MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  plttr Structured version   Visualization version   GIF version

Theorem plttr 17696
Description: The less-than relation is transitive. (psstr 3995 analog.) (Contributed by NM, 2-Dec-2011.)
Hypotheses
Ref Expression
pltnlt.b 𝐵 = (Base‘𝐾)
pltnlt.s < = (lt‘𝐾)
Assertion
Ref Expression
plttr ((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 < 𝑌𝑌 < 𝑍) → 𝑋 < 𝑍))

Proof of Theorem plttr
StepHypRef Expression
1 eqid 2738 . . . . . 6 (le‘𝐾) = (le‘𝐾)
2 pltnlt.s . . . . . 6 < = (lt‘𝐾)
31, 2pltle 17687 . . . . 5 ((𝐾 ∈ Poset ∧ 𝑋𝐵𝑌𝐵) → (𝑋 < 𝑌𝑋(le‘𝐾)𝑌))
433adant3r3 1185 . . . 4 ((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋 < 𝑌𝑋(le‘𝐾)𝑌))
51, 2pltle 17687 . . . . 5 ((𝐾 ∈ Poset ∧ 𝑌𝐵𝑍𝐵) → (𝑌 < 𝑍𝑌(le‘𝐾)𝑍))
653adant3r1 1183 . . . 4 ((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑌 < 𝑍𝑌(le‘𝐾)𝑍))
7 pltnlt.b . . . . 5 𝐵 = (Base‘𝐾)
87, 1postr 17679 . . . 4 ((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋(le‘𝐾)𝑌𝑌(le‘𝐾)𝑍) → 𝑋(le‘𝐾)𝑍))
94, 6, 8syl2and 611 . . 3 ((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 < 𝑌𝑌 < 𝑍) → 𝑋(le‘𝐾)𝑍))
107, 2pltn2lp 17695 . . . . . 6 ((𝐾 ∈ Poset ∧ 𝑋𝐵𝑌𝐵) → ¬ (𝑋 < 𝑌𝑌 < 𝑋))
11103adant3r3 1185 . . . . 5 ((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ¬ (𝑋 < 𝑌𝑌 < 𝑋))
12 breq2 5034 . . . . . . 7 (𝑋 = 𝑍 → (𝑌 < 𝑋𝑌 < 𝑍))
1312anbi2d 632 . . . . . 6 (𝑋 = 𝑍 → ((𝑋 < 𝑌𝑌 < 𝑋) ↔ (𝑋 < 𝑌𝑌 < 𝑍)))
1413notbid 321 . . . . 5 (𝑋 = 𝑍 → (¬ (𝑋 < 𝑌𝑌 < 𝑋) ↔ ¬ (𝑋 < 𝑌𝑌 < 𝑍)))
1511, 14syl5ibcom 248 . . . 4 ((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋 = 𝑍 → ¬ (𝑋 < 𝑌𝑌 < 𝑍)))
1615necon2ad 2949 . . 3 ((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 < 𝑌𝑌 < 𝑍) → 𝑋𝑍))
179, 16jcad 516 . 2 ((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 < 𝑌𝑌 < 𝑍) → (𝑋(le‘𝐾)𝑍𝑋𝑍)))
181, 2pltval 17686 . . 3 ((𝐾 ∈ Poset ∧ 𝑋𝐵𝑍𝐵) → (𝑋 < 𝑍 ↔ (𝑋(le‘𝐾)𝑍𝑋𝑍)))
19183adant3r2 1184 . 2 ((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋 < 𝑍 ↔ (𝑋(le‘𝐾)𝑍𝑋𝑍)))
2017, 19sylibrd 262 1 ((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 < 𝑌𝑌 < 𝑍) → 𝑋 < 𝑍))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  w3a 1088   = wceq 1542  wcel 2114  wne 2934   class class class wbr 5030  cfv 6339  Basecbs 16586  lecple 16675  Posetcpo 17666  ltcplt 17667
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2710  ax-sep 5167  ax-nul 5174  ax-pr 5296
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-mo 2540  df-eu 2570  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ne 2935  df-ral 3058  df-rex 3059  df-rab 3062  df-v 3400  df-sbc 3681  df-dif 3846  df-un 3848  df-in 3850  df-ss 3860  df-nul 4212  df-if 4415  df-sn 4517  df-pr 4519  df-op 4523  df-uni 4797  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5429  df-xp 5531  df-rel 5532  df-cnv 5533  df-co 5534  df-dm 5535  df-iota 6297  df-fun 6341  df-fv 6347  df-proset 17654  df-poset 17672  df-plt 17684
This theorem is referenced by:  pltletr  17697  plelttr  17698  pospo  17699  archiabllem2c  31026  ofldchr  31090  hlhgt2  37046  hl0lt1N  37047  lhp0lt  37660
  Copyright terms: Public domain W3C validator