2lp 17571 . . . . . 6 ((𝐾 ∈ Poset ∧ 𝑋𝐵𝑌𝐵) → ¬ (𝑋 < 𝑌𝑌 < 𝑋))
11103adant3r3 1181 . . . . 5 ((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ¬ (𝑋 < 𝑌𝑌 < 𝑋))
12 breq2 5034 . . . . . . 7 (𝑋 = 𝑍 → (𝑌 < 𝑋𝑌 < 𝑍))
1312anbi2d 631 . . . . . 6 (𝑋 = 𝑍 → ((𝑋 < 𝑌𝑌 < 𝑋) ↔ (𝑋 < 𝑌𝑌 < 𝑍)))
1413notbid 321 . . . . 5 (𝑋 = 𝑍 → (¬ (𝑋 < 𝑌𝑌 < 𝑋) ↔ ¬ (𝑋 < 𝑌𝑌 < 𝑍)))
1511, 14syl5ibcom 248 . . . 4 ((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋 = 𝑍 → ¬ (𝑋 < 𝑌𝑌 < 𝑍)))
1615necon2ad 3002 . . 3 ((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 < 𝑌𝑌 < 𝑍) → 𝑋𝑍))
179, 16jcad 516 . 2 ((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 < 𝑌𝑌 < 𝑍) → (𝑋(le‘𝐾)𝑍𝑋𝑍)))
181, 2pltval 17562 . . 3 ((𝐾 ∈ Poset ∧ 𝑋𝐵𝑍𝐵) → (𝑋 < 𝑍 ↔ (𝑋(le‘𝐾)𝑍𝑋𝑍)))
19183adant3r2 1180 . 2 ((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋 < 𝑍 ↔ (𝑋(le‘𝐾)𝑍𝑋𝑍)))
2017, 19sylibrd 262 1 ((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 < 𝑌𝑌 < 𝑍) → 𝑋 < 𝑍))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2111  wne 2987   class class class wbr 5030  cfv 6324  Basecbs 16475  lecple 16564  Posetcpo 17542  ltcplt 17543
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pr 5295
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-rab 3115  df-v 3443  df-sbc 3721  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5425  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-iota 6283  df-fun 6326  df-fv 6332  df-proset 17530  df-poset 17548  df-plt 17560
This theorem is referenced by:  pltletr  17573  plelttr  17574  pospo  17575  archiabllem2c  30874  ofldchr  30938  hlhgt2  36685  hl0lt1N  36686  lhp0lt  37299
  Copyright terms: Public domain W3C validator